x1000: refactor NAND chip identification

Decouple chip IDs from chips, and allow the chip ID table to list
which read ID method should be used. Use a safe controller setup
during identification instead of using the first chip's parameters.

Change-Id: Ia725959c31b2838f4a3a30e5bb7fa6652ef377ed
This commit is contained in:
Aidan MacDonald 2022-07-19 13:41:30 +01:00
parent 189dee08ea
commit 17443de221
2 changed files with 69 additions and 60 deletions

View file

@ -25,34 +25,30 @@
#include "logf.h"
#include <string.h>
const struct nand_chip supported_nand_chips[] = {
#if defined(FIIO_M3K) || defined(SHANLING_Q1) || defined(EROS_QN)
{
/* ATO25D1GA */
.mf_id = 0x9b,
.dev_id = 0x12,
.log2_ppb = 6, /* 64 pages */
.page_size = 2048,
.oob_size = 64,
.nr_blocks = 1024,
.bbm_pos = 2048,
.clock_freq = 150000000,
.dev_conf = jz_orf(SFC_DEV_CONF,
CE_DL(1), HOLD_DL(1), WP_DL(1),
CPHA(0), CPOL(0),
TSH(7), TSETUP(0), THOLD(0),
STA_TYPE_V(1BYTE), CMD_TYPE_V(8BITS),
SMP_DELAY(1)),
.flags = NAND_CHIPFLAG_QUAD | NAND_CHIPFLAG_HAS_QE_BIT,
.cmd_page_read = NANDCMD_PAGE_READ,
.cmd_program_execute = NANDCMD_PROGRAM_EXECUTE,
.cmd_block_erase = NANDCMD_BLOCK_ERASE,
.cmd_read_cache = NANDCMD_READ_CACHE_x4,
.cmd_program_load = NANDCMD_PROGRAM_LOAD_x4,
},
#else
{ 0 },
#endif
static const struct nand_chip chip_ato25d1ga = {
.log2_ppb = 6, /* 64 pages */
.page_size = 2048,
.oob_size = 64,
.nr_blocks = 1024,
.bbm_pos = 2048,
.clock_freq = 150000000,
.dev_conf = jz_orf(SFC_DEV_CONF,
CE_DL(1), HOLD_DL(1), WP_DL(1),
CPHA(0), CPOL(0),
TSH(7), TSETUP(0), THOLD(0),
STA_TYPE_V(1BYTE), CMD_TYPE_V(8BITS),
SMP_DELAY(1)),
.flags = NAND_CHIPFLAG_QUAD | NAND_CHIPFLAG_HAS_QE_BIT,
.cmd_page_read = NANDCMD_PAGE_READ,
.cmd_program_execute = NANDCMD_PROGRAM_EXECUTE,
.cmd_block_erase = NANDCMD_BLOCK_ERASE,
.cmd_read_cache = NANDCMD_READ_CACHE_x4,
.cmd_program_load = NANDCMD_PROGRAM_LOAD_x4,
};
const struct nand_chip_id supported_nand_chips[] = {
NAND_CHIP_ID(&chip_ato25d1ga, NAND_READID_ADDR, 0x9b, 0x12),
};
const size_t nr_supported_nand_chips = ARRAYLEN(supported_nand_chips);
@ -94,6 +90,19 @@ static void nand_upd_reg(struct nand_drv* drv, uint8_t reg, uint8_t msk, uint8_t
nand_set_reg(drv, reg, x);
}
static const struct nand_chip* identify_chip_method(uint8_t method,
const uint8_t* id_buf)
{
for (size_t i = 0; i < nr_supported_nand_chips; ++i) {
const struct nand_chip_id* chip_id = &supported_nand_chips[i];
if (chip_id->method == method &&
!memcmp(chip_id->id_bytes, id_buf, chip_id->num_id_bytes))
return chip_id->chip;
}
return NULL;
}
static bool identify_chip(struct nand_drv* drv)
{
/* Read ID command has some variations; Linux handles these 3:
@ -101,25 +110,13 @@ static bool identify_chip(struct nand_drv* drv)
* - 1 byte address, no dummy byte
* - no address byte, 1 byte dummy
*
* Currently we use the 2nd method, aka. address read ID.
* Currently we use the 2nd method, aka. address read ID, the
* other methods can be added when needed.
*/
sfc_exec(NANDCMD_READID_ADDR, 0, drv->scratch_buf, 4|SFC_READ);
drv->mf_id = drv->scratch_buf[0];
drv->dev_id = drv->scratch_buf[1];
drv->dev_id2 = drv->scratch_buf[2];
for(size_t i = 0; i < nr_supported_nand_chips; ++i) {
const struct nand_chip* chip = &supported_nand_chips[i];
if(chip->mf_id != drv->mf_id || chip->dev_id != drv->dev_id)
continue;
if((chip->flags & NAND_CHIPFLAG_HAS_DEVID2) &&
chip->dev_id2 != drv->dev_id2)
continue;
drv->chip = chip;
drv->chip = identify_chip_method(NAND_READID_ADDR, drv->scratch_buf);
if (drv->chip)
return true;
}
return false;
}
@ -164,8 +161,13 @@ int nand_open(struct nand_drv* drv)
/* Initialize the controller */
sfc_open();
sfc_set_dev_conf(supported_nand_chips[0].dev_conf);
sfc_set_clock(supported_nand_chips[0].clock_freq);
sfc_set_dev_conf(jz_orf(SFC_DEV_CONF,
CE_DL(1), HOLD_DL(1), WP_DL(1),
CPHA(0), CPOL(0),
TSH(15), TSETUP(0), THOLD(0),
STA_TYPE_V(1BYTE), CMD_TYPE_V(8BITS),
SMP_DELAY(0)));
sfc_set_clock(X1000_EXCLK_FREQ);
/* Send the software reset command */
sfc_exec(NANDCMD_RESET, 0, NULL, 0);

