mirror of
https://github.com/Rockbox/rockbox.git
synced 2025-12-08 12:45:26 -05:00
code cleanup, more descriptive variable names, and algorithm docs for color scalers
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@19381 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
parent
eb04315b19
commit
995c89cb6f
1 changed files with 125 additions and 62 deletions
|
|
@ -58,21 +58,28 @@
|
|||
#define DEBUGF(...)
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_LCD_COLOR
|
||||
#define PACKRED(r, delta) ((31 * r + (r >> 3) + delta) >> 8)
|
||||
#define PACKGREEN(g, delta) ((63 * g + (g >> 2) + delta) >> 8)
|
||||
#define PACKBLUE(b, delta) ((31 * b + (b >> 3) + delta) >> 8)
|
||||
/* All of these scalers use variations of Bresenham's algorithm to convert from
|
||||
their input to output coordinates. The color scalers have the error value
|
||||
shifted so that it is a useful input to the scaling algorithm.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_LCD_COLOR
|
||||
/* dither + pack on channel of RGB565, R an B share a packing macro */
|
||||
#define PACKRB(v, delta) ((31 * v + (v >> 3) + delta) >> 8)
|
||||
#define PACKG(g, delta) ((63 * g + (g >> 2) + delta) >> 8)
|
||||
|
||||
/* read new img_part unconditionally, return false on failure */
|
||||
#define FILL_BUF_INIT(img_part, store_part, args) { \
|
||||
part = store_part(args); \
|
||||
if (part == NULL) \
|
||||
img_part = store_part(args); \
|
||||
if (img_part == NULL) \
|
||||
return false; \
|
||||
}
|
||||
|
||||
/* read new img_part if current one is empty, return false on failure */
|
||||
#define FILL_BUF(img_part, store_part, args) { \
|
||||
if (part->len == 0) \
|
||||
part = store_part(args); \
|
||||
if (part == NULL) \
|
||||
if (img_part->len == 0) \
|
||||
img_part = store_part(args); \
|
||||
if (img_part == NULL) \
|
||||
return false; \
|
||||
}
|
||||
|
||||
|
|
@ -92,10 +99,12 @@ struct scaler_context {
|
|||
void *args;
|
||||
};
|
||||
|
||||
/* Set up rounding and scale factors for horizontal area scaler */
|
||||
static void scale_h_area_setup(struct bitmap *bm, struct dim *src,
|
||||
struct scaler_context *ctx)
|
||||
{
|
||||
(void) bm;
|
||||
/* sum is output value * src->width */
|
||||
ctx->divmul = ((src->width - 1 + 0x80000000U) / src->width) << 1;
|
||||
ctx->round = (src->width + 1) >> 1;
|
||||
}
|
||||
|
|
@ -107,61 +116,69 @@ static bool scale_h_area(struct bitmap *bm, struct dim *src,
|
|||
{
|
||||
SDEBUGF("scale_h_area\n");
|
||||
unsigned int ix, ox, oxe, mul;
|
||||
struct uint32_rgb rgbval1, rgbval2;
|
||||
struct uint32_rgb rgbvalacc = { 0, 0, 0 },
|
||||
rgbvaltmp = { 0, 0, 0 };
|
||||
struct img_part *part;
|
||||
FILL_BUF_INIT(part,ctx->store_part,ctx->args);
|
||||
ox = 0;
|
||||
oxe = 0;
|
||||
rgbval1.r = 0;
|
||||
rgbval1.g = 0;
|
||||
rgbval1.b = 0;
|
||||
rgbval2.r = 0;
|
||||
rgbval2.g = 0;
|
||||
rgbval2.b = 0;
|
||||
mul = 0;
|
||||
for (ix = 0; ix < (unsigned int)src->width; ix++)
|
||||
{
|
||||
oxe += bm->width;
|
||||
/* end of current area has been reached */
|
||||
if (oxe >= (unsigned int)src->width)
|
||||
{
|
||||
/* yield if we haven't since last tick */
|
||||
if (ctx->last_tick != current_tick)
|
||||
{
|
||||
yield();
|
||||
ctx->last_tick = current_tick;
|
||||
}
|
||||
