rockbox/firmware/target/arm/imx233/sony-nwz/lcd-nwze370.c
nift4 b1511738f7 nwze370: improve lcd & backlight
Added lcd inversion
Fix issue where backlight would turn on before first frame rendered
Fix issue where backlight would shortly appear at 100% before PWM is
ready during fade in
Turn off backlight before booting/RoLo/shutdown to avoid it being
enabled on next boot
Fix issue where fade in isn't smooth because brightness levels below 13 were
basically equalivent to off, by removing these brightness levels

Change-Id: I868eae2cbeea52c6af7d09c886958ff46167fe26
2025-10-21 16:54:57 -04:00

242 lines
7.7 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (c) 2013 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <sys/types.h> /* off_t */
#include <string.h>
#include "cpu.h"
#include "system.h"
#include "backlight-target.h"
#include "lcd.h"
#include "lcdif-imx233.h"
#include "clkctrl-imx233.h"
#include "pinctrl-imx233.h"
#include "logf.h"
#ifdef HAVE_LCD_ENABLE
static bool lcd_on;
#ifdef HAVE_LCD_INVERT
static bool lcd_inverted;
#endif
#endif
static void lcd_write_reg(uint8_t reg, void *data, int data_len)
{
imx233_lcdif_set_data_swizzle(0);
imx233_lcdif_set_word_length(8);
imx233_lcdif_pio_send(false, 1, &reg);
imx233_lcdif_pio_send(true, data_len, data);
}
static void lcd_init_seq(void)
{
// seems compatible with ILI9163
lcd_write_reg(1, NULL, 0); // software reset
lcd_write_reg(0x11, NULL, 0); // sleep out
mdelay(150);
/* format: (<cmd> <data size> <data0> <dataN>)+ */
static uint8_t init_seq[] =
{
/* cmd sz data... */
0x26, 1, 4, /* Gamma Set */
0xb1, 2, 9, 0xd, /* Frame Rate */
0xc0, 2, 8, 0, /* Power Control 1 */
0xc1, 1, 5, /* Power Control 2 */
0xc5, 2, 0x31, 0x40, /* VCOM Control 1 */
0xc7, 1, 0xc8, /* VCOM Offset Control */
0xec, 1, 0xc, /* Unknown */
0x3a, 1, 5, /* Interface Pixel Format */
0x2a, 4, 0, 0, 0, 0x7f, /* Column Address */
0x2b, 4, 0, 0, 0, 0x9f, /* Page Address Set */
0x35, 1, 0, /* Tear Effect Line On */
0x36, 1, 0xc8, /* Memory access Control */
0xb4, 1, 0, /* Display Inversion */
0xb7, 1, 0, /* Source Driver Direction Control */
0xb8, 1, 0, /* Gate Driver Direction Control */
0xf2, 1, 1, /* Gamma Adjustment */
0xe0, 15, 0x3f, 0x20, 0x1d, 0x2d, 0x26, 0x0c, 0x4b, 0xb7,
0x39, 0x17, 0x1d, 0x16, 0x16, 0x10, 0x00, /* Positive Gamma */
0xe1, 15, 0x00, 0x1f, 0x21, 0x12, 0x18, 0x13, 0x34, 0x48,
0x46, 0x08, 0x21, 0x29, 0x28, 0x2f, 0x3f, /* Negative Gamma */
0x29, 0, /* Display On */
};
for(unsigned i = 0; i < sizeof(init_seq); )
{
lcd_write_reg(init_seq[i], &init_seq[i + 2], init_seq[i + 1]);
i += 2 + init_seq[i + 1];
}
}
void lcd_init_device(void)
{
/* the LCD seems to work at 24Mhz, so use the xtal clock with no divider */
imx233_clkctrl_enable(CLK_PIX, false);
imx233_clkctrl_set_div(CLK_PIX, 1);
imx233_clkctrl_set_bypass(CLK_PIX, true); /* use XTAL */
imx233_clkctrl_enable(CLK_PIX, true);
imx233_lcdif_init();
imx233_lcdif_set_lcd_databus_width(8);
imx233_lcdif_set_timings(2, 2, 2, 2);
imx233_lcdif_enable_underflow_recover(true);
imx233_lcdif_setup_system_pins(8);
imx233_lcdif_set_byte_packing_format(0xf); /* two pixels per 32-bit word */
// reset device
imx233_lcdif_reset_lcd(true);
mdelay(10);
imx233_lcdif_reset_lcd(false);
mdelay(10);
imx233_lcdif_reset_lcd(true);
mdelay(150);
lcd_init_seq();
#ifdef HAVE_LCD_ENABLE
lcd_on = true;
#endif
}
#ifdef HAVE_LCD_ENABLE
bool lcd_active(void)
{
return lcd_on;
}
static void lcd_enable_seq(bool enable)
