rknanotools: fix rknano stages processing

Change-Id: Ia88f5aa2a6c56b312f80b31afab41d1dc68b871b
This commit is contained in:
Amaury Pouly 2014-10-31 16:09:28 +01:00 committed by Solomon Peachy
parent d22bb548b2
commit b8d35c042d
3 changed files with 212 additions and 81 deletions

View file

@ -21,6 +21,14 @@
#include "elf.h" #include "elf.h"
#include "misc.h" #include "misc.h"
static char *strdup(const char *str)
{
int len = strlen(str);
char *s = malloc(len + 1);
memcpy(s, str, len + 1);
return s;
}
/** /**
* Definitions * Definitions
* taken from elf.h linux header * taken from elf.h linux header
@ -189,20 +197,30 @@ static struct elf_segment_t *elf_add_segment(struct elf_params_t *params)
} }
void elf_add_load_section(struct elf_params_t *params, void elf_add_load_section(struct elf_params_t *params,
uint32_t load_addr, uint32_t size, const void *section) uint32_t load_addr, uint32_t size, const void *section, const char *name)
{ {
struct elf_section_t *sec = elf_add_section(params); struct elf_section_t *sec = elf_add_section(params);
char buffer[32];
if(name == NULL)
{
sprintf(buffer, ".text%d", params->unique_index++);
name = buffer;
}
sec->type = EST_LOAD; sec->type = EST_LOAD;
sec->addr = load_addr; sec->addr = load_addr;
sec->size = size; sec->size = size;
sec->section = xmalloc(size); sec->section = xmalloc(size);
sec->name = strdup(name);
memcpy(sec->section, section, size); memcpy(sec->section, section, size);
} }
void elf_add_fill_section(struct elf_params_t *params, void elf_add_fill_section(struct elf_params_t *params,
uint32_t fill_addr, uint32_t size, uint32_t pattern) uint32_t fill_addr, uint32_t size, uint32_t pattern)
{ {
char buffer[32];
sprintf(buffer, ".bss%d", params->unique_index++);
if(pattern != 0x00) if(pattern != 0x00)
{ {
printf("oops, non-zero filling, ignore fill section\n"); printf("oops, non-zero filling, ignore fill section\n");
@ -215,6 +233,7 @@ void elf_add_fill_section(struct elf_params_t *params,
sec->addr = fill_addr; sec->addr = fill_addr;
sec->size = size; sec->size = size;
sec->pattern = pattern; sec->pattern = pattern;
sec->name = strdup(buffer);
} }
void elf_write_file(struct elf_params_t *params, elf_write_fn_t write, void elf_write_file(struct elf_params_t *params, elf_write_fn_t write,
@ -226,6 +245,7 @@ void elf_write_file(struct elf_params_t *params, elf_write_fn_t write,
uint32_t phnum = 0; uint32_t phnum = 0;
struct elf_section_t *sec = params->first_section; struct elf_section_t *sec = params->first_section;
uint32_t offset = 0; uint32_t offset = 0;
uint32_t strtbl_size = 1; /* offset 0 is for the NULL name */
Elf32_Phdr phdr; Elf32_Phdr phdr;
Elf32_Shdr shdr; Elf32_Shdr shdr;
memset(&ehdr, 0, EI_NIDENT); memset(&ehdr, 0, EI_NIDENT);
@ -241,6 +261,8 @@ void elf_write_file(struct elf_params_t *params, elf_write_fn_t write,
{ {
sec->offset = 0; sec->offset = 0;
} }
sec->name_offset = strtbl_size;
strtbl_size += strlen(sec->name) + 1;
phnum++; phnum++;
sec = sec->next; sec = sec->next;
@ -275,16 +297,14 @@ void elf_write_file(struct elf_params_t *params, elf_write_fn_t write,
write(user, 0, &ehdr, sizeof ehdr); write(user, 0, &ehdr, sizeof ehdr);
/* allocate enough size to hold any combinaison of .text/.bss in the string table: /* the last name offset gives the size of the section, we need to add a small
* - one empty name ("\0") * amount of .shstrtab name */
* - at most N names of the form ".textXXXX\0" or ".bssXXXX\0" uint32_t shstrtab_index = strtbl_size;