/* "reset" error, which now represents partial coverage of next
|
||||
pixel by the next area
|
||||
*/
|
||||
oxe -= src->width;
|
||||
rgbval1.r = rgbval1.r * bm->width + rgbval2.r * mul;
|
||||
rgbval1.g = rgbval1.g * bm->width + rgbval2.g * mul;
|
||||
rgbval1.b = rgbval1.b * bm->width + rgbval2.b * mul;
|
||||
/* add saved partial pixel from start of area */
|
||||
rgbvalacc.r = rgbvalacc.r * bm->width + rgbvaltmp.r * mul;
|
||||
rgbvalacc.g = rgbvalacc.g * bm->width + rgbvaltmp.g * mul;
|
||||
rgbvalacc.b = rgbvalacc.b * bm->width + rgbvaltmp.b * mul;
|
||||
/* fill buffer if needed */
|
||||
FILL_BUF(part,ctx->store_part,ctx->args);
|
||||
rgbval2.r = part->buf->red;
|
||||
rgbval2.g = part->buf->green;
|
||||
rgbval2.b = part->buf->blue;
|
||||
/* get new pixel , then add its partial coverage to this area */
|
||||
rgbvaltmp.r = part->buf->red;
|
||||
rgbvaltmp.g = part->buf->green;
|
||||
rgbvaltmp.b = part->buf->blue;
|
||||
part->buf++;
|
||||
part->len--;
|
||||
mul = bm->width - oxe;
|
||||
rgbval1.r += rgbval2.r * mul;
|
||||
rgbval1.g += rgbval2.g * mul;
|
||||
rgbval1.b += rgbval2.b * mul;
|
||||
rgbvalacc.r += rgbvaltmp.r * mul;
|
||||
rgbvalacc.g += rgbvaltmp.g * mul;
|
||||
rgbvalacc.b += rgbvaltmp.b * mul;
|
||||
/* round, divide, and either store or accumulate to output row */
|
||||
out_line[ox].r = (accum ? out_line[ox].r : 0) +
|
||||
((rgbval1.r + ctx->round) *
|
||||
((rgbvalacc.r + ctx->round) *
|
||||
(uint64_t)ctx->divmul >> 32);
|
||||
out_line[ox].g = (accum ? out_line[ox].g : 0) +
|
||||
((rgbval1.g + ctx->round) *
|
||||
((rgbvalacc.g + ctx->round) *
|
||||
(uint64_t)ctx->divmul >> 32);
|
||||
out_line[ox].b = (accum ? out_line[ox].b : 0) +
|
||||
((rgbval1.b + ctx->round) *
|
||||
((rgbvalacc.b + ctx->round) *
|
||||
(uint64_t)ctx->divmul >> 32);
|
||||
rgbval1.r = 0;
|
||||
rgbval1.g = 0;
|
||||
rgbval1.b = 0;
|
||||
/* reset accumulator */
|
||||
rgbvalacc.r = 0;
|
||||
rgbvalacc.g = 0;
|
||||
rgbvalacc.b = 0;
|
||||
mul = bm->width - mul;
|
||||
ox += 1;
|
||||
/* inside an area */
|
||||
} else {
|
||||
/* fill buffer if needed */
|
||||
FILL_BUF(part,ctx->store_part,ctx->args);
|
||||
rgbval1.r += part->buf->red;
|
||||
rgbval1.g += part->buf->green;
|
||||
rgbval1.b += part->buf->blue;
|
||||
/* add pixel value to accumulator */
|
||||
rgbvalacc.r += part->buf->red;
|
||||
rgbvalacc.g += part->buf->green;
|
||||
rgbvalacc.b += part->buf->blue;
|
||||
part->buf++;
|
||||
part->len--;
|
||||
}
|
||||
|
|
@ -180,63 +197,80 @@ static bool scale_v_area(struct bitmap *bm, bool dither, struct dim *src,
|
|||
uint32_t mul, divmul, x, oy, iy, oye, round;
|
||||
int delta = 127, r, g, b;
|
||||
fb_data *row, *pix;
|
||||
|
||||
/* Set up rounding and scale factors */
|
||||
divmul = ((src->height - 1 + 0x80000000U) / src->height) << 1;
|
||||
round = (src->height + 1) >> 1;
|
||||
mul = 0;
|
||||
oy = 0;
|
||||
oye = 0;
|
||||
struct uint32_rgb *crow1 = (struct uint32_rgb *)(ctx->buf),
|
||||
*crow2 = crow1 + bm->width;
|
||||
struct uint32_rgb *rowacc = (struct uint32_rgb *)(ctx->buf),
|
||||
*rowtmp = rowacc + bm->width;
|
||||
|
||||
SDEBUGF("scale_v_area\n");
|
||||
/* zero the accumulator and temp rows */
|
||||
memset((void *)ctx->buf, 0, bm->width * 2 * sizeof(struct uint32_rgb));
|
||||
row = (fb_data *)(bm->data) + bm->width *
