rockbox/firmware/drivers/axp-2101.c
Dana Conrad 96463d855f erosqnative: hw4 units prefer egauge battery percentage
Use AXP2101's egauge battery percent level if available (hw4 units).
If not available (_battery_level() will return -1 on hw1-hw3 units),
fall back to voltage battery level.

Also fix logic in axp2101_battery_status()

Change-Id: Ic300418532dae6f7772fff8bf5e2b32516f3b973
2025-01-19 17:30:21 -05:00

675 lines
19 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "axp-2101.h"
#include "power.h"
#include "system.h"
#include "i2c-async.h"
#include <string.h>
/* Headers for the debug menu */
#ifndef BOOTLOADER
# include "action.h"
# include "list.h"
# include <stdio.h>
#endif
struct axp_adc_info {
uint8_t reg;
uint8_t en_reg;
uint8_t en_bit;
int8_t num;
int8_t den;
};
struct axp_supply_info {
uint8_t volt_reg;
uint8_t volt_reg_mask;
uint8_t en_reg;
uint8_t en_bit;
int min_mV;
int max_mV; // if multiple steps, set to max of step 1
int step_mV;
int step2_min_mV;
int step2_mV;
int step2_max_mV;
int step3_min_mV;
int step3_mV;
int step3_max_mV;
};
static const struct axp_adc_info axp_adc_info[AXP2101_NUM_ADC_CHANNELS] = {
// 0x000 0x001 0x002 ... 0x1FFF
// 0mV 1mV 2mV ... 8.192V
[AXP2101_ADC_VBAT_VOLTAGE] = {AXP2101_REG_ADC_VBAT_H, AXP2101_REG_ADCCHNENABLE, 1 << 0, 1, 1},
// 0mV 1mV 2mV ... 8.192V
[AXP2101_ADC_VBUS_VOLTAGE] = {AXP2101_REG_ADC_VBUS_H, AXP2101_REG_ADCCHNENABLE, 1 << 2, 1, 1},
// 0mV 1mV 2mV ... 8.192V
[AXP2101_ADC_VSYS_VOLTAGE] = {AXP2101_REG_ADC_VSYS_H, AXP2101_REG_ADCCHNENABLE, 1 << 3, 1, 1},
// 0mV 0.5mV 0.1mV ... 4.096V
[AXP2101_ADC_TS_VOLTAGE] = {AXP2101_REG_ADC_TS_H, AXP2101_REG_ADCCHNENABLE, 1 << 1, 1, 2},
// see axp2101_adc_conv_raw() for conversion
[AXP2101_ADC_DIE_TEMPERATURE] = {AXP2101_REG_ADC_TDIE_H, AXP2101_REG_ADCCHNENABLE, 1 << 4, 1, 1},
};
static const struct axp_supply_info axp_supply_info[AXP2101_NUM_SUPPLIES] = {
[AXP2101_SUPPLY_DCDC1] = {
.volt_reg = 0x82,
.volt_reg_mask = 0x1f, // N.B. max value 0b10011, values higher reserved
.en_reg = 0x80,
.en_bit = 0,
.min_mV = 1500,
.max_mV = 3400,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_DCDC2] = {
.volt_reg = 0x83,
.volt_reg_mask = 0x7f, // N.B. max value 0b1010111, values higher reserved
.en_reg = 0x80,
.en_bit = 1,
.min_mV = 500,
.max_mV = 1200,
.step_mV = 10,
.step2_min_mV = 1220,
.step2_mV = 20,
.step2_max_mV = 1540,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
// N.B. 10mV/step from 0.5 - 1.2v (71 steps),
// 20mV/step from 1.22 - 1.54v (17 steps)
},
[AXP2101_SUPPLY_DCDC3] = {
.volt_reg = 0x84,
.volt_reg_mask = 0x7f, // N.B. max value 0b1101011, values higher reserved
.en_reg = 0x80,
.en_bit = 2,
.min_mV = 500,
.max_mV = 1200,
.step_mV = 10,
.step2_min_mV = 1220,
.step2_mV = 20,
.step2_max_mV = 1540,