* - one name ".shstrtab\0" */ strtbl_size += strlen(".shstrtab") + 1;
char *strtbl_content = malloc(1 + strlen(".shstrtab") + 1 + char *strtbl_content = malloc(strtbl_size);
phnum * (strlen(".textXXXX") + 1)); /* create NULL and shstrtab names */
strtbl_content[0] = '\0'; strtbl_content[0] = '\0';
strcpy(&strtbl_content[1], ".shstrtab"); strcpy(&strtbl_content[shstrtab_index], ".shstrtab");
uint32_t strtbl_index = 1 + strlen(".shstrtab") + 1;
uint32_t data_offset = ehdr.e_ehsize + ehdr.e_phnum * ehdr.e_phentsize + uint32_t data_offset = ehdr.e_ehsize + ehdr.e_phnum * ehdr.e_phentsize +
ehdr.e_shnum * ehdr.e_shentsize; ehdr.e_shnum * ehdr.e_shentsize;
@ -294,6 +314,7 @@ void elf_write_file(struct elf_params_t *params, elf_write_fn_t write,
while(sec) while(sec)
{ {
sec->offset += data_offset; sec->offset += data_offset;
strcpy(&strtbl_content[sec->name_offset], sec->name);
phdr.p_type = PT_LOAD; phdr.p_type = PT_LOAD;
if(sec->type == EST_LOAD) if(sec->type == EST_LOAD)
@ -336,21 +357,13 @@ void elf_write_file(struct elf_params_t *params, elf_write_fn_t write,
offset += sizeof(Elf32_Shdr); offset += sizeof(Elf32_Shdr);
} }
uint32_t text_idx = 0;
uint32_t bss_idx = 0;
while(sec) while(sec)
{ {
shdr.sh_name = strtbl_index; shdr.sh_name = sec->name_offset;
if(sec->type == EST_LOAD) if(sec->type == EST_LOAD)
{
strtbl_index += 1 + sprintf(&strtbl_content[strtbl_index], ".text%d", text_idx++);
shdr.sh_type = SHT_PROGBITS; shdr.sh_type = SHT_PROGBITS;
}
else else
{
strtbl_index += 1 + sprintf(&strtbl_content[strtbl_index], ".bss%d", bss_idx++);
shdr.sh_type = SHT_NOBITS; shdr.sh_type = SHT_NOBITS;
}
shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR; shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR;
shdr.sh_addr = sec->addr; shdr.sh_addr = sec->addr;
shdr.sh_offset = sec->offset; shdr.sh_offset = sec->offset;
@ -367,12 +380,12 @@ void elf_write_file(struct elf_params_t *params, elf_write_fn_t write,
} }
{ {
shdr.sh_name = 1; shdr.sh_name = shstrtab_index;
shdr.sh_type = SHT_STRTAB; shdr.sh_type = SHT_STRTAB;
shdr.sh_flags = 0; shdr.sh_flags = 0;
shdr.sh_addr = 0; shdr.sh_addr = 0;
shdr.sh_offset = strtbl_offset + data_offset; shdr.sh_offset = strtbl_offset + data_offset;
shdr.sh_size = strtbl_index; shdr.sh_size = strtbl_size;
shdr.sh_link = SHN_UNDEF; shdr.sh_link = SHN_UNDEF;
shdr.sh_info = 0; shdr.sh_info = 0;
shdr.sh_addralign = 1; shdr.sh_addralign = 1;
@ -391,7 +404,7 @@ void elf_write_file(struct elf_params_t *params, elf_write_fn_t write,
sec = sec->next; sec = sec->next;
} }
write(user, strtbl_offset + data_offset, strtbl_content, strtbl_index); write(user, strtbl_offset + data_offset, strtbl_content, strtbl_size);
free(strtbl_content); free(strtbl_content);
} }
@ -459,7 +472,7 @@ bool elf_read_file(struct elf_params_t *params, elf_read_fn_t read,
void *data = xmalloc(shdr.sh_size); void *data = xmalloc(shdr.sh_size);
if(!read(user, shdr.sh_offset, data, shdr.sh_size)) if(!read(user, shdr.sh_offset, data, shdr.sh_size))
error_printf("error read self section data\n"); error_printf("error read self section data\n");
elf_add_load_section(params, shdr.sh_addr, shdr.sh_size, data); elf_add_load_section(params, shdr.sh_addr, shdr.sh_size, data, NULL);
free(data); free(data);
if(strtab) if(strtab)
@ -476,7 +489,6 @@ bool elf_read_file(struct elf_params_t *params, elf_read_fn_t read,
if(strtab) if(strtab)
printf(user, false, "filter out %s\n", &strtab[shdr.sh_name], shdr.sh_type); printf(user, false, "filter out %s\n", &strtab[shdr.sh_name], shdr.sh_type);