|
||||
(rset->rowstep == -1 ? bm->height - 1 : 0);
|
||||
row = (fb_data *)(bm->data) + bm->width * rset->rowstart;
|
||||
for (iy = 0; iy < (unsigned int)src->height; iy++)
|
||||
{
|
||||
oye += bm->height;
|
||||
/* end of current area has been reached */
|
||||
if (oye >= (unsigned int)src->height)
|
||||
{
|
||||
/* "reset" error, which now represents partial coverage of the next
|
||||
row by the next area
|
||||
*/
|
||||
oye -= src->height;
|
||||
/* add stored partial row to accumulator */
|
||||
for (x = 0; x < 3 *(unsigned int)bm->width; x++)
|
||||
((uint32_t*)crow1)[x] = ((uint32_t*)crow1)[x] *
|
||||
((uint32_t*)rowacc)[x] = ((uint32_t*)rowacc)[x] *
|
||||
bm->height + mul *
|
||||
((uint32_t*)crow2)[x];
|
||||
if(!h_scaler(bm, src, crow2, ctx, false))
|
||||
goto fail;
|
||||
((uint32_t*)rowtmp)[x];
|
||||
/* store new scaled row in temp row */
|
||||
if(!h_scaler(bm, src, rowtmp, ctx, false))
|
||||
return false;
|
||||
/* add partial coverage by new row to this area, then round and
|
||||
scale to final value
|
||||
*/
|
||||
mul = bm->height - oye;
|
||||
for (x = 0; x < 3 *(unsigned int)bm->width; x++)
|
||||
{
|
||||
((uint32_t*)crow1)[x] += mul * ((uint32_t*)crow2)[x];
|
||||
((uint32_t*)crow1)[x] = (round +
|
||||
((uint32_t*)crow1)[x]) *
|
||||
((uint32_t*)rowacc)[x] += mul * ((uint32_t*)rowtmp)[x];
|
||||
((uint32_t*)rowacc)[x] = (round +
|
||||
((uint32_t*)rowacc)[x]) *
|
||||
(uint64_t)divmul >> 32;
|
||||
}
|
||||
/* convert to RGB565 in output bitmap */
|
||||
pix = row;
|
||||
for (x = 0; x < (unsigned int)bm->width; x++)
|
||||
{
|
||||
if (dither)
|
||||
delta = dither_mat(x & 0xf, oy & 0xf);
|
||||
r = PACKRED(crow1[x].r,delta);
|
||||
g = PACKGREEN(crow1[x].g,delta);
|
||||
b = PACKBLUE(crow1[x].b,delta);
|
||||
r = PACKRB(rowacc[x].r,delta);
|
||||
g = PACKG(rowacc[x].g,delta);
|
||||
b = PACKRB(rowacc[x].b,delta);
|
||||
*pix++ = LCD_RGBPACK_LCD(r, g, b);
|
||||
}
|
||||
memset((void *)crow1, 0, bm->width * sizeof(struct uint32_rgb));
|
||||
/* clear accumulator row, store partial coverage for next row */
|
||||
memset((void *)rowacc, 0, bm->width * sizeof(struct uint32_rgb));
|
||||
mul = oye;
|
||||
row += bm->width * rset->rowstep;
|
||||
oy += 1;
|
||||
/* inside an area */
|
||||
} else {
|
||||
if (!h_scaler(bm, src, crow1, ctx, true))
|
||||
goto fail;
|
||||
/* accumulate new scaled row to rowacc */
|
||||
if (!h_scaler(bm, src, rowacc, ctx, true))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
fail:
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef HAVE_UPSCALER
|
||||
/* Set up rounding and scale factors for the horizontal scaler. The divisor
|
||||
is bm->width - 1, so that the first and last pixels in the row align
|
||||
exactly between input and output
|
||||
*/
|
||||
static void scale_h_linear_setup(struct bitmap *bm, struct dim *src,
|
||||
struct scaler_context *ctx)
|
||||
{
|
||||
|
|
@ -251,20 +285,29 @@ static bool scale_h_linear(struct bitmap *bm, struct dim *src,
|
|||
struct scaler_context *ctx, bool accum)
|
||||
{
|
||||
unsigned int ix, ox, ixe;
|
||||
/* type x = x is an ugly hack for hiding an unitialized data warning. The
|
||||
values are conditionally initialized before use, but other values are
|
||||
set such that this will occur before these are used.
