mirror of
https://github.com/Rockbox/rockbox.git
synced 2025-10-13 10:07:38 -04:00
There are numerous sub-commands, this makes it possible to call the others. Also in this patch is the ability for the "default" ATA driver to query smart data too Change-Id: Ie3aaf9e0b2d7a5d25d09dea34e4f10ee29047e1b
1337 lines
34 KiB
C
1337 lines
34 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2002 by Alan Korr
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
|
|
//#define LOGF_ENABLE
|
|
|
|
#include <stdbool.h>
|
|
#include <inttypes.h>
|
|
#include "led.h"
|
|
#include "cpu.h"
|
|
#include "system.h"
|
|
#include "debug.h"
|
|
#include "panic.h"
|
|
#include "power.h"
|
|
#include "string.h"
|
|
#include "ata-driver.h"
|
|
#include "ata-defines.h"
|
|
#include "fs_defines.h"
|
|
#include "storage.h"
|
|
#include "logf.h"
|
|
|
|
#define SELECT_DEVICE1 0x10
|
|
#define SELECT_LBA 0x40
|
|
|
|
#define CONTROL_nIEN 0x02
|
|
#define CONTROL_SRST 0x04
|
|
|
|
#define CMD_READ_SECTORS 0x20
|
|
#define CMD_WRITE_SECTORS 0x30
|
|
#define CMD_WRITE_SECTORS_EXT 0x34
|
|
#define CMD_READ_MULTIPLE 0xC4
|
|
#define CMD_READ_MULTIPLE_EXT 0x29
|
|
#define CMD_WRITE_MULTIPLE 0xC5
|
|
#define CMD_WRITE_MULTIPLE_EXT 0x39
|
|
#define CMD_SET_MULTIPLE_MODE 0xC6
|
|
#ifdef HAVE_ATA_SMART
|
|
#define CMD_SMART 0xB0
|
|
#endif
|
|
#define CMD_STANDBY_IMMEDIATE 0xE0
|
|
#define CMD_STANDBY 0xE2
|
|
#define CMD_IDENTIFY 0xEC
|
|
#define CMD_SLEEP 0xE6
|
|
#define CMD_FLUSH_CACHE 0xE7
|
|
#define CMD_FLUSH_CACHE_EXT 0xEA
|
|
#define CMD_SET_FEATURES 0xEF
|
|
#define CMD_SECURITY_FREEZE_LOCK 0xF5
|
|
#ifdef HAVE_ATA_DMA
|
|
#define CMD_READ_DMA 0xC8
|
|
#define CMD_READ_DMA_EXT 0x25
|
|
#define CMD_WRITE_DMA 0xCA
|
|
#define CMD_WRITE_DMA_EXT 0x35
|
|
#endif
|
|
|
|
#define READWRITE_TIMEOUT 5*HZ
|
|
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
#define ATA_POWER_OFF_TIMEOUT 2*HZ
|
|
#endif
|
|
|
|
#if defined(HAVE_USBSTACK)
|
|
#define ATA_ACTIVE_IN_USB 1
|
|
#else
|
|
#define ATA_ACTIVE_IN_USB 0
|
|
#endif
|
|
|
|
enum {
|
|
ATA_BOOT = -1,
|
|
ATA_OFF,
|
|
ATA_SLEEPING,
|
|
ATA_SPINUP,
|
|
ATA_ON,
|
|
};
|
|
|
|
static int ata_state = ATA_BOOT;
|
|
|
|
static struct mutex ata_mutex SHAREDBSS_ATTR;
|
|
static int ata_device; /* device 0 (master) or 1 (slave) */
|
|
|
|
static int spinup_time = 0;
|
|
#if (CONFIG_LED == LED_REAL)
|
|
static bool ata_led_enabled = true;
|
|
static bool ata_led_on = false;
|
|
#endif
|
|
|
|
static long sleep_timeout = 5*HZ;
|
|
#ifdef HAVE_LBA48
|
|
static bool ata_lba48 = false; /* set for 48 bit addressing */
|
|
#endif
|
|
static bool canflush = true;
|
|
|
|
static long last_disk_activity = -1;
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
static long power_off_tick = 0;
|
|
#endif
|
|
|
|
static sector_t total_sectors;
|
|
static uint32_t log_sector_size;
|
|
static uint8_t multisectors; /* number of supported multisectors */
|
|
|
|
static unsigned short identify_info[ATA_IDENTIFY_WORDS] STORAGE_ALIGN_ATTR;
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
static int dma_mode = 0;
|
|
#endif
|
|
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
static int ata_power_on(void);
|
|
#endif
|
|
static int perform_soft_reset(void);
|
|
static int set_multiple_mode(int sectors);
|
|
static int set_features(void);
|
|
|
|
static inline void keep_ata_active(void)
|
|
{
|
|
last_disk_activity = current_tick;
|
|
}
|
|
|
|
static inline bool ata_sleep_timed_out(void)
|
|
{
|
|
return sleep_timeout &&
|
|
TIME_AFTER(current_tick, last_disk_activity + sleep_timeout);
|
|
}
|
|
|
|
static inline bool ata_power_off_timed_out(void)
|
|
{
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
return power_off_tick && TIME_AFTER(current_tick, power_off_tick);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#ifndef ATA_TARGET_POLLING
|
|
static ICODE_ATTR int wait_for_bsy(void)
|
|
{
|
|
long timeout = current_tick + HZ*30;
|
|
|
|
do
|
|
{
|
|
if (!(ATA_IN8(ATA_STATUS) & STATUS_BSY))
|
|
return 1;
|
|
keep_ata_active();
|
|
yield();
|
|
} while (TIME_BEFORE(current_tick, timeout));
|
|
|
|
return 0; /* timeout */
|
|
}
|
|
|
|
static ICODE_ATTR int wait_for_rdy(void)
|
|
{
|
|
long timeout;
|
|
|
|
if (!wait_for_bsy())
|
|
return 0;
|
|
|
|
timeout = current_tick + HZ*10;
|
|
|
|
do
|
|
{
|
|
if (ATA_IN8(ATA_ALT_STATUS) & STATUS_RDY)
|
|
return 1;
|
|
keep_ata_active();
|
|
yield();
|
|
} while (TIME_BEFORE(current_tick, timeout));
|
|
|
|
return 0; /* timeout */
|
|
}
|
|
#else
|
|
#define wait_for_bsy ata_wait_for_bsy
|
|
#define wait_for_rdy ata_wait_for_rdy
|
|
#endif
|
|
|
|
static int ata_perform_wakeup(int state)
|
|
{
|
|
logf("ata WAKE %ld", current_tick);
|
|
if (state > ATA_OFF) {
|
|
if (perform_soft_reset()) {
|
|
return -1;
|
|
}
|
|
}
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
else {
|
|
if (ata_power_on()) {
|
|
return -2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ata_perform_sleep(void)
|
|
{
|
|
/* If device doesn't support PM features, don't try to sleep. */
|
|
if (!ata_disk_can_sleep())
|
|
return 0; // XXX or return a failure?