} }
} }
free(strtab); free(strtab);
/* run through segments */ /* run through segments */
@ -562,6 +574,7 @@ void elf_release(struct elf_params_t *params)
struct elf_section_t *next_sec = sec->next; struct elf_section_t *next_sec = sec->next;
if(sec->type == EST_LOAD) if(sec->type == EST_LOAD)
free(sec->section); free(sec->section);
free(sec->name);
free(sec); free(sec);
sec = next_sec; sec = next_sec;
} }

View file

@ -42,6 +42,7 @@ struct elf_section_t
uint32_t addr; /* virtual address */ uint32_t addr; /* virtual address */
uint32_t size; /* virtual size */ uint32_t size; /* virtual size */
enum elf_section_type_t type; enum elf_section_type_t type;
char *name;
/* <union> */ /* <union> */
void *section; /* data */ void *section; /* data */
uint32_t pattern; /* fill pattern */ uint32_t pattern; /* fill pattern */
@ -49,6 +50,7 @@ struct elf_section_t
struct elf_section_t *next; struct elf_section_t *next;
/* Internal to elf_write_file */ /* Internal to elf_write_file */
uint32_t offset; uint32_t offset;
uint32_t name_offset;
}; };
struct elf_segment_t struct elf_segment_t
@ -68,6 +70,7 @@ struct elf_params_t
struct elf_section_t *last_section; struct elf_section_t *last_section;
struct elf_segment_t *first_segment; struct elf_segment_t *first_segment;
struct elf_segment_t *last_segment; struct elf_segment_t *last_segment;
int unique_index;
}; };
typedef bool (*elf_read_fn_t)(void *user, uint32_t addr, void *buf, size_t count); typedef bool (*elf_read_fn_t)(void *user, uint32_t addr, void *buf, size_t count);
@ -77,7 +80,7 @@ typedef void (*elf_printf_fn_t)(void *user, bool error, const char *fmt, ...);
void elf_init(struct elf_params_t *params); void elf_init(struct elf_params_t *params);
void elf_add_load_section(struct elf_params_t *params, void elf_add_load_section(struct elf_params_t *params,
uint32_t load_addr, uint32_t size, const void *section); uint32_t load_addr, uint32_t size, const void *section, const char *name);
void elf_add_fill_section(struct elf_params_t *params, void elf_add_fill_section(struct elf_params_t *params,
uint32_t fill_addr, uint32_t size, uint32_t pattern); uint32_t fill_addr, uint32_t size, uint32_t pattern);
uint32_t elf_translate_virtual_address(struct elf_params_t *params, uint32_t addr); uint32_t elf_translate_virtual_address(struct elf_params_t *params, uint32_t addr);

View file

@ -15,6 +15,11 @@ bool g_debug = false;
typedef uint8_t packed_bcd_uint8_t; typedef uint8_t packed_bcd_uint8_t;
typedef uint16_t packed_bcd_uint16_t; typedef uint16_t packed_bcd_uint16_t;
/**
* RKnanoFW
* contains resources and code stages
*/
struct rknano_date_t struct rknano_date_t
{ {
packed_bcd_uint16_t year; packed_bcd_uint16_t year;
@ -276,6 +281,11 @@ static int do_nanofw_image(uint8_t *buf, unsigned long size)
return 0; return 0;
} }
/**
* RKNano stage
* contains code and memory mapping
*/
struct rknano_stage_header_t struct rknano_stage_header_t
{ {
uint32_t addr; uint32_t addr;
@ -283,21 +293,28 @@ struct rknano_stage_header_t
} __attribute__((packed)); } __attribute__((packed));
/* /*
* The [code_pa,code_pa+code_sz[ and [data_pa,data_pa+data_sz[ ranges * NOTE this theory has not been tested against actual code, it's still a guess
* are consistent: they never overlap and have no gaps and fill the * The firmware is too big to fit in memory so it's split into sections,
* entire space. Furthermore they match the code sequences so it's * each section having a "virtual address" and a "physical address".