|
||||
*/
|
||||
struct uint32_rgb rgbval=rgbval, rgbinc=rgbinc;
|
||||
struct img_part *part;
|
||||
SDEBUGF("scale_h_linear\n");
|
||||
FILL_BUF_INIT(part,ctx->store_part,ctx->args);
|
||||
ix = 0;
|
||||
/* The error is set so that values are initialized on the first pass. */
|
||||
ixe = bm->width - 1;
|
||||
for (ox = 0; ox < (uint32_t)bm->width; ox++) {
|
||||
if (ixe >= ((uint32_t)bm->width - 1))
|
||||
{
|
||||
/* yield once each tick */
|
||||
if (ctx->last_tick != current_tick)
|
||||
{
|
||||
yield();
|
||||
ctx->last_tick = current_tick;
|
||||
}
|
||||
/* Store the new "current" pixel value in rgbval, and the color
|
||||
step value in rgbinc.
|
||||
*/
|
||||
ixe -= (bm->width - 1);
|
||||
rgbinc.r = -(part->buf->red);
|
||||
rgbinc.g = -(part->buf->green);
|
||||
|
|
@ -273,21 +316,28 @@ static bool scale_h_linear(struct bitmap *bm, struct dim *src,
|
|||
rgbval.g = (part->buf->green) * (bm->width - 1);
|
||||
rgbval.b = (part->buf->blue) * (bm->width - 1);
|
||||
ix += 1;
|
||||
/* If this wasn't the last pixel, add the next one to rgbinc. */
|
||||
if (ix < (uint32_t)src->width) {
|
||||
part->buf++;
|
||||
part->len--;
|
||||
/* Fetch new pixels if needed */
|
||||
FILL_BUF(part,ctx->store_part,ctx->args);
|
||||
rgbinc.r += part->buf->red;
|
||||
rgbinc.g += part->buf->green;
|
||||
rgbinc.b += part->buf->blue;
|
||||
/* Add a partial step to rgbval, in this pixel isn't precisely
|
||||
aligned with the new source pixel
|
||||
*/
|
||||
rgbval.r += rgbinc.r * ixe;
|
||||
rgbval.g += rgbinc.g * ixe;
|
||||
rgbval.b += rgbinc.b * ixe;
|
||||
}
|
||||
/* Now multiple the color increment to its proper value */
|
||||
rgbinc.r *= src->width - 1;
|
||||
rgbinc.g *= src->width - 1;
|
||||
rgbinc.b *= src->width - 1;
|
||||
}
|
||||
/* round and scale values, and accumulate or store to output */
|
||||
out_line[ox].r = (accum ? out_line[ox].r : 0) +
|
||||
((rgbval.r + ctx->round) *
|
||||
(uint64_t)ctx->divmul >> 32);
|
||||
|
|
@ -317,24 +367,29 @@ static bool scale_v_linear(struct bitmap *bm, bool dither, struct dim *src,
|
|||
int delta = 127;
|
||||
struct uint32_rgb p;
|
||||
fb_data *row, *pix;
|
||||
/* Set up scale and rounding factors, the divisor is bm->height - 1 */
|
||||
divmul = ((bm->height - 2 + 0x80000000U) / (bm->height - 1)) << 1;
|
||||
round = bm->height >> 1;
|
||||
mul = 0;
|
||||
iy = 0;
|
||||
iye = bm->height - 1;
|
||||
/* Set up our two temp buffers. The names are generic because they'll be
|
||||
swapped each time a new input row is read
|
||||
*/
|
||||
struct uint32_rgb *crow1 = (struct uint32_rgb *)(ctx->buf),