{
if(enable)
{
lcd_write_reg(0x11, NULL, 0);
#ifdef HAVE_LCD_INVERT
lcd_set_invert_display(lcd_inverted);
#endif
lcd_write_reg(0x29, NULL, 0);
}
else
{
lcd_write_reg(0x28, NULL, 0);
lcd_write_reg(0x10, NULL, 0);
}
}
void lcd_enable(bool enable)
{
if(lcd_on == enable)
return;
lcd_on = enable;
if(enable)
imx233_lcdif_enable(true);
lcd_enable_seq(enable);
if(!enable)
imx233_lcdif_enable(false);
else
send_event(LCD_EVENT_ACTIVATION, NULL);
}
#endif
#ifdef HAVE_LCD_SHUTDOWN
void lcd_shutdown(void) {
backlight_hw_off();
}
#endif
#ifdef HAVE_LCD_INVERT
void lcd_set_invert_display(bool yesno)
{
lcd_write_reg(yesno ? 0x21 : 0x20, NULL, 0);
#ifdef HAVE_LCD_ENABLE
lcd_inverted = yesno;
#endif
}
#endif
void lcd_update(void)
{
lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}
void lcd_update_rect(int x, int y, int w, int h)
{
#ifdef HAVE_LCD_ENABLE
if(!lcd_on)
return;
#endif
/* make sure the rectangle is included in the screen */
x = MIN(x, LCD_WIDTH);
y = MIN(y, LCD_HEIGHT);
w = MIN(w, LCD_WIDTH - x);
h = MIN(h, LCD_HEIGHT - y);
imx233_lcdif_wait_ready();
uint32_t window = x << 8 | (x + w - 1) << 24;
lcd_write_reg(0x2a, &window, sizeof(window));
window = y << 8 | (y + h - 1) << 24;
lcd_write_reg(0x2b, &window, sizeof(window));
lcd_write_reg(0x2c, NULL, 0);
imx233_lcdif_wait_ready();
imx233_lcdif_set_data_swizzle(3);
imx233_lcdif_set_word_length(8);
/* there are two cases here:
* - either width = LCD_WIDTH and we can directly memcopy a part of lcd_framebuffer to FRAME
* and send it
* - either width != LCD_WIDTH and we have to build a contiguous copy of the rectangular area
* into FRAME before sending it (which is slower and doesn't use the hardware)
* In all cases, FRAME just acts as a temporary buffer.
* NOTE It's more interesting to do a copy to FRAME in all cases since in system mode
* the clock runs at 24MHz which provides barely 10MB/s bandwidth compared to >100MB/s
* for memcopy operations
*/
if(w == LCD_WIDTH)
{
memcpy((void *)FRAME, FBADDR(x,y), w * h * sizeof(fb_data));
}
else
{
void* (*fbaddr)(int x, int y) = FB_CURRENTVP_BUFFER->get_address_fn;
for(int i = 0; i < h; i++)
memcpy((fb_data *)FRAME + i * w, fbaddr(x,y + i), w * sizeof(fb_data));
}
/* WARNING The LCDIF has a limitation on the vertical count ! In 16-bit packed mode
* (which we used, ie 16-bit per pixel, 2 pixels per 32-bit words), the v_count
* field must be a multiple of 2. Furthermore, it seems the lcd controller doesn't
* really like when both w and h are even, probably because the writes to the GRAM
* are done on several words and the controller requires dummy writes.
* The workaround is to always make sure that we send a number of pixels which is
* a multiple of 4 so that both the lcdif and the controller are happy. If any
* of w or h is odd, we will send a copy of the first pixels as dummy writes. We will
* send at most 3 bytes. We then send (w * h + 3) / 4 x 4 bytes.
*/
if(w % 2 == 1 || h % 2 == 1)
{
/* copy three pixel after the last one */
for(int i = 0; i < 3; i++)
*((fb_data *)FRAME + w * h + i) = *((fb_data *)FRAME + i);
/* WARNING we need to update w and h to reflect the pixel count BUT it
* has no relation to w * h (it can even be 2 * prime). Hopefully, w <= 240 and
* h <= 320 so w * h <= 76800 and (w * h + 3) / 4 <= 38400 which fits into
* a 16-bit integer (horizontal count). */
h = (w * h + 3) / 4;
w = 4;
}
imx233_lcdif_dma_send((void *)FRAME_PHYS_ADDR, w * 2, h);
}