* reasonable to assume these fields are correct. * Except it gets tricky because the RKNano doesn't have a MMU but a MPU,
* The other fields are still quite unsure. */ * so most probably the OF divides the memory into regions (8 would match
* hardware capabilities), each being able to contain one of the sections
* in the OF file. To gracefully handle jumps between sections, my guess is
* that the entire OF is linked as a flat image, cut into pieces and
* then each code section get relocated except for jump/calls outside of it:
* this will trigger an access fault when trying to access another section, which
* the OF can trap and then load the corresponding section.
*/
struct rknano_stage_section_t struct rknano_stage_section_t
{ {
uint32_t code_pa;
uint32_t code_va; uint32_t code_va;
uint32_t code_pa;
uint32_t code_sz; uint32_t code_sz;
uint32_t data_pa;
uint32_t data_va; uint32_t data_va;
uint32_t data_pa;
uint32_t data_sz; uint32_t data_sz;
uint32_t bss_va; uint32_t bss_pa;
uint32_t bss_sz; uint32_t bss_sz;
} __attribute__((packed)); } __attribute__((packed));
@ -319,14 +336,14 @@ static void elf_write(void *user, uint32_t addr, const void *buf, size_t count)
fwrite(buf, count, 1, f); fwrite(buf, count, 1, f);
} }
static void extract_elf_section(struct elf_params_t *elf, int count) static void extract_elf_section(struct elf_params_t *elf)
{ {
if(g_out_prefix == NULL) if(g_out_prefix == NULL)
return; return;
char *filename = xmalloc(strlen(g_out_prefix) + 32); char *filename = xmalloc(strlen(g_out_prefix) + 32);
sprintf(filename, "%s%d.elf", g_out_prefix, count); sprintf(filename, "%s.elf", g_out_prefix);
if(g_debug) if(g_debug)
printf("Write entry %d to %s\n", count, filename); printf("Write stage to %s\n", filename);
FILE *fd = fopen(filename, "wb"); FILE *fd = fopen(filename, "wb");
free(filename); free(filename);
@ -337,67 +354,149 @@ static void extract_elf_section(struct elf_params_t *elf, int count)
fclose(fd); fclose(fd);
} }
struct range_t
{
unsigned long start, size;
int section;
int type;
};
int range_cmp(const void *_a, const void *_b)
{
const struct range_t *a = _a, *b = _b;
if(a->start == b->start)
return a->size - b->size;
return a->start - b->start;
}
#define RANGE_TXT 0
#define RANGE_DAT 1
static int do_nanostage_image(uint8_t *buf, unsigned long size) static int do_nanostage_image(uint8_t *buf, unsigned long size)
{ {
if(size < sizeof(struct rknano_stage_section_t)) if(size < sizeof(struct rknano_stage_section_t))
return 1; return 1;
struct rknano_stage_header_t *hdr = (void *)buf; struct rknano_stage_header_t *hdr = (void *)buf;
size_t hdr_size = sizeof(struct rknano_stage_header_t) +
hdr->count * sizeof(struct rknano_stage_section_t);
if(size < hdr_size)
return 1;
cprintf(BLUE, "Header\n"); cprintf(BLUE, "Header\n");
cprintf(GREEN, " Base Address: "); cprintf(GREEN, " Base Address: ");
cprintf(YELLOW, "%#08x\n", hdr->addr); cprintf(YELLOW, "%#08x\n", hdr->addr);
cprintf(GREEN, " Load count: "); cprintf(GREEN, " Section count: ");
cprintf(YELLOW, "%d\n", hdr->count); cprintf(YELLOW, "%d\n", hdr->count);
struct rknano_stage_section_t *sec = (void *)(hdr + 1); struct rknano_stage_section_t *sec = (void *)(hdr + 1);
struct elf_params_t elf;
elf_init(&elf);
bool error = false;
/* track range for overlap */
struct range_t *ranges = malloc(sizeof(struct range_t) * 2 * hdr->count);
int nr_ranges = 0;
for(unsigned i = 0; i < hdr->count; i++, sec++) for(unsigned i = 0; i < hdr->count; i++, sec++)
{ {
cprintf(BLUE, "Section %d\n", i); cprintf(BLUE, "Section %d\n", i);
cprintf(GREEN, " Code: "); cprintf(GREEN, " Code: ");
cprintf(YELLOW, "0x%08x", sec->code_pa);
cprintf(RED, "-(txt)-");
cprintf(YELLOW, "0x%08x", sec->code_pa + sec->code_sz);
cprintf(BLUE, " |--> ");
cprintf(YELLOW, "0x%08x", sec->code_va); cprintf(YELLOW, "0x%08x", sec->code_va);
cprintf(RED, "-(txt)-"); cprintf(RED, "-(txt)-");
cprintf(YELLOW, "0x%08x\n", sec->code_va + sec->code_sz); cprintf(YELLOW, "0x%08x", sec->code_va + sec->code_sz);
cprintf(BLUE, " |--> ");
cprintf(YELLOW, "0x%08x", sec->code_pa);
cprintf(RED, "-(txt)-");
cprintf(YELLOW, "0x%08x\n", sec->code_pa + sec->code_sz);
/* add ranges */
ranges[nr_ranges].start = sec->code_va;
ranges[nr_ranges].size = sec->code_sz;
ranges[nr_ranges].section = i;
ranges[nr_ranges].type = RANGE_TXT;
ranges[nr_ranges + 1].start = sec->data_va;
ranges[nr_ranges + 1].size = sec->data_sz;
ranges[nr_ranges + 1].section = i;
ranges[nr_ranges + 1].type = RANGE_DAT;
nr_ranges += 2;
cprintf(GREEN, " Data: "); cprintf(GREEN, " Data: ");
cprintf(YELLOW, "0x%08x", sec->data_pa);
cprintf(RED, "-(dat)-");
cprintf(YELLOW, "0x%08x", sec->data_pa + sec->data_sz);
cprintf(BLUE, " |--> ");
cprintf(YELLOW, "0x%08x", sec->data_va); cprintf(YELLOW, "0x%08x", sec->data_va);
cprintf(RED, "-(dat)-"); cprintf(RED, "-(dat)-");
cprintf(YELLOW, "0x%08x\n", sec->data_va + sec->data_sz); cprintf(YELLOW, "0x%08x", sec->data_va + sec->data_sz);
cprintf(BLUE, " |--> ");
cprintf(YELLOW, "0x%08x", sec->data_pa);
cprintf(RED, "-(dat)-");
cprintf(YELLOW, "0x%08x\n", sec->data_pa + sec->data_sz);
cprintf(GREEN, " Data: "); cprintf(GREEN, " Data: ");
cprintf(RED, " "); cprintf(RED, " ");
cprintf(BLUE, " |--> "); cprintf(BLUE, " |--> ");
cprintf(YELLOW, "0x%08x", sec->bss_va); cprintf(YELLOW, "0x%08x", sec->bss_pa);
cprintf(RED, "-(bss)-"); cprintf(RED, "-(bss)-");
cprintf(YELLOW, "0x%08x\n", sec->bss_va + sec->bss_sz); cprintf(YELLOW, "0x%08x\n", sec->bss_pa + sec->bss_sz);
#if 0 #define check_range_(start,sz) \
struct rknano_blob_t blob; ((start) >= hdr_size && (start) + (sz) <= size)
blob.offset = sec->code_pa - hdr->addr; #define check_range(start,sz) \
blob.size = sec->code_sz; ((start) >= hdr->addr && check_range_((start) - hdr->addr, sz))
save_blob(&blob, buf, size, "entry.", i, NO_ENC); /* check ranges */
#else if(sec->code_sz != 0 && !check_range(sec->code_va, sec->code_sz))
struct elf_params_t elf; {
elf_init(&elf); cprintf(GREY, "Invalid stage: out of bound code\n");
elf_add_load_section(&elf, sec->code_va, sec->code_sz, buf + sec->code_pa - hdr->addr); error = true;
elf_add_load_section(&elf, sec->data_va, sec->data_sz, buf + sec->data_pa - hdr->addr); break;
elf_add_fill_section(&elf, sec->bss_va, sec->bss_sz, 0); }
extract_elf_section(&elf, i); if(sec->data_sz != 0 && !check_range(sec->data_va, sec->data_sz))
elf_release(&elf); {
#endif cprintf(GREY, "Invalid stage: out of bound data\n");
error = true;
break;
}
#undef check_range_
#undef check_range
char buffer[32];
if(sec->code_sz != 0)
{
sprintf(buffer, ".text.%d", i);
elf_add_load_section(&elf, sec->code_va, sec->code_sz,
buf + sec->code_va - hdr->addr, buffer);