.step3_min_mV = 1600,
.step3_mV = 100,
.step3_max_mV = 3400,
// N.B. 10mV/step from 0.5 - 1.2V (71 steps)
// 20mV/step from 1.22 - 1.54V (17 steps)
// 100mV/step from 1.6 - 3.4V (19 steps)
},
[AXP2101_SUPPLY_DCDC4] = {
.volt_reg = 0x85,
.volt_reg_mask = 0x7f, // N.B. max value 0b1100110, values higher reserved
.en_reg = 0x80,
.en_bit = 3,
.min_mV = 500,
.max_mV = 1200,
.step_mV = 10,
.step2_min_mV = 1220,
.step2_mV = 20,
.step2_max_mV = 1840,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
// N.B. 10mV/step from 0.5 - 1.2V (71 steps)
// 20mV/step from 1.22 - 1.84V (32 steps)
},
[AXP2101_SUPPLY_DCDC5] = {
.volt_reg = 0x86,
.volt_reg_mask = 0x3f, // N.B. max value 0b10111, values higher reserved
.en_reg = 0x80,
.en_bit = 4,
.min_mV = 1400,
.max_mV = 3700,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_ALDO1] = {
.volt_reg = 0x92,
.volt_reg_mask = 0x3f, // N.B. max value 0b1110, values higher reserved
.en_reg = 0x90,
.en_bit = 0,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_ALDO2] = {
.volt_reg = 0x93,
.volt_reg_mask = 0x3f, // N.B. max value 0b1110, values higher reserved
.en_reg = 0x90,
.en_bit = 1,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_ALDO3] = {
.volt_reg = 0x94,
.volt_reg_mask = 0x3f, // N.B. max value 0b1110, values higher reserved
.en_reg = 0x90,
.en_bit = 2,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_ALDO4] = {
.volt_reg = 0x95,
.volt_reg_mask = 0x3f, // N.B. max value 0b1110, values higher reserved
.en_reg = 0x90,
.en_bit = 3,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_BLDO1] = {
.volt_reg = 0x96,
.volt_reg_mask = 0x3f, // N.B. max value 0b11110, values higher reserved
.en_reg = 0x90,
.en_bit = 4,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_BLDO2] = {
.volt_reg = 0x97,
.volt_reg_mask = 0x3f, // N.B. max value 0b11110, values higher reserved
.en_reg = 0x90,
.en_bit = 5,
.min_mV = 500,
.max_mV = 3500,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_DLDO1] = {
.volt_reg = 0x99,
.volt_reg_mask = 0x3f, // N.B. max value 0b11100, values higher reserved
.en_reg = 0x90,
.en_bit = 7,
.min_mV = 500,
.max_mV = 3400,
.step_mV = 100,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_DLDO2] = {
.volt_reg = 0x9a,
.volt_reg_mask = 0x3f, // N.B. max value 0b11100, values higher reserved
.en_reg = 0x91,
.en_bit = 0,
.min_mV = 500,
.max_mV = 1400,
.step_mV = 560,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
[AXP2101_SUPPLY_VCPUS] = {
.volt_reg = 0x98,
.volt_reg_mask = 0x3f, // N.B. max value 0b10011, values higher reserved
.en_reg = 0x90,
.en_bit = 6,
.min_mV = 500,
.max_mV = 1400,
.step_mV = 50,
.step2_min_mV = 0,
.step2_mV = 0,
.step2_max_mV = 0,
.step3_min_mV = 0,
.step3_mV = 0,
.step3_max_mV = 0,
},
// No voltage reg given - are these fixed?