View file

@ -42,10 +42,8 @@
#define NAND_CHIPFLAG_QUAD 0x0001
/* Chip requires QE bit set to enable quad I/O mode */
#define NAND_CHIPFLAG_HAS_QE_BIT 0x0002
/* Chip has 2nd device ID byte */
#define NAND_CHIPFLAG_HAS_DEVID2 0x0004
/* True if the chip has on-die ECC */
#define NAND_CHIPFLAG_ON_DIE_ECC 0x0008
#define NAND_CHIPFLAG_ON_DIE_ECC 0x0004
/* cmd mode a d phase format has data */
#define NANDCMD_RESET SFC_CMD(0xff, SFC_TMODE_1_1_1, 0, 0, SFC_PFMT_ADDR_FIRST, 0)
@ -103,11 +101,6 @@ typedef uint32_t nand_page_t;
struct nand_drv;
struct nand_chip {
/* Manufacturer and device ID bytes */
uint8_t mf_id;
uint8_t dev_id;
uint8_t dev_id2;
/* Base2 logarithm of the number of pages per block */
unsigned log2_ppb;
@ -141,6 +134,25 @@ struct nand_chip {
void(*setup_chip)(struct nand_drv* drv);
};
enum nand_readid_method {
NAND_READID_OPCODE,
NAND_READID_ADDR,
NAND_READID_DUMMY,
};
struct nand_chip_id {
uint8_t method;
uint8_t num_id_bytes;
uint8_t id_bytes[4];
const struct nand_chip* chip;
};
#define NAND_CHIP_ID(_chip, _method, ...) \
{ .method = _method, \
.num_id_bytes = ARRAYLEN(((uint8_t[]){__VA_ARGS__})), \
.id_bytes = {__VA_ARGS__}, \
.chip = _chip }
struct nand_drv {
/* NAND access lock. Needs to be held during any operations. */
struct mutex mutex;
@ -170,14 +182,9 @@ struct nand_drv {
/* Full page size = chip->page_size + chip->oob_size */
unsigned fpage_size;
/* Probed mf_id / dev_id for debugging, in case identification fails. */
uint8_t mf_id;
uint8_t dev_id;
uint8_t dev_id2;
};
extern const struct nand_chip supported_nand_chips[];
extern const struct nand_chip_id supported_nand_chips[];
extern const size_t nr_supported_nand_chips;
/* Return the static NAND driver instance.