|
|
|
|
logf("ata SLEEP %ld", current_tick);
|
|
|
|
ATA_OUT8(ATA_SELECT, ata_device);
|
|
|
|
if(!wait_for_rdy()) {
|
|
DEBUGF("ata_perform_sleep() - not RDY\n");
|
|
return -1;
|
|
}
|
|
|
|
/* STANDBY IMMEDIATE
|
|
- writes all cached data
|
|
- transitions to PM2:Standby
|
|
- enters Standby_z power condition
|
|
|
|
This places the device into a state where power-off is safe. We
|
|
will cut power at a later time.
|
|
*/
|
|
ATA_OUT8(ATA_COMMAND, CMD_STANDBY_IMMEDIATE);
|
|
|
|
if (!wait_for_rdy()) {
|
|
DEBUGF("ata_perform_sleep() - CMD failed\n");
|
|
return -2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ata_perform_flush_cache(void)
|
|
{
|
|
uint8_t cmd;
|
|
|
|
if (!canflush) {
|
|
return 0;
|
|
#ifdef HAVE_LBA48
|
|
} else if (ata_lba48 && identify_info[83] & (1 << 13)) {
|
|
cmd = CMD_FLUSH_CACHE_EXT; /* Flag, optional, ATA-6 and up, for use with LBA48 devices */
|
|
#endif
|
|
} else if (identify_info[83] & (1 << 12)) {
|
|
cmd = CMD_FLUSH_CACHE; /* Flag, mandatory, ATA-6 and up */
|
|
} else if (identify_info[80] >= (1 << 5)) { /* Use >= instead of '&' because bits lower than the latest standard we support don't have to be set */
|
|
cmd = CMD_FLUSH_CACHE; /* No flag, mandatory, ATA-5 (Optional for ATA-4) */
|
|
} else {
|
|
/* If neither (mandatory!) command is supported
|
|
then don't issue it. */
|
|
canflush = 0;
|
|
return 0;
|
|
}
|
|
|
|
logf("ata FLUSH CACHE %ld", current_tick);
|
|
|
|
ATA_OUT8(ATA_SELECT, ata_device);
|
|
|
|
if(!wait_for_rdy()) {
|
|
DEBUGF("ata_perform_flush_cache() - not RDY\n");
|
|
return -1;
|
|
}
|
|
|
|
ATA_OUT8(ATA_COMMAND, cmd);
|
|
|
|
if (!wait_for_rdy()) {
|
|
DEBUGF("ata_perform_flush_cache() - CMD failed\n");
|
|
return -2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ata_flush(void)
|
|
{
|
|
if (ata_state >= ATA_SPINUP) {
|
|
mutex_lock(&ata_mutex);
|
|
ata_perform_flush_cache();
|
|
mutex_unlock(&ata_mutex);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ICODE_ATTR int wait_for_start_of_transfer(void)
|
|
{
|
|
if (!wait_for_bsy())
|
|
return 0;
|
|
|
|
return (ATA_IN8(ATA_ALT_STATUS) & (STATUS_BSY|STATUS_DRQ)) == STATUS_DRQ;
|
|
}
|
|
|
|
static ICODE_ATTR int wait_for_end_of_transfer(void)
|
|
{
|
|
if (!wait_for_bsy())
|
|
return 0;
|
|
return (ATA_IN8(ATA_ALT_STATUS) &
|
|
(STATUS_BSY|STATUS_RDY|STATUS_DF|STATUS_DRQ|STATUS_ERR))
|
|
== STATUS_RDY;
|
|
}
|
|
|
|
#if (CONFIG_LED == LED_REAL)
|
|
/* Conditionally block LED access for the ATA driver, so the LED can be
|
|
* (mis)used for other purposes */
|
|
static void ata_led(bool on)
|
|
{
|
|
ata_led_on = on;
|
|
if (ata_led_enabled)
|
|
led(ata_led_on);
|
|
}
|
|
#else
|
|
#define ata_led(on) led(on)
|
|
#endif
|
|
|
|
#ifndef ATA_OPTIMIZED_READING
|
|
static ICODE_ATTR void copy_read_sectors(unsigned char* buf, int wordcount)
|
|
{
|
|
unsigned short tmp = 0;
|
|
|
|
if ( (unsigned long)buf & 1)
|
|
{ /* not 16-bit aligned, copy byte by byte */
|
|
unsigned char* bufend = buf + wordcount*2;
|
|
do
|
|
{
|
|
tmp = ATA_IN16(ATA_DATA);
|
|
#if defined(ROCKBOX_LITTLE_ENDIAN)
|
|
*buf++ = tmp & 0xff; /* I assume big endian */
|
|
*buf++ = tmp >> 8; /* and don't use the SWAB16 macro */
|
|
#else
|
|
*buf++ = tmp >> 8;
|
|
*buf++ = tmp & 0xff;
|
|
#endif
|
|
} while (buf < bufend); /* tail loop is faster */
|
|
}
|
|
else
|
|
{ /* 16-bit aligned, can do faster copy */
|
|
unsigned short* wbuf = (unsigned short*)buf;
|
|
unsigned short* wbufend = wbuf + wordcount;
|
|
do
|
|
{
|
|
*wbuf = ATA_IN16(ATA_DATA);
|
|
} while (++wbuf < wbufend); /* tail loop is faster */
|
|
}
|
|
}
|
|
#endif /* !ATA_OPTIMIZED_READING */
|
|
|
|
#ifndef ATA_OPTIMIZED_WRITING
|
|
static ICODE_ATTR void copy_write_sectors(const unsigned char* buf,
|
|
int wordcount)
|
|
{
|
|
if ( (unsigned long)buf & 1)
|
|
{ /* not 16-bit aligned, copy byte by byte */
|
|
unsigned short tmp = 0;
|
|
const unsigned char* bufend = buf + wordcount*2;
|
|
do
|
|
{
|
|
#if defined(ROCKBOX_LITTLE_ENDIAN)
|
|
tmp = (unsigned short) *buf++;
|
|
tmp |= (unsigned short) *buf++ << 8;
|
|
#else
|
|
tmp = (unsigned short) *buf++ << 8;
|
|
