// USER DEFINED SETTINGS // Set driver type, fonts to be loaded, pins used and SPI control method etc // // See the User_Setup_Select.h file if you wish to be able to define multiple // setups and then easily select which setup file is used by the compiler. // // If this file is edited correctly then all the library example sketches // should run without the need to make any more changes for a particular // hardware setup! Note that some sketches are designed for a particular TFT // pixel width/height // User defined information reported by "Read_User_Setup" test & diagnostics // example #define USER_SETUP_INFO "User_Setup" // Define to disable all #warnings in library (can be put in // User_Setup_Select.h) #define DISABLE_ALL_LIBRARY_WARNINGS // ################################################################################## // // Section 1. Call up the right driver file and any options for it // // ################################################################################## // Define STM32 to invoke optimised processor support (only for STM32) //#define STM32 // Defining the STM32 board allows the library to optimise the performance // for UNO compatible "MCUfriend" style shields //#define NUCLEO_64_TFT //#define NUCLEO_144_TFT // STM32 8 bit parallel only: // If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7 // then this will improve rendering performance by a factor of ~8x //#define STM_PORTA_DATA_BUS //#define STM_PORTB_DATA_BUS // Tell the library to use parallel mode (otherwise SPI is assumed) //#define TFT_PARALLEL_8_BIT //#defined TFT_PARALLEL_16_BIT // **** 16 bit parallel ONLY for RP2040 processor //**** // Display type - only define if RPi display //#define RPI_DISPLAY_TYPE // 20MHz maximum SPI // Only define one driver, the other ones must be commented out // #define ILI9341_DRIVER // Generic driver for common displays //#define ILI9341_2_DRIVER // Alternative ILI9341 driver, see // https://github.com/Bodmer/TFT_eSPI/issues/1172 #define ST7735_DRIVER // // Define additional parameters below for this display #define ILI9163_DRIVER // // Define additional parameters below for this display #define S6D02A1_DRIVER //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI //#define HX8357D_DRIVER //#define ILI9481_DRIVER //#define ILI9486_DRIVER //#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to // MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is // high) // #define ST7789_DRIVER // Full configuration option, define additional // parameters below for this display #define ST7789_2_DRIVER // Minimal configuration option, define additional // parameters below for this display #define R61581_DRIVER #define // RM68140_DRIVER #define ST7796_DRIVER #define SSD1351_DRIVER #define // SSD1963_480_DRIVER #define SSD1963_800_DRIVER #define SSD1963_800ALT_DRIVER //#define ILI9225_DRIVER //#define GC9A01_DRIVER // Some displays support SPI reads via the MISO pin, other displays have a // single bi-directional SDA pin and the library will try to read this via the // MOSI line. To use the SDA line for reading data from the TFT uncomment the // following line: // #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with // ST7789 and GC9A01 display only // For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and // red are swapped on your display Try ONE option at a time to find the correct // colour order for your display #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue // #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red // For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in // line below // #define M5STACK // For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and // height in portrait orientation #define TFT_WIDTH 80 #define TFT_WIDTH 128 // #define TFT_WIDTH 172 // ST7789 172 x 320 #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320 // #define TFT_HEIGHT 160 // #define TFT_HEIGHT 128 // #define TFT_HEIGHT 240 // ST7789 240 x 240 #define TFT_HEIGHT 320 // ST7789 240 x 320 // #define TFT_HEIGHT 240 // GC9A01 240 x 240 // For ST7735 ONLY, define the type of display, originally this was based on the // colour of the tab on the screen protector film but this is not always true, // so try out the different options below if the screen does not display // graphics correctly, e.g. colours wrong, mirror images, or stray pixels at the // edges. Comment out ALL BUT ONE of these options for a ST7735 display driver, // save this this User_Setup file, then rebuild and upload the sketch to the // board again: // #define ST7735_INITB // #define ST7735_GREENTAB // #define ST7735_GREENTAB2 // #define ST7735_GREENTAB3 // #define ST7735_GREENTAB128 // For 128 x 128 display // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 // offset) #define ST7735_ROBOTLCD // For some RobotLCD arduino shields // (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT) // #define ST7735_REDTAB #define ST7735_BLACKTAB // #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset // If colours are inverted (white shows as black) then uncomment one of the next // 2 lines try both options, one of the options should correct the inversion. // #define TFT_INVERSION_ON // #define TFT_INVERSION_OFF // ################################################################################## // // Section 2. Define the pins that are used to interface with the display here // // ################################################################################## // If a backlight control signal is