|
||||
*crow2 = crow1 + bm->width,
|
||||
*t;
|
||||
|
||||
SDEBUGF("scale_v_linear\n");
|
||||
row = (fb_data *)(bm->data) + bm->width *
|
||||
(rset->rowstep == -1 ? bm->height - 1 : 0);
|
||||
row = (fb_data *)(bm->data) + bm->width * rset->rowstart;
|
||||
/* get first scaled row in crow2 */
|
||||
if(!h_scaler(bm, src, crow2, ctx, false))
|
||||
goto fail;
|
||||
return false;
|
||||
for (oy = 0; oy < (uint32_t)bm->height; oy++)
|
||||
{
|
||||
if (iye >= (uint32_t)bm->height - 1)
|
||||
{
|
||||
/* swap temp rows, then read another row into crow2 */
|
||||
t = crow2;
|
||||
crow2 = crow1;
|
||||
crow1 = t;
|
||||
|
|
@ -343,35 +398,43 @@ static bool scale_v_linear(struct bitmap *bm, bool dither, struct dim *src,
|
|||
if (iy < (uint32_t)src->height)
|
||||
{
|
||||
if (!h_scaler(bm, src, crow2, ctx, false))
|
||||
goto fail;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
pix = row;
|
||||
for (x = 0; x < (uint32_t)bm->width; x++)
|
||||
{
|
||||
/* iye and bm-height - 1 - iye represent the contribution of each
|
||||
row to the output. Calculate their weighted sum, then round and
|
||||
scale it.
|
||||
*/
|
||||
p.r = (crow1[x].r * (bm->height - 1 - iye) +
|
||||
crow2[x].r * iye + round) * (uint64_t)divmul >> 32;
|
||||
p.g = (crow1[x].g * (bm->height - 1 - iye) +
|
||||
crow2[x].g * iye + round) * (uint64_t)divmul >> 32;
|
||||
p.b = (crow1[x].b * (bm->height - 1 - iye) +
|
||||
crow2[x].b * iye + round) * (uint64_t)divmul >> 32;
|
||||
/* dither and pack pixels to output */
|
||||
if (dither)
|
||||
delta = dither_mat(x & 0xf, oy & 0xf);
|
||||
p.r = PACKRED(p.r,delta);
|
||||
p.g = PACKGREEN(p.g,delta);
|
||||
p.b = PACKBLUE(p.b,delta);
|
||||
p.r = PACKRB(p.r,delta);
|
||||
p.g = PACKG(p.g,delta);
|
||||
p.b = PACKRB(p.b,delta);
|
||||
*pix++ = LCD_RGBPACK_LCD(p.r, p.g, p.b);
|
||||
}
|
||||
row += bm->width * rset->rowstep;
|
||||
iye += src->height - 1;
|
||||
}
|
||||
return true;
|
||||
fail:
|
||||
return false;
|
||||
}
|
||||
#endif /* HAVE_UPSCALER */
|
||||
#endif /* HAVE_LCD_COLOR */
|
||||
|
||||
/* docs for this are still TODO, but it's Bresenham's again, used to skip or
|
||||
repeat input pixels, and with the *ls values being used for "long steps"
|
||||
that skip all the way, or nearly all the way, to the next transition of
|
||||
the associated value.
|
||||
*/
|
||||
#if LCD_DEPTH < 8 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH < 8)
|
||||
/* nearest-neighbor up/down/non-scaler */
|
||||
static inline bool scale_nearest(struct bitmap *bm,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue