Sansa e200v2: LCD

- Cosmetics change to reduce the diff with lcd-fuze.c:
 - remove useless headers
 - move/remove/change comments
 - rename functions
 - fix casts

Now the differences with fuze lcd code are mostly:
- lcd_window* code
- _display_on() / as3525_dbop_init()

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@24182 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Rafaël Carré 2010-01-04 21:35:31 +00:00
parent 98fa13cb29
commit 3992f18982

View file

@ -22,23 +22,14 @@
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
#include "clock-target.h"
/* The controller is unknown, but some registers appear to be the same as the
HD66789R */
static bool display_on = false; /* is the display turned on? */
static bool display_flipped = false;
/* we need to write a red pixel for correct button reads
* (see lcd_button_support()), but that must not happen while the lcd is
* updating so block lcd_button_support the during updates */
static volatile bool lcd_busy = false;
/* register defines */
#define R_START_OSC 0x00
@ -98,6 +89,8 @@ static unsigned short r_entry_mode = R_ENTRY_MODE_HORZ_NORMAL;
#define R_DISP_CONTROL_REV 0x0000
static unsigned short r_disp_control_rev = R_DISP_CONTROL_NORMAL;
static volatile bool lcd_busy = false;
static inline void lcd_delay(int x)
{
do {
@ -105,31 +98,30 @@ static inline void lcd_delay(int x)
} while (x--);
}
/* DBOP initialisation, do what OF does */
static void ams3525_dbop_init(void)
static void as3525_dbop_init(void)
{
CGU_DBOP = (1<<3) | AS3525_DBOP_DIV;
DBOP_TIMPOL_01 = 0xe167e167;
DBOP_TIMPOL_23 = 0xe167006e;
/* short count, 16bit write, read-timing =8 */
DBOP_CTRL = (1<<18)|(1<<12)|(8<<0);
/* short count: 16 | output data width: 16 | readstrobe line */
DBOP_CTRL = (1<<18|1<<12|1<<3);
GPIOB_AFSEL = 0xfc;
GPIOC_AFSEL = 0xff;
DBOP_TIMPOL_23 = 0x6000e;
/* short count,write enable, 16bit write, read-timing =8 */
DBOP_CTRL = (1<<18)|(1<<16)|(1<<12)|(8<<0);
/* short count: 16|enable write|output data width: 16|read strobe line */
DBOP_CTRL = (1<<18|1<<16|1<<12|1<<3);
DBOP_TIMPOL_01 = 0x6e167;
DBOP_TIMPOL_23 = 0xa167e06f;
/* TODO: The OF calls some other functions here, but maybe not important */
}
static void lcd_write_single_data16(unsigned short value)
static void lcd_write_value16(unsigned short value)
{
DBOP_CTRL &= ~(1<<14|1<<13);
lcd_delay(10);
@ -141,13 +133,13 @@ static void lcd_write_cmd(int cmd)
{
/* Write register */
DBOP_TIMPOL_23 = 0xa167006e;
lcd_write_single_data16(cmd);
lcd_write_value16(cmd);
/* Wait for fifo to empty */
while ((DBOP_STAT & (1<<10)) == 0);
/* Fuze OF has this loop and it seems to help us now also */
int delay=8;
int delay = 8;
while(delay--);
DBOP_TIMPOL_23 = 0xa167e06f;
@ -157,14 +149,14 @@ void lcd_write_data(const fb_data* p_bytes, int count)
{
const long *data;
if ((int)p_bytes & 0x3)
{ /* need to do a single 16bit write beforehand if the address is */
/* not word aligned*/
lcd_write_single_data16(*p_bytes);
{ /* need to do a single 16bit write beforehand if the address is
* not word aligned */
lcd_write_value16(*p_bytes);
count--;p_bytes++;
}
/* from here, 32bit transfers are save */
/* set it to transfer 4*(outputwidth) units at a time, */
/* if bit 12 is set it only does 2 halfwords though */