tmp |= (unsigned short) *buf++;
|
|
#endif
|
|
ATA_OUT16(ATA_DATA, tmp);
|
|
} while (buf < bufend); /* tail loop is faster */
|
|
}
|
|
else
|
|
{ /* 16-bit aligned, can do faster copy */
|
|
unsigned short* wbuf = (unsigned short*)buf;
|
|
unsigned short* wbufend = wbuf + wordcount;
|
|
do
|
|
{
|
|
ATA_OUT16(ATA_DATA, *wbuf);
|
|
} while (++wbuf < wbufend); /* tail loop is faster */
|
|
}
|
|
}
|
|
#endif /* !ATA_OPTIMIZED_WRITING */
|
|
|
|
static int ata_transfer_sectors(uint64_t start,
|
|
int incount,
|
|
void* inbuf,
|
|
int write)
|
|
{
|
|
int ret = 0;
|
|
long timeout;
|
|
int count;
|
|
void* buf;
|
|
long spinup_start = spinup_start;
|
|
#ifdef HAVE_ATA_DMA
|
|
bool usedma = false;
|
|
#endif
|
|
|
|
if (start + incount > total_sectors) {
|
|
ret = -1;
|
|
goto error;
|
|
}
|
|
|
|
keep_ata_active();
|
|
|
|
ata_led(true);
|
|
|
|
if (ata_state < ATA_ON) {
|
|
spinup_start = current_tick;
|
|
int state = ata_state;
|
|
ata_state = ATA_SPINUP;
|
|
if (ata_perform_wakeup(state)) {
|
|
ret = -2;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
logf("ata XFER (%d) %d @ %llu", write, incount, start);
|
|
|
|
timeout = current_tick + READWRITE_TIMEOUT;
|
|
|
|
ATA_OUT8(ATA_SELECT, ata_device);
|
|
if (!wait_for_rdy())
|
|
{
|
|
ret = -3;
|
|
goto error;
|
|
}
|
|
|
|
retry:
|
|
buf = inbuf;
|
|
count = incount;
|
|
while (TIME_BEFORE(current_tick, timeout)) {
|
|
ret = 0;
|
|
keep_ata_active();
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
/* If DMA is supported and parameters are ok for DMA, use it */
|
|
if (dma_mode && ata_dma_setup(inbuf, incount * log_sector_size, write))
|
|
usedma = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_LBA48
|
|
if (ata_lba48)
|
|
{
|
|
ATA_OUT8(ATA_NSECTOR, count >> 8);
|
|
ATA_OUT8(ATA_NSECTOR, count & 0xff);
|
|
ATA_OUT8(ATA_SECTOR, (start >> 24) & 0xff); /* 31:24 */
|
|
ATA_OUT8(ATA_SECTOR, start & 0xff); /* 7:0 */
|
|
ATA_OUT8(ATA_LCYL, (start >> 32) & 0xff); /* 39:32 */
|
|
ATA_OUT8(ATA_LCYL, (start >> 8) & 0xff); /* 15:8 */
|
|
ATA_OUT8(ATA_HCYL, (start >> 40) & 0xff); /* 47:40 */
|
|
ATA_OUT8(ATA_HCYL, (start >> 16) & 0xff); /* 23:16 */
|
|
ATA_OUT8(ATA_SELECT, SELECT_LBA | ata_device);
|
|
#ifdef HAVE_ATA_DMA
|
|
if (write)
|
|
ATA_OUT8(ATA_COMMAND, usedma ? CMD_WRITE_DMA_EXT : CMD_WRITE_MULTIPLE_EXT);
|
|
else
|
|
ATA_OUT8(ATA_COMMAND, usedma ? CMD_READ_DMA_EXT : CMD_READ_MULTIPLE_EXT);
|
|
#else
|
|
ATA_OUT8(ATA_COMMAND, write ? CMD_WRITE_MULTIPLE_EXT : CMD_READ_MULTIPLE_EXT);
|
|
#endif
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
ATA_OUT8(ATA_NSECTOR, count & 0xff); /* 0 means 256 sectors */
|
|
ATA_OUT8(ATA_SECTOR, start & 0xff);
|
|
ATA_OUT8(ATA_LCYL, (start >> 8) & 0xff);
|
|
ATA_OUT8(ATA_HCYL, (start >> 16) & 0xff);
|
|
ATA_OUT8(ATA_SELECT, ((start >> 24) & 0xf) | SELECT_LBA | ata_device); /* LBA28, mask off upper 4 bits of 32-bit sector address */
|
|
#ifdef HAVE_ATA_DMA
|
|
if (write)
|
|
ATA_OUT8(ATA_COMMAND, usedma ? CMD_WRITE_DMA : CMD_WRITE_MULTIPLE);
|
|
else
|
|
ATA_OUT8(ATA_COMMAND, usedma ? CMD_READ_DMA : CMD_READ_MULTIPLE);
|
|
#else
|
|
ATA_OUT8(ATA_COMMAND, write ? CMD_WRITE_MULTIPLE : CMD_READ_MULTIPLE);
|
|
#endif
|
|
}
|
|
|
|
/* wait at least 400ns between writing command and reading status */
|
|
__asm__ volatile ("nop");
|
|
__asm__ volatile ("nop");
|
|
__asm__ volatile ("nop");
|
|
__asm__ volatile ("nop");
|
|
__asm__ volatile ("nop");
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
if (usedma) {
|
|
if (!ata_dma_finish())
|
|
ret = -7;
|
|
|
|
if (ret != 0) {
|
|
perform_soft_reset();
|
|
goto retry;
|
|
}
|
|
|
|
if (ata_state == ATA_SPINUP) {
|
|
ata_state = ATA_ON;
|
|
spinup_time = current_tick - spinup_start;
|
|
}
|
|
}
|
|
else
|
|
#endif /* HAVE_ATA_DMA */
|
|
{
|
|
while (count) {
|
|
int sectors;
|
|
int wordcount;
|
|
int status;
|
|
int error;
|
|
|
|
if (!wait_for_start_of_transfer()) {
|
|
/* We have timed out waiting for RDY and/or DRQ, possibly
|
|
because the hard drive is shaking and has problems
|
|
reading the data. We have two options:
|
|
1) Wait some more
|
|
2) Perform a soft reset and try again.