available then define the TFT_BL pin in // Section 2 below. The backlight will be turned ON when tft.begin() is called, // but the library needs to know if the LEDs are ON with the pin HIGH or LOW. If // the LEDs are to be driven with a PWM signal or turned OFF/ON then this must // be handled by the user sketch. e.g. with digitalWrite(TFT_BL, LOW); // #define TFT_BL 32 // LED back-light control pin // #define TFT_BACKLIGHT_ON HIGH // Level to turn ON back-light (HIGH or LOW) // We must use hardware SPI, a minimum of 3 GPIO pins is needed. // Typical setup for ESP8266 NodeMCU ESP-12 is : // // Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading // TFT) Display LED to NodeMCU pin VIN (or 5V, see below) Display SCK to // NodeMCU pin D5 Display SDI/MOSI to NodeMCU pin D7 Display DC (RS/AO)to // NodeMCU pin D3 Display RESET to NodeMCU pin D4 (or RST, see below) // Display CS to NodeMCU pin D8 (or GND, see below) // Display GND to NodeMCU pin GND (0V) // Display VCC to NodeMCU 5V or 3.3V // // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up // a control pin // // The DC (Data Command) pin may be labelled AO or RS (Register Select) // // With some displays such as the ILI9341 the TFT CS pin can be connected to GND // if no more SPI devices (e.g. an SD Card) are connected, in this case comment // out the #define TFT_CS line below so it is NOT defined. Other displays such // at the ST7735 require the TFT CS pin to be toggled during setup, so in these // cases the TFT_CS line must be defined and connected. // // The NodeMCU D0 pin can be used for RST // // // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin // If 5V is not available at a pin you can use 3.3V but backlight brightness // will be lower. // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP // ###### // For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin // designation // #define TFT_CS PIN_D8 // Chip select control pin D8 // #define TFT_DC PIN_D3 // Data Command control pin // #define TFT_RST \ // PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected // to NodeMCU RST or 3.3V //#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight // control pin) //#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen //#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only // ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES // ###### // Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a // performance impact but saves pins for other functions. It is best not to // connect MISO as some displays do not tristate that line when chip select is // high! Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch // controller cannot be connected as well to the same SPI signals. On // NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode On // NodeMCU V3 S0 =MISO, S1 =MOSI, S2 =SCLK In ESP8266 overlap mode the // following must be defined //#define TFT_SPI_OVERLAP // In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 //#define TFT_CS PIN_D3 //#define TFT_DC PIN_D5 // Data Command control pin //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next // line) #define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is // connected to NodeMCU RST or 3.3V // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP // ###### // For ESP32 Dev board (only tested with ILI9341 display) // The hardware SPI can be mapped to any pins #define TFT_MISO -1 // #define TFT_MOSI 8 // IO4 #define TFT_SCLK 14 //IO36 #define TFT_CS 6 // Chip select control pin IO32 #define TFT_DC 5 // Data Command control pin IO14 // #define TFT_RST 4 // Reset pin (could connect to RST pin) #define TFT_RST 9 // Set TFT_RST to -1 if display RESET is connected to -1 // ESP32 board RST //#define TFT_MISO 19 //#define TFT_MOSI 23 //#define TFT_SCLK 18 //#define TFT_CS 15 // Chip select control pin //#define TFT_DC 2 // Data Command control pin //#define TFT_RST 4 // Reset pin (could connect to RST pin) //#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to // ESP32 board RST // For ESP32 Dev board (only tested with GC9A01 display) // The hardware SPI can be mapped to any pins //#define TFT_MOSI 15 // In some display driver board, it might be written as //"SDA" and so on. #define TFT_SCLK 14 #define TFT_CS 5 // Chip select // control pin #define TFT_DC 27 // Data Command control pin #define TFT_RST // 33 // Reset pin (could connect to Arduino RESET pin) #define TFT_BL 22 // // LED back-light //#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen //#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only // For the M5Stack module use these #define lines //#define TFT_MISO 19 //#define TFT_MOSI 23 //#define TFT_SCLK 18 //#define TFT_CS 14 // Chip select control pin //#define TFT_DC 27 // Data Command control pin //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) //#define TFT_BL 32 // LED back-light (required for M5Stack) // ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ###### // The library supports 8 bit parallel TFTs with the ESP32, the pin // selection below is compatible with ESP32 boards in UNO format. // Wemos D32 boards need to be modified, see diagram in Tools folder. // Only ILI9481 and ILI9341 based displays have been tested! // Parallel bus is only supported for the STM32 and ESP32 // Example below is for ESP32 Parallel interface with UNO displays // Tell the library to use 8 bit parallel mode (otherwise SPI is assumed) //#define TFT_PARALLEL_8_BIT // The ESP32 and TFT the pins used for testing are: //#define TFT_CS 33 // Chip