/* from here, 32bit transfers are save
* set it to transfer 4*(outputwidth) units at a time,
* if bit 12 is set it only does 2 halfwords though */
DBOP_CTRL |= (1<<13|1<<14);
data = (long*)p_bytes;
while (count > 1)
@ -181,7 +173,7 @@ void lcd_write_data(const fb_data* p_bytes, int count)
/* due to the 32bit alignment requirement or uneven count,
* we possibly need to do a 16bit transfer at the end also */
if (count > 0)
lcd_write_single_data16(*(fb_data*)data);
lcd_write_value16(*(fb_data*)data);
}
static void lcd_write_reg(int reg, int value)
@ -189,7 +181,7 @@ static void lcd_write_reg(int reg, int value)
fb_data data = value;
lcd_write_cmd(reg);
lcd_write_single_data16(data);
lcd_write_value16(data);
}
/*** hardware configuration ***/
@ -211,6 +203,8 @@ void lcd_set_invert_display(bool yesno)
}
static bool display_flipped = false;
/* turn the display upside down */
void lcd_set_flip(bool yesno)
{
@ -230,11 +224,11 @@ static void lcd_window(int xmin, int ymin, int xmax, int ymax)
}
else
{
lcd_write_reg(R_HORIZ_RAM_ADDR_POS,
lcd_write_reg(R_HORIZ_RAM_ADDR_POS,
((LCD_WIDTH-1 - xmin) << 8) | (LCD_WIDTH-1 - xmax));
lcd_write_reg(R_VERT_RAM_ADDR_POS,
lcd_write_reg(R_VERT_RAM_ADDR_POS,
((LCD_HEIGHT-1 - ymin) << 8) | (LCD_HEIGHT-1 - ymax));
lcd_write_reg(R_RAM_ADDR_SET,
lcd_write_reg(R_RAM_ADDR_SET,
((LCD_HEIGHT-1 - ymin) << 8) | (LCD_WIDTH-1 - xmin));
}
}
@ -339,26 +333,20 @@ static void _display_on(void)
lcd_write_reg(R_DISP_CONTROL1, 0x0033 | r_disp_control_rev);
display_on=true; /* must be done before calling lcd_update() */
display_on = true; /* must be done before calling lcd_update() */
lcd_update();
}
/* LCD init */
void lcd_init_device(void)
{
ams3525_dbop_init();
/* Init GPIOs the same as the OF */
as3525_dbop_init();
GPIOA_DIR |= (1<<5);
GPIOA_PIN(5) = 0;
GPIOA_PIN(4) = 0; /*c80b0040 := 0;*/
GPIOA_PIN(4) = 0;
lcd_delay(1);
GPIOA_PIN(5) = (1<<5);
lcd_delay(1);
_display_on();
@ -367,18 +355,18 @@ void lcd_init_device(void)
#if defined(HAVE_LCD_ENABLE)
void lcd_enable(bool on)
{
if(display_on!=on)
if (display_on == on)
return;
if(on)
{
if(on)
{
_display_on();
send_event(LCD_EVENT_ACTIVATION, NULL);
}
else
{
display_on=false;
lcd_write_reg(R_POWER_CONTROL1, 0x0001);
}
_display_on();
send_event(LCD_EVENT_ACTIVATION, NULL);
}
else
{
display_on = false;
lcd_write_reg(R_POWER_CONTROL1, 0x0001);
}
}
#endif
@ -388,23 +376,12 @@ bool lcd_active(void)
{
return display_on;
}
#endif
/*** update functions ***/
static unsigned lcd_yuv_options = 0;
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(unsigned char const * const src[3],
int width,
int stride);
extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3],
int width,
int stride,
int x_screen, /* To align dither pattern */
int y_screen);
void lcd_yuv_set_options(unsigned options)
{
lcd_yuv_options = options;
@ -414,13 +391,13 @@ static void lcd_window_blit(int xmin, int ymin, int xmax, int ymax)
{
if (!display_flipped)
{
lcd_write_reg(R_HORIZ_RAM_ADDR_POS,
lcd_write_reg(R_HORIZ_RAM_ADDR_POS,
((LCD_WIDTH-1 - xmin) << 8) | (LCD_WIDTH-1 - xmax));
lcd_write_reg(R_VERT_RAM_ADDR_POS, (ymax << 8) | ymin);
lcd_write_reg(R_RAM_ADDR_SET,
lcd_write_reg(R_RAM_ADDR_SET,
(ymin << 8) | (LCD_WIDTH-1 - xmin));
}
else
}
else
{
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (xmax << 8) | xmin);
lcd_write_reg(R_VERT_RAM_ADDR_POS, (ymax << 8) | ymin);
@ -428,6 +405,16 @@ static void lcd_window_blit(int xmin, int ymin, int xmax, int ymax)
}
}
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(unsigned char const * const src[3],
int width,
int stride);
extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3],
int width,
int stride,
int x_screen, /* To align dither pattern */
int y_screen);
/* Performance function to blit a YUV bitmap directly to the LCD
* src_x, src_y, width and height should be even
* x, y, width and height have to be within LCD bounds
@ -439,8 +426,6 @@ void lcd_blit_yuv(unsigned char * const src[3],
unsigned char const * yuv_src[3];
off_t z;
lcd_busy = true;
/* Sorry, but width and height must be >= 2 or else */
width &= ~1;
height >>= 1;
@ -450,14 +435,11 @@ void lcd_blit_yuv(unsigned char * const src[3],
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
if (!display_flipped)
{
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VIDEO_NORMAL);
}
else
{
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VIDEO_FLIPPED);
}
lcd_busy = true;
lcd_write_reg(R_ENTRY_MODE,
display_flipped ? R_ENTRY_MODE_VIDEO_FLIPPED : R_ENTRY_MODE_VIDEO_NORMAL
);
if (lcd_yuv_options & LCD_YUV_DITHER)
{
@ -465,14 +447,13 @@ void lcd_blit_yuv(unsigned char * const src[3],
{
lcd_window_blit(y, x, y+1, x+width-1);
/* Start write to GRAM */
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_write_yuv420_lines_odither(yuv_src, width, stride, x, y);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
y+=2;
y += 2;
}
while (--height > 0);
}
@ -482,14 +463,13 @@ void lcd_blit_yuv(unsigned char * const src[3],
{
lcd_window_blit(y, x, y+1, x+width-1);
/* Start write to GRAM */
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_write_yuv420_lines(yuv_src, width, stride);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
y+=2;
y += 2;
}
while (--height > 0);
}
@ -516,15 +496,13 @@ void lcd_update(void)
lcd_write_data((fb_data*)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT);
lcd_busy = false;
} /* lcd_update */
}
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
const fb_data *ptr;
int ymax, xmax;
int xmax, ymax;
if (!display_on)
return;
@ -550,15 +528,13 @@ void lcd_update_rect(int x, int y, int width, int height)
lcd_busy = true;
lcd_write_reg(R_ENTRY_MODE, r_entry_mode);
lcd_window(x, y, xmax, ymax);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
ptr = (fb_data*)&lcd_framebuffer[y][x];
ptr = &lcd_framebuffer[y][x];
height = ymax - y; /* fix height */
do
{
lcd_write_data(ptr, width);
@ -567,23 +543,23 @@ void lcd_update_rect(int x, int y, int width, int height)
while (--height >= 0);
lcd_busy = false;
} /* lcd_update_rect */
}
/* writes one red pixel outside the visible area, needed for correct
* dbop reads */
bool lcd_button_support(void)
{
fb_data data = (0xf<<12);
if (lcd_busy)
return false;
lcd_write_reg(R_ENTRY_MODE, r_entry_mode);
/* Set start position and window */
lcd_window(LCD_WIDTH+1, LCD_HEIGHT+1, LCD_WIDTH+2, LCD_HEIGHT+2);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_write_single_data16(data);
lcd_write_value16(0xf<<12);
return true;
}