|
|
|
|
We choose alternative 2.
|
|
*/
|
|
perform_soft_reset();
|
|
ret = -5;
|
|
goto retry;
|
|
}
|
|
|
|
if (ata_state == ATA_SPINUP) {
|
|
ata_state = ATA_ON;
|
|
spinup_time = current_tick - spinup_start;
|
|
}
|
|
|
|
/* read the status register exactly once per loop */
|
|
status = ATA_IN8(ATA_STATUS);
|
|
error = ATA_IN8(ATA_ERROR);
|
|
|
|
if (count >= multisectors)
|
|
sectors = multisectors;
|
|
else
|
|
sectors = count;
|
|
|
|
wordcount = sectors * log_sector_size / 2;
|
|
|
|
if (write)
|
|
copy_write_sectors(buf, wordcount);
|
|
else
|
|
copy_read_sectors(buf, wordcount);
|
|
|
|
/*
|
|
"Device errors encountered during READ MULTIPLE commands
|
|
are posted at the beginning of the block or partial block
|
|
transfer, but the DRQ bit is still set to one and the data
|
|
transfer shall take place, including transfer of corrupted
|
|
data, if any."
|
|
-- ATA specification
|
|
*/
|
|
if ( status & (STATUS_BSY | STATUS_ERR | STATUS_DF) ) {
|
|
perform_soft_reset();
|
|
ret = -6;
|
|
/* no point retrying IDNF, sector no. was invalid */
|
|
if (error & ERROR_IDNF)
|
|
break;
|
|
goto retry;
|
|
}
|
|
|
|
buf += sectors * log_sector_size; /* Advance one chunk of sectors */
|
|
count -= sectors;
|
|
|
|
keep_ata_active();
|
|
}
|
|
}
|
|
|
|
if(!ret && !wait_for_end_of_transfer()) {
|
|
int error;
|
|
|
|
error = ATA_IN8(ATA_ERROR);
|
|
perform_soft_reset();
|
|
ret = -4;
|
|
/* no point retrying IDNF, sector no. was invalid */
|
|
if (error & ERROR_IDNF)
|
|
break;
|
|
goto retry;
|
|
}
|
|
break;
|
|
}
|
|
|
|
error:
|
|
ata_led(false);
|
|
|
|
if (ret < 0 && ata_state == ATA_SPINUP) {
|
|
/* bailed out before updating */
|
|
ata_state = ATA_ON;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#include "ata-common.c"
|
|
|
|
#ifndef MAX_PHYS_SECTOR_SIZE
|
|
int ata_read_sectors(IF_MD(int drive,)
|
|
sector_t start,
|
|
int incount,
|
|
void* inbuf)
|
|
{
|
|
#ifdef HAVE_MULTIDRIVE
|
|
(void)drive; /* unused for now */
|
|
#endif
|
|
|
|
mutex_lock(&ata_mutex);
|
|
int rc = ata_transfer_sectors(start, incount, inbuf, false);
|
|
mutex_unlock(&ata_mutex);
|
|
return rc;
|
|
}
|
|
|
|
int ata_write_sectors(IF_MD(int drive,)
|
|
sector_t start,
|
|
int count,
|
|
const void* buf)
|
|
{
|
|
#ifdef HAVE_MULTIDRIVE
|
|
(void)drive; /* unused for now */
|
|
#endif
|
|
|
|
mutex_lock(&ata_mutex);
|
|
int rc = ata_transfer_sectors(start, count, (void*)buf, true);
|
|
mutex_unlock(&ata_mutex);
|
|
return rc;
|
|
}
|
|
#endif /* ndef MAX_PHYS_SECTOR_SIZE */
|
|
|
|
static int STORAGE_INIT_ATTR check_registers(void)
|
|
{
|
|
int i;
|
|
wait_for_bsy();
|
|
if (ATA_IN8(ATA_STATUS) & STATUS_BSY)
|
|
return -1;
|
|
|
|
for (i = 0; i<64; i++) {
|
|
ATA_OUT8(ATA_NSECTOR, TEST_PATTERN1);
|
|
ATA_OUT8(ATA_SECTOR, TEST_PATTERN2);
|
|
ATA_OUT8(ATA_LCYL, TEST_PATTERN3);
|
|
ATA_OUT8(ATA_HCYL, TEST_PATTERN4);
|
|
|
|
if (((ATA_IN8(ATA_NSECTOR) & 0xff) == TEST_PATTERN1) &&
|
|
((ATA_IN8(ATA_SECTOR) & 0xff) == TEST_PATTERN2) &&
|
|
((ATA_IN8(ATA_LCYL) & 0xff) == TEST_PATTERN3) &&
|
|
((ATA_IN8(ATA_HCYL) & 0xff) == TEST_PATTERN4))
|
|
return 0;
|
|
|
|
sleep(1);
|
|
}
|
|
return -2;
|
|
}
|
|
|
|
static int freeze_lock(void)
|
|
{
|
|
/* does the disk support Security Mode feature set? */
|
|
if (identify_info[82] & 2)
|
|
{
|
|
ATA_OUT8(ATA_SELECT, ata_device);
|
|
|
|
if (!wait_for_rdy())
|
|
return -1;
|
|
|
|
ATA_OUT8(ATA_COMMAND, CMD_SECURITY_FREEZE_LOCK);
|
|
|
|
if (!wait_for_rdy())
|
|
return -2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ata_spindown(int seconds)
|
|
{
|
|
sleep_timeout = seconds * HZ;
|
|
}
|
|
|
|
bool ata_disk_is_active(void)
|
|
{
|
|
return (ata_state >= ATA_SPINUP);
|
|
}
|
|
|
|
void ata_sleepnow(void)
|
|
{
|
|
if (ata_state >= ATA_SPINUP) {
|
|
logf("ata SLEEPNOW %ld", current_tick);
|
|
mutex_lock(&ata_mutex);
|
|
if (ata_state == ATA_ON) {
|
|
if (!ata_perform_flush_cache() && !ata_perform_sleep()) {
|
|
ata_state = ATA_SLEEPING;
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
if (ata_disk_can_sleep() || canflush) {
|
|
power_off_tick = current_tick + ATA_POWER_OFF_TIMEOUT;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
mutex_unlock(&ata_mutex);
|
|
}
|
|
}
|
|
|
|
void ata_spin(void)
|
|
{
|
|
keep_ata_active();
|
|
}
|
|
|
|
/* Hardware reset protocol as specified in chapter 9.1, ATA spec draft v5 */
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
static int ata_hard_reset(void)
|
|
#else
|
|
static int STORAGE_INIT_ATTR ata_hard_reset(void)
|
|
#endif
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&ata_mutex);
|
|
|
|
ata_reset();
|
|
|
|
/* state HRR2 */
|
|
ATA_OUT8(ATA_SELECT, ata_device); /* select the right device */
|
|
ret = wait_for_bsy();
|
|
|
|
/* Massage the return code so it is 0 on success and -1 on failure */
|
|
ret = ret?0:-1;
|
|
|
|
mutex_unlock(&ata_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef HAVE_ATA_SMART
|
|
static int ata_smart(uint16_t *buf, uint8_t cmd)
|
|
{
|
|
int i;
|
|
|
|
ATA_OUT8(ATA_SELECT, ata_device);
|
|
|
|
if(!wait_for_rdy()) {
|
|
DEBUGF("identify() - not RDY\n");
|
|
return -1;
|
|
}
|
|
|
|
ATA_OUT8(&ATA_PIO_FED, cmd);
|
|
ATA_OUT8(&ATA_PIO_HCYL, 0xc2);
|
|
ATA_OUT8(&ATA_PIO_LCYL, 0x4f);
|
|
ATA_OUT8(ATA_SELECT, SELECT_LBA | ata_device);
|
|
ATA_OUT8(ATA_COMMAND, CMD_SMART);
|
|
|
|
if (!wait_for_start_of_transfer())
|
|
{
|
|
DEBUGF("identify() - CMD failed\n");
|
|
return -2;
|
|
}
|
|
|
|
for (i = 0 ; i < 256 ; i++) {
|
|
/* The SMART words are already swapped, so we need to treat
|
|
this info differently that normal sector data */
|
|
buf[i] = ATA_SWAP_IDENTIFY(ATA_IN16(ATA_DATA));
|
|
}
|
|
}
|
|
int ata_read_smart(struct ata_smart_values* smart_data, uint8_t cmd)
|
|
{
|
|
mutex_lock(&ata_mutex);
|
|
int rc = ata_smart((uint16_t*)smart_data, cmd);
|
|
mutex_unlock(&ata_mutex);
|
|
return rc;
|
|
}
|
|
#endif /* HAVE_ATA_SMART */
|
|
|
|
// not putting this into STORAGE_INIT_ATTR, as ATA spec recommends to
|
|
// re-read identify_info after soft reset. So we'll do that.
|
|
static int identify(void)
|
|
{
|
|
int i;
|
|
|
|
ATA_OUT8(ATA_SELECT, ata_device);
|
|
|
|
if(!wait_for_rdy()) {
|
|
DEBUGF("identify() - not RDY\n");
|
|
return -1;
|
|
}
|
|
ATA_OUT8(ATA_COMMAND, CMD_IDENTIFY);
|
|
|
|
if (!wait_for_start_of_transfer())
|
|
{
|
|
DEBUGF("identify() - CMD failed\n");
|
|
return -2;
|
|
}
|
|
|
|
for (i=0; i<ATA_IDENTIFY_WORDS; i++) {
|
|
/* the IDENTIFY words are already swapped, so we need to treat
|
|
this info differently that normal sector data */
|
|
identify_info[i] = ATA_SWAP_IDENTIFY(ATA_IN16(ATA_DATA));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int perform_soft_reset(void)
|
|
{
|
|
/* If this code is allowed to run on a Nano, the next reads from the flash will
|
|
* time out, so we disable it. It shouldn't be necessary anyway, since the
|
|
* ATA -> Flash interface automatically sleeps almost immediately after the
|
|
* last command.
|
|
*/
|
|
int ret;
|
|
int retry_count;
|
|
|
|
logf("ata SOFT RESET %ld", current_tick);
|
|
|
|
ATA_OUT8(ATA_SELECT, SELECT_LBA | ata_device );
|
|
ATA_OUT8(ATA_CONTROL, CONTROL_nIEN|CONTROL_SRST );
|
|
sleep(1); /* >= 5us */
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
/* DMA requires INTRQ be enabled */
|
|
ATA_OUT8(ATA_CONTROL, 0);
|
|
#else
|
|
ATA_OUT8(ATA_CONTROL, CONTROL_nIEN);
|
|
#endif
|
|
sleep(1); /* >2ms */
|
|
|
|
/* This little sucker can take up to 30 seconds */
|
|
retry_count = 8;
|
|
do
|
|
{
|
|
ret = wait_for_rdy();
|
|
} while(!ret && retry_count--);
|
|
|
|
if (!ret)
|
|
return -1;
|
|
|
|
if (identify())
|
|
return -5;
|
|
|
|
if ((ret = set_features()))
|
|
return -60 + ret;
|
|
|
|
if (set_multiple_mode(multisectors))
|
|
return -3;
|
|
|
|
if (identify())
|
|
return -2;
|
|
|
|
if (freeze_lock())
|
|
return -4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ata_soft_reset(void)
|
|
{
|
|
int ret = -6;
|
|
|
|
mutex_lock(&ata_mutex);
|
|
|
|
if (ata_state > ATA_OFF) {
|
|
ret = perform_soft_reset();
|
|
}
|
|
|
|
mutex_unlock(&ata_mutex);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
static int ata_power_on(void)
|
|
{
|
|
int rc;
|
|
|
|
logf("ata ON %ld", current_tick);
|
|
|
|
ide_power_enable(true);
|
|
sleep(HZ/4); /* allow voltage to build up */
|
|
|
|
/* Accessing the PP IDE controller too early after powering up the disk
|
|
* makes the core hang for a short time, causing an audio dropout. This
|
|
* also depends on the disk; iPod Mini G2 needs at least HZ/5 to get rid
|
|
* of the dropout. Since this time isn't additive (the wait_for_bsy() in
|
|
* ata_hard_reset() will shortened by the same amount), it's a good idea
|
|
* to do this on all HDD based targets. */
|
|
|
|
if( ata_hard_reset() )
|
|
return -1;
|
|
|
|
if (identify())
|
|
return -5;
|
|
|
|
rc = set_features();
|
|
if (rc)
|
|
return -60 + rc;
|
|
|
|
if (set_multiple_mode(multisectors))
|
|
return -3;
|
|
|
|
if (identify())
|
|
return -2;
|
|
|
|
if (freeze_lock())
|
|
return -4;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* HAVE_ATA_POWER_OFF */
|
|
|
|
static int STORAGE_INIT_ATTR master_slave_detect(void)
|
|
{
|
|
/* master? */
|
|
ATA_OUT8(ATA_SELECT, 0);
|
|
if (ATA_IN8(ATA_STATUS) & (STATUS_RDY|STATUS_BSY)) {
|
|
ata_device = 0;
|
|
DEBUGF("Found master harddisk\n");
|
|
}
|
|
else {
|
|
/* slave? */
|
|
ATA_OUT8(ATA_SELECT, SELECT_DEVICE1);
|
|
if (ATA_IN8(ATA_STATUS) & (STATUS_RDY|STATUS_BSY)) {
|
|
ata_device = SELECT_DEVICE1;
|
|
DEBUGF("Found slave harddisk\n");
|
|
}
|
|
else
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_multiple_mode(int sectors)
|
|
{
|
|
ATA_OUT8(ATA_SELECT, ata_device);
|
|
|
|
if(!wait_for_rdy()) {
|
|
DEBUGF("set_multiple_mode() - not RDY\n");
|
|
return -1;
|
|
}
|
|
|
|
ATA_OUT8(ATA_NSECTOR, sectors);
|
|
ATA_OUT8(ATA_COMMAND, CMD_SET_MULTIPLE_MODE);
|
|
|
|
if (!wait_for_rdy())
|
|
{
|
|
DEBUGF("set_multiple_mode() - CMD failed\n");
|
|
return -2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
static int ata_get_best_mode(unsigned short identword, int max, int modetype)
|
|
{
|
|
unsigned short testbit = BIT_N(max);
|
|
|
|
while (1) {
|
|
if (identword & testbit)
|
|
return max | modetype;
|
|
testbit >>= 1;
|
|
if (!testbit)
|
|
return 0;
|
|
max--;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int set_features(void)
|
|
{
|
|
static struct {
|
|
unsigned char id_word;
|
|
unsigned char id_bit;
|
|
unsigned char subcommand;
|
|
unsigned char parameter;
|
|
} features[] = {
|
|
{ 83, 14, 0x03, 0 }, /* force PIO mode by default */
|
|
#ifdef HAVE_ATA_DMA
|
|
{ 0, 0, 0x03, 0 }, /* DMA mode */
|
|
#endif
|
|
/* NOTE: Above two MUST come first! */
|
|
{ 83, 3, 0x05, 0x80 }, /* adv. power management: lowest w/o standby */
|
|
{ 83, 9, 0x42, 0x80 }, /* acoustic management: lowest noise */
|
|
{ 82, 5, 0x02, 0 }, /* enable volatile write cache */
|
|
{ 82, 6, 0xaa, 0 }, /* enable read look-ahead */
|
|
};
|
|
int i;
|
|
int pio_mode = 2; /* Lowest */
|
|
|
|
/* Find out the highest supported PIO mode */
|
|
if (identify_info[53] & (1<<1)) { /* Is word 64 valid? */
|
|
if (identify_info[64] & 2)
|
|
pio_mode = 4;
|
|
else if(identify_info[64] & 1)
|
|
pio_mode = 3;
|
|
}
|
|
|
|
/* Update the table: set highest supported pio mode that we also support */
|
|
features[0].parameter = 8 + pio_mode;
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
if (identify_info[53] & (1<<2)) {
|
|
int max_udma = ATA_MAX_UDMA;
|
|
#if ATA_MAX_UDMA > 2
|
|
if (!identify_info[76] && !(identify_info[93] & (1<<13))) /* w93b13 is only valid for PATA, w76 is 0 PATA */
|
|
max_udma = 2;
|
|
#endif
|
|
/* Ultra DMA mode info present, find a mode */
|
|
dma_mode = ata_get_best_mode(identify_info[88], max_udma, 0x40);
|
|
}
|
|
|
|
if (!dma_mode) {
|
|
/* No UDMA mode found, try to find a multi-word DMA mode */
|
|
dma_mode = ata_get_best_mode(identify_info[63], ATA_MAX_MWDMA, 0x20);
|
|
features[1].id_word = 63;
|
|
} else {
|
|
features[1].id_word = 88;
|
|
}
|
|
|
|
features[1].id_bit = dma_mode & 7;
|
|
features[1].parameter = dma_mode;
|
|
#endif /* HAVE_ATA_DMA */
|
|
|
|
ATA_OUT8(ATA_SELECT, ata_device);
|
|
|
|
if (!wait_for_rdy()) {
|
|
DEBUGF("set_features() - not RDY\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i=0; i < (int)(sizeof(features)/sizeof(features[0])); i++) {
|
|
if (identify_info[features[i].id_word] & BIT_N(features[i].id_bit)) {
|
|
ATA_OUT8(ATA_FEATURE, features[i].subcommand);
|
|
ATA_OUT8(ATA_NSECTOR, features[i].parameter);
|
|
ATA_OUT8(ATA_COMMAND, CMD_SET_FEATURES);
|
|
|
|
if (!wait_for_rdy()) {
|
|
DEBUGF("set_features() - CMD failed\n");
|
|
return -10 - i;
|
|
}
|
|
|
|
if((ATA_IN8(ATA_ALT_STATUS) & STATUS_ERR) && (features[i].subcommand != 0x05)) {
|
|
/* some CF cards don't like advanced powermanagement
|
|
even if they mark it as supported - go figure... */
|
|
if(ATA_IN8(ATA_ERROR) & ERROR_ABRT) {
|
|
return -20 - i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ATA_SET_PIO_TIMING
|
|
ata_set_pio_timings(pio_mode);
|
|
#endif
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
ata_dma_set_mode(dma_mode);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned short* ata_get_identify(void)
|
|
{
|
|
return identify_info;
|
|
}
|
|
|
|
static int STORAGE_INIT_ATTR init_and_check(bool hard_reset)
|
|
{
|
|
int rc;
|
|
|
|
if (hard_reset)
|
|
{
|
|
/* This should reset both master and slave, we don't yet know what's in */
|
|
ata_device = 0;
|
|
if (ata_hard_reset())
|
|
return -1;
|
|
}
|
|
|
|
rc = master_slave_detect();
|
|
if (rc)
|
|
return -10 + rc;
|
|
|
|
/* symptom fix: else check_registers() below may fail */
|
|
if (hard_reset && !wait_for_bsy())
|
|
return -20;
|
|
|
|
rc = check_registers();
|
|
if (rc)
|
|
return -30 + rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int STORAGE_INIT_ATTR ata_init(void)
|
|
{
|
|
int rc = 0;
|
|
bool coldstart;
|
|
|
|
if (ata_state == ATA_BOOT) {
|
|
mutex_init(&ata_mutex);
|
|
}
|
|
|
|
mutex_lock(&ata_mutex);
|
|
|
|
/* must be called before ata_device_init() */
|
|
coldstart = ata_is_coldstart();
|
|
ata_led(false);
|
|
ata_device_init();
|
|
ata_enable(true);
|
|
|
|
if (ata_state == ATA_BOOT) {
|
|
ata_state = ATA_OFF;
|
|
|
|
if (!ide_powered()) /* somebody has switched it off */
|
|
{
|
|
ide_power_enable(true);
|
|
sleep(HZ/4); /* allow voltage to build up */
|
|
}
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
/* DMA requires INTRQ be enabled */
|
|
ATA_OUT8(ATA_CONTROL, 0);
|
|
#endif
|
|
|
|
/* first try, hard reset at cold start only */
|
|
rc = init_and_check(coldstart);
|
|
|
|
if (rc)
|
|
{ /* failed? -> second try, always with hard reset */
|
|
DEBUGF("ata: init failed, retrying...\n");
|
|
rc = init_and_check(true);
|
|
if (rc) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
rc = identify();
|
|
if (rc) {
|
|
rc = -40 + rc;
|
|
goto error;
|
|
}
|
|
|
|
multisectors = identify_info[47] & 0xff;
|
|
if (!multisectors && (identify_info[59] & 0x100) == 0x100)
|
|
multisectors = identify_info[59] & 0xff;
|
|
if (!multisectors)
|
|
multisectors = 1; /* One transfer per REQ */
|
|
|
|
DEBUGF("ata: max %d sectors per DRQ\n", multisectors);
|
|
|
|
total_sectors = (identify_info[61] << 16) | identify_info[60];
|
|
|
|
#ifdef HAVE_LBA48
|
|
if (identify_info[83] & 0x0400 && total_sectors == 0x0FFFFFFF) {
|
|
total_sectors = ((uint64_t)identify_info[103] << 48) |
|
|
((uint64_t)identify_info[102] << 32) |
|
|
((uint64_t)identify_info[101] << 16) |
|
|
identify_info[100];
|
|
ata_lba48 = true; /* use BigLBA */