// [AXP_SUPPLY_RTCLDO1] = {
// },
// [AXP_SUPPLY_RTCLDO2] = {
// },
};
void axp2101_init(void)
{
}
void axp2101_supply_set_voltage(int supply, int voltage)
{
const struct axp_supply_info* info = &axp_supply_info[supply];
if(info->volt_reg == 0 || info->volt_reg_mask == 0)
return;
if(voltage > 0 && info->step_mV != 0) {
if(voltage < info->min_mV)
return;
int regval;
// there's probably a more elegant way to do this...
if(voltage > info->max_mV) {
if(info->step2_max_mV == 0) {
return;
} else {
if(voltage > info->step2_max_mV) {
if(info->step3_max_mV == 0 || voltage > info->step3_max_mV) {
return;
} else {
// step3 range
regval = ((info->max_mV - info->min_mV) / info->step_mV)\
+ ((info->step2_max_mV - info->step2_min_mV) / info->step2_mV)\
+ ((voltage - info->step3_min_mV) / info->step3_mV) + 2;
}
} else {
// step2 range
regval = ((info->max_mV - info->min_mV) / info->step_mV)\
+ ((voltage - info->step2_min_mV) / info->step2_mV) + 1;
}
}
} else {
// step1 range
regval = (voltage - info->min_mV) / info->step_mV;
}
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR, info->volt_reg,
info->volt_reg_mask, regval, NULL);
}
if(info->en_bit != 0xff) {
i2c_reg_setbit1(AXP_PMU_BUS, AXP_PMU_ADDR,
info->en_reg, info->en_bit,
voltage > 0 ? 1 : 0, NULL);
}
}
int axp2101_supply_get_voltage(int supply)
{
const struct axp_supply_info* info = &axp_supply_info[supply];
if(info->volt_reg == 0)
return AXP2101_SUPPLY_NOT_PRESENT;
if(info->en_reg != 0) {
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, info->en_reg);
if(r < 0)
return AXP2101_SUPPLY_DISABLED;
if(r & (1 << info->en_bit) == 0)
return AXP2101_SUPPLY_DISABLED;
}
/* Hack, avoid undefined shift below. Can be useful too... */
if(info->volt_reg_mask == 0)
return info->min_mV;
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, info->volt_reg);
if(r < 0)
return 0;
int val;
r = r & info->volt_reg_mask;
// there's probably a more elegant way to do this...
if(r > ((info->max_mV - info->min_mV) / info->step_mV)) {
r = r - ((info->max_mV - info->min_mV) / info->step_mV);
if(r > ((info->step2_max_mV - info->step2_min_mV) / info->step2_mV + 1)) {
r = r - ((info->step2_max_mV - info->step2_min_mV) / info->step2_mV);
/* step 3 */
val = info->step3_min_mV + ((r-2) * info->step3_mV);
} else {
/* step 2 */
val = info->step2_min_mV + ((r-1) * info->step2_mV);
}
} else {
/* step 1 */
val = info->min_mV + (r * info->step_mV);
}
return val;
}
int axp2101_battery_status(void)
{
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP2101_REG_PMU_STATUS2);
if(((r >> 5) & 0x03) == 0) {
return AXP2101_BATT_FULL;
} else if(((r >> 5) & 0x03) == 1) {
return AXP2101_BATT_CHARGING;
} else {
return AXP2101_BATT_DISCHARGING;
}
}
int axp2101_input_status(void)
{
#ifdef HAVE_BATTERY_SWITCH
int input_status = 0;
#else
int input_status = AXP2101_INPUT_BATTERY;
#endif
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP2101_REG_PMU_STATUS1);
if(r & 0x20)
input_status |= AXP2101_INPUT_USB;
#ifdef HAVE_BATTERY_SWITCH
if(r & 0x80)
input_status |= AXP2101_INPUT_BATTERY;
#endif
return input_status;