}
if(sec->data_sz != 0)
{
sprintf(buffer, ".data.%d", i);
elf_add_load_section(&elf, sec->data_va, sec->data_sz,
buf + sec->data_va - hdr->addr, buffer);
}
} }
/* sort ranges and check overlap */
qsort(ranges, nr_ranges, sizeof(struct range_t), range_cmp);
for(int i = 1; i < nr_ranges; i++)
{
if(ranges[i - 1].start + ranges[i - 1].size > ranges[i].start)
{
error = true;
static const char *type[] = {"txt", "dat"};
cprintf(GREY, "Section overlap: section %d %s intersects section %d %s\n",
ranges[i - 1].section, type[ranges[i - 1].type], ranges[i].section,
type[ranges[i].type]);
break;
}
}
if(!error)
extract_elf_section(&elf);
/* FIXME for full information, we could add segments to the ELF file to
* keep the mapping, but it's unclear if that would do any good */
elf_release(&elf);
free(ranges);
return 0; return 0;
} }
/**
* RKNano BOOT
* contains named bootloader stages
*/
#define MAGIC_BOOT "BOOT" #define MAGIC_BOOT "BOOT"
#define MAGIC_BOOT_SIZE 4 #define MAGIC_BOOT_SIZE 4
@ -428,6 +527,8 @@ struct rknano_boot_header_t
uint32_t field_34; uint32_t field_34;
} __attribute__((packed)); } __attribute__((packed));
#define BOOT_CHIP_RKNANO 0x30
struct rknano_boot_entry_t struct rknano_boot_entry_t
{ {
uint8_t entry_size; // unsure uint8_t entry_size; // unsure
@ -602,7 +703,11 @@ static int do_boot_image(uint8_t *buf, unsigned long size)
hdr->hour, hdr->minute, hdr->second); hdr->hour, hdr->minute, hdr->second);
cprintf(GREEN, " Chip: "); cprintf(GREEN, " Chip: ");
cprintf(YELLOW, "%#x\n", hdr->chip); cprintf(YELLOW, "%#x ", hdr->chip);
if(hdr->chip == BOOT_CHIP_RKNANO)
cprintf(RED, "(RKNANO)\n");
else
cprintf(RED, "(unknown)\n");
print_arr("field_2A", field_2B, 9); print_arr("field_2A", field_2B, 9);
print("field_34", field_34); print("field_34", field_34);
@ -629,6 +734,11 @@ static int do_boot_image(uint8_t *buf, unsigned long size)
return 0; return 0;
} }
/**
* RKFW
* contains bootloader and update
*/
typedef struct rknano_blob_t rkfw_blob_t; typedef struct rknano_blob_t rkfw_blob_t;
#define MAGIC_RKFW "RKFW" #define MAGIC_RKFW "RKFW"
@ -637,7 +747,7 @@ typedef struct rknano_blob_t rkfw_blob_t;
struct rkfw_header_t struct rkfw_header_t
{ {
char magic[MAGIC_RKFW_SIZE]; char magic[MAGIC_RKFW_SIZE];
uint16_t hdr_size; // UNSURE uint16_t hdr_size;
uint32_t version; uint32_t version;
uint32_t code; uint32_t code;
uint16_t year; uint16_t year;
@ -652,6 +762,8 @@ struct rkfw_header_t
uint8_t pad[61]; uint8_t pad[61];
} __attribute__((packed)); } __attribute__((packed));
#define RKFW_CHIP_RKNANO 0x30
static int do_rkfw_image(uint8_t *buf, unsigned long size) static int do_rkfw_image(uint8_t *buf, unsigned long size)
{ {
if(size < sizeof(struct rkfw_header_t)) if(size < sizeof(struct rkfw_header_t))
@ -686,7 +798,11 @@ static int do_rkfw_image(uint8_t *buf, unsigned long size)
hdr->hour, hdr->minute, hdr->second); hdr->hour, hdr->minute, hdr->second);
cprintf(GREEN, " Chip: "); cprintf(GREEN, " Chip: ");
cprintf(YELLOW, "%#x\n", hdr->chip); cprintf(YELLOW, "%#x ", hdr->chip);
if(hdr->chip == RKFW_CHIP_RKNANO)
cprintf(RED, "(RKNANO)\n");
else
cprintf(RED, "(unknown)\n");
cprintf(GREEN, " Loader: "); cprintf(GREEN, " Loader: ");
print_blob_interval(&hdr->loader); print_blob_interval(&hdr->loader);
@ -873,4 +989,3 @@ int main(int argc, char **argv)
return 0; return 0;
} }