|
|
}
|
|
#endif /* HAVE_LBA48 */
|
|
|
|
/* Logical sector size > 512B ? */
|
|
if ((identify_info[106] & 0xd000) == 0x5000) /* B14, B12 */
|
|
log_sector_size = (identify_info[117] | (identify_info[118] << 16)) * 2;
|
|
else
|
|
log_sector_size = 512;
|
|
|
|
rc = freeze_lock();
|
|
if (rc) {
|
|
rc = -50 + rc;
|
|
goto error;
|
|
}
|
|
|
|
rc = set_features(); // error codes are between -1 and -49
|
|
if (rc) {
|
|
rc = -60 + rc;
|
|
goto error;
|
|
}
|
|
|
|
#ifdef MAX_PHYS_SECTOR_SIZE
|
|
rc = ata_get_phys_sector_mult();
|
|
if (rc) {
|
|
rc = -70 + rc;
|
|
goto error;
|
|
}
|
|
#endif
|
|
ata_state = ATA_ON;
|
|
keep_ata_active();
|
|
}
|
|
|
|
rc = set_multiple_mode(multisectors);
|
|
if (rc)
|
|
rc = -100 + rc;
|
|
|
|
rc = identify();
|
|
if (rc) {
|
|
rc = -40 + rc;
|
|
goto error;
|
|
}
|
|
|
|
error:
|
|
mutex_unlock(&ata_mutex);
|
|
return rc;
|
|
}
|
|
|
|
#if (CONFIG_LED == LED_REAL)
|
|
void ata_set_led_enabled(bool enabled)
|
|
{
|
|
ata_led_enabled = enabled;
|
|
if (ata_led_enabled)
|
|
led(ata_led_on);
|
|
else
|
|
led(false);
|
|
}
|
|
#endif
|
|
|
|
long ata_last_disk_activity(void)
|
|
{
|
|
return last_disk_activity;
|
|
}
|
|
|
|
int ata_spinup_time(void)
|
|
{
|
|
return spinup_time;
|
|
}
|
|
|
|
#ifdef STORAGE_GET_INFO
|
|
void ata_get_info(IF_MD(int drive,)struct storage_info *info)
|
|
{
|
|
unsigned short *src,*dest;
|
|
static char vendor[8];
|
|
static char product[16];
|
|
static char revision[4];
|
|
#ifdef HAVE_MULTIDRIVE
|
|
(void)drive; /* unused for now */
|
|
#endif
|
|
int i;
|
|
|
|
info->sector_size = log_sector_size;
|
|
info->num_sectors = total_sectors;
|
|
|
|
src = (unsigned short*)&identify_info[27];
|
|
dest = (unsigned short*)vendor;
|
|
for (i=0;i<4;i++)
|
|
dest[i] = htobe16(src[i]);
|
|
info->vendor=vendor;
|
|
|
|
src = (unsigned short*)&identify_info[31];
|
|
dest = (unsigned short*)product;
|
|
for (i=0;i<8;i++)
|
|
dest[i] = htobe16(src[i]);
|
|
info->product=product;
|
|
|
|
src = (unsigned short*)&identify_info[23];
|
|
dest = (unsigned short*)revision;
|
|
for (i=0;i<2;i++)
|
|
dest[i] = htobe16(src[i]);
|
|
info->revision=revision;
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_ATA_DMA
|
|
/* Returns last DMA mode as set by set_features() */
|
|
int ata_get_dma_mode(void)
|
|
{
|
|
return dma_mode;
|
|
}
|
|
|
|
/* Needed to allow updating while waiting for DMA to complete */
|
|
void ata_keep_active(void)
|
|
__attribute__((alias("ata_spin")));
|
|
#endif
|
|
|
|
#ifdef CONFIG_STORAGE_MULTI
|
|
int ata_num_drives(int first_drive)
|
|
{
|
|
/* We don't care which logical drive number(s) we have been assigned */
|
|
(void)first_drive;
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
int ata_event(long id, intptr_t data)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* GCC does a lousy job culling unreachable cases in the default handler
|
|
if statements are in a switch statement, so we'll do it this way. Only
|
|
the first case is frequently hit anyway. */
|
|
if (LIKELY(id == Q_STORAGE_TICK)) {
|
|
/* won't see ATA_BOOT in here */
|
|
if (ata_state != ATA_ON || !ata_sleep_timed_out()) {
|
|
#ifdef HAVE_ATA_POWER_OFF
|
|
if (ata_state == ATA_SLEEPING && ata_power_off_timed_out()) {
|
|
power_off_tick = 0;
|
|
mutex_lock(&ata_mutex);
|
|
logf("ata OFF %ld", current_tick);
|
|
ide_power_enable(false);
|
|
ata_state = ATA_OFF;
|
|
mutex_unlock(&ata_mutex);
|
|
}
|
|
#endif
|
|
STG_EVENT_ASSERT_ACTIVE(STORAGE_ATA);
|
|
}
|
|
}
|
|
else if (id == Q_STORAGE_SLEEPNOW) {
|
|
ata_sleepnow();
|
|
}
|
|
else if (id == Q_STORAGE_SLEEP) {
|
|
last_disk_activity = current_tick - sleep_timeout + HZ / 5;
|
|
}
|
|
#ifndef USB_NONE
|
|
else if (id == SYS_USB_CONNECTED) {
|
|
logf("deq USB %ld", current_tick);
|
|
if (ATA_ACTIVE_IN_USB) {
|
|
/* There is no need to force ATA power on */
|
|
STG_EVENT_ASSERT_ACTIVE(STORAGE_ATA);
|
|
}
|
|
else {
|
|
mutex_lock(&ata_mutex);
|
|
if (ata_state < ATA_ON) {
|
|
ata_led(true);
|
|
if (!(rc = ata_perform_wakeup(ata_state))) {
|
|
ata_state = ATA_ON;
|
|
}
|
|
ata_led(false);
|
|
}
|
|
mutex_unlock(&ata_mutex);
|
|
}
|
|
}
|
|
#endif /* ndef USB_NONE */
|
|
else {
|
|
rc = storage_event_default_handler(id, data, last_disk_activity,
|
|
STORAGE_ATA);
|
|
}
|
|
|
|
return rc;
|
|
}
|