}
int axp2101_adc_read(int adc)
{
int value = axp2101_adc_read_raw(adc);
if(value == INT_MIN)
return INT_MIN;
return axp2101_adc_conv_raw(adc, value);
}
int axp2101_adc_read_raw(int adc)
{
/* Read the ADC */
uint8_t buf[2];
uint8_t reg = axp_adc_info[adc].reg;
int rc = i2c_reg_read(AXP_PMU_BUS, AXP_PMU_ADDR, reg, 2, &buf[0]);
if(rc != I2C_STATUS_OK)
return INT_MIN;
/* Parse the value */
return ((int)(buf[0] & 0x3f) << 8) | (buf[1] & 0xff);
}
int axp2101_adc_conv_raw(int adc, int value)
{
if (adc == AXP2101_ADC_DIE_TEMPERATURE)
return 22 + ((7274 - value) / 20);
// seems to be a signed 14-bit value, but
// let's clamp it to zero. Seems to give sane results
// on v_bus and v_ts channels
if (value & 0x2000)
return 0;
return axp_adc_info[adc].num * value / axp_adc_info[adc].den;
}
void axp2101_adc_set_enabled(int adc_bits)
{
uint8_t xfer[1];
xfer[0] = 0;
/* Compute the new register values */
const struct axp_adc_info* info = axp_adc_info;
for(int i = 0; i < AXP2101_NUM_ADC_CHANNELS; ++i) {
if(!(adc_bits & (1 << i)))
continue;
xfer[0] |= info[i].en_bit;
}
/* Update the configuration */
i2c_reg_write(AXP_PMU_BUS, AXP_PMU_ADDR, AXP2101_REG_ADCCHNENABLE, 1, &xfer[0]);
}
int axp2101_egauge_read(void)
{
uint8_t buf;
i2c_reg_read(AXP_PMU_BUS, AXP_PMU_ADDR, AXP2101_REG_BATT_PERCENTAGE, 1, &buf);
return (int)buf;
}
// there are many current settings:
// Reg 16: Input current limit control
// Reg 61: Precharge current limit
// Reg 62: Constant current charge current limit
// Reg 63: Charging termination current limit
// there are also voltage settings for charging:
// Reg 14: Linear Charger Vsys voltage dpm
// Reg 15: Input Voltage limit control
// Reg 64: CV charger charge voltage limit
// There are also some timer stuff:
// Reg 67: Charger timeout setting and control
// constant current charge current limits
static const int chargecurrent_tbl[] = {
0, 25, 50, 75, 100, 125, 150, 175, 200,
300, 400, 500, 600, 700, 800, 900, 1000,
};
// constant current charge current limits
void axp2101_set_charge_current(int current_mA)
{
/* find greatest charging current not exceeding requested current */
unsigned int index = 0;
while(index < ARRAYLEN(chargecurrent_tbl)-1 &&
chargecurrent_tbl[index+1] <= current_mA)
++index;
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP2101_REG_ICC_SETTING, 0x0f, index, NULL);
}
int axp2101_get_charge_current(void)
{
int ret = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP2101_REG_ICC_SETTING);
if(ret < 0)
ret = 0;
return chargecurrent_tbl[ret & 0x0f];
}
void axp2101_power_off(void)
{
/* Set the shutdown bit */
i2c_reg_setbit1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP2101_REG_PMUCOMMCONFIG, 0, 1, NULL);
}
#ifndef BOOTLOADER
enum {
AXP_DEBUG_BATTERY_STATUS,
AXP_DEBUG_INPUT_STATUS,
AXP_DEBUG_CHARGE_CURRENT,
AXP_DEBUG_EGAUGE_VALUE,
AXP_DEBUG_FIRST_ADC,
AXP_DEBUG_FIRST_SUPPLY = AXP_DEBUG_FIRST_ADC + AXP2101_NUM_ADC_CHANNELS,
AXP_DEBUG_NUM_ENTRIES = AXP_DEBUG_FIRST_SUPPLY + AXP2101_NUM_SUPPLIES,
};
static int axp2101_debug_menu_cb(int action, struct gui_synclist* lists)
{
(void)lists;
if(action == ACTION_NONE)
action = ACTION_REDRAW;
return action;
}
static const char* axp2101_debug_menu_get_name(int item, void* data,
char* buf, size_t buflen)
{
(void)data;
static const char* const adc_names[] = {
"V_bat", "V_bus", "V_sys", "V_ts", "T_die",
};
static const char* const adc_units[] = {
"mV", "mV", "mV", "mV", "C",
};
static const char* const supply_names[] = {
"DCDC1", "DCDC2", "DCDC3", "DCDC4", "DCDC5",
"ALDO1", "ALDO2", "ALDO3", "ALDO4", "BLDO1", "BLDO2", "DLDO1", "DLDO2",
"VCPUS",
};
int adc = item - AXP_DEBUG_FIRST_ADC;
if(item >= AXP_DEBUG_FIRST_ADC && adc < AXP2101_NUM_ADC_CHANNELS) {
int raw_value = axp2101_adc_read_raw(adc);
if(raw_value == INT_MIN) {
snprintf(buf, buflen, "%s: [Disabled]", adc_names[adc]);
return buf;
}
int value = axp2101_adc_conv_raw(adc, raw_value);
snprintf(buf, buflen, "%s: %d %s", adc_names[adc],
value, adc_units[adc]);
return buf;
}
int supply = item - AXP_DEBUG_FIRST_SUPPLY;
if(item >= AXP_DEBUG_FIRST_SUPPLY && supply < AXP2101_NUM_SUPPLIES) {
int voltage = axp2101_supply_get_voltage(supply);
if(voltage == AXP2101_SUPPLY_NOT_PRESENT)
snprintf(buf, buflen, "%s: [Not Present]", supply_names[supply]);
else if(voltage == AXP2101_SUPPLY_DISABLED)
snprintf(buf, buflen, "%s: [Disabled]", supply_names[supply]);
else
snprintf(buf, buflen, "%s: %d mV", supply_names[supply], voltage);
return buf;
}
switch(item) {
case AXP_DEBUG_BATTERY_STATUS: {
switch(axp2101_battery_status()) {
case AXP2101_BATT_FULL:
return "Battery: Full";
case AXP2101_BATT_CHARGING:
return "Battery: Charging";
case AXP2101_BATT_DISCHARGING:
return "Battery: Discharging";
default:
return "Battery: Unknown";
}
} break;
case AXP_DEBUG_INPUT_STATUS: {
int s = axp2101_input_status();
const char* ac = (s & AXP2101_INPUT_AC) ? " AC" : "";
const char* usb = (s & AXP2101_INPUT_USB) ? " USB" : "";
const char* batt = (s & AXP2101_INPUT_BATTERY) ? " Battery" : "";
snprintf(buf, buflen, "Inputs:%s%s%s", ac, usb, batt);
return buf;
} break;
case AXP_DEBUG_CHARGE_CURRENT: {
int current = axp2101_get_charge_current();
snprintf(buf, buflen, "Max charge current: %d mA", current);
return buf;
} break;
case AXP_DEBUG_EGAUGE_VALUE: {
int percent = axp2101_egauge_read();
snprintf(buf, buflen, "EGauge percent: %d", percent);
return buf;
} break;
default:
return "---";
}
}
bool axp2101_debug_menu(void)
{
struct simplelist_info info;
simplelist_info_init(&info, "AXP debug", AXP_DEBUG_NUM_ENTRIES, NULL);
info.action_callback = axp2101_debug_menu_cb;
info.get_name = axp2101_debug_menu_get_name;
return simplelist_show_list(&info);
}
#endif /* !BOOTLOADER */
/* This is basically the only valid implementation, so define it here */
unsigned int axp2101_power_input_status(void)
{
unsigned int state = 0;
int input_status = axp2101_input_status();
if(input_status & AXP2101_INPUT_AC)
state |= POWER_INPUT_MAIN_CHARGER;
if(input_status & AXP2101_INPUT_USB)
state |= POWER_INPUT_USB_CHARGER;
#ifdef HAVE_BATTERY_SWITCH
if(input_status & AXP2101_INPUT_BATTERY)
state |= POWER_INPUT_BATTERY;
#endif
return state;
}