select control pin (library pulls permanently low //#define TFT_DC 15 // Data Command control pin - must use a pin in the range // 0-31 #define TFT_RST 32 // Reset pin, toggles on startup //#define TFT_WR 4 // Write strobe control pin - must use a pin in the range // 0-31 #define TFT_RD 2 // Read strobe control pin //#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus //#define TFT_D1 13 // so a single register write sets/clears all bits. //#define TFT_D2 26 // Pins can be randomly assigned, this does not affect //#define TFT_D3 25 // TFT screen update performance. //#define TFT_D4 17 //#define TFT_D5 16 //#define TFT_D6 27 //#define TFT_D7 14 // ###### EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP ###### // The TFT can be connected to SPI port 1 or 2 //#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz //#define TFT_MOSI PA7 //#define TFT_MISO PA6 //#define TFT_SCLK PA5 //#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz //#define TFT_MOSI PB15 //#define TFT_MISO PB14 //#define TFT_SCLK PB13 // Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip // select //#define TFT_CS D5 // Chip select control pin to TFT CS //#define TFT_DC D6 // Data Command control pin to TFT DC (may be labelled RS //= Register Select) #define TFT_RST D7 // Reset pin to TFT RST (or RESET) // OR alternatively, we can use STM32 port reference names PXnn //#define TFT_CS PE11 // Nucleo-F767ZI equivalent of D5 //#define TFT_DC PE9 // Nucleo-F767ZI equivalent of D6 //#define TFT_RST PF13 // Nucleo-F767ZI equivalent of D7 //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected // to processor reset // Use an Arduino pin for initial testing as connecting to processor reset // may not work (pulse too short at power up?) // ################################################################################## // // Section 3. Define the fonts that are to be used here // // ################################################################################## // Comment out the #defines below with // to stop that font being loaded // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not // normally necessary. If all fonts are loaded the extra FLASH space required is // about 17Kbytes. To save FLASH space only enable the fonts you need! #define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in // FLASH #define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in // FLASH, 96 characters #define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in // FLASH, 96 characters #define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, // only characters 1234567890:-.apm #define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in // FLASH, only characters 1234567890:-. #define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, // only characters 1234567890:-. //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, // so 3 digits fit a 160 pixel TFT #define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free // fonts FF1 to FF48 and custom fonts // Comment out the #define below to stop the SPIFFS filing system and smooth // font code being loaded this will save ~20kbytes of FLASH #define SMOOTH_FONT // ################################################################################## // // Section 4. Other options // // ################################################################################## // For RP2040 processor and SPI displays, uncomment the following line to use // the PIO interface. //#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port // interface // For the RP2040 processor define the SPI port channel used (default 0 if // undefined) //#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins // used // For the STM32 processor define the SPI port channel used (default 1 if // undefined) //#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2 // Define the SPI clock frequency, this affects the graphics rendering speed. // Too fast and the TFT driver will not keep up and display corruption appears. // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails // With a ST7735 display more than 27MHz may not work (spurious pixels and // lines) With an ILI9163 display 27 MHz works OK. // #define SPI_FREQUENCY 1000000 // #define SPI_FREQUENCY 5000000 // #define SPI_FREQUENCY 10000000 // #define SPI_FREQUENCY 20000000 // #define SPI_FREQUENCY 27000000 // #define SPI_FREQUENCY 40000000 // #define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz) // #define SPI_FREQUENCY 80000000 // Optional reduced SPI frequency for reading TFT // #define SPI_READ_FREQUENCY 20000000 // The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: // #define SPI_TOUCH_FREQUENCY 2500000 #define SPI_FREQUENCY 40000000 #define SPI_READ_FREQUENCY 20000000 #define SPI_TOUCH_FREQUENCY 2500000 // The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the // default. If the VSPI port is in use and pins are not accessible (e.g. // TTGO T-Beam) then uncomment the following line: #define USE_HSPI_PORT // Comment out the following #define if "SPI Transactions" do not need to be // supported. When commented out the code size will be smaller and sketches // will run slightly faster, so leave it commented out unless you need it! // Transaction support is needed to work with SD library but not needed with // TFT_SdFat Transaction support is required if other SPI devices are // connected. // Transactions are automatically enabled by the library for an ESP32 (to // use HAL mutex) so changing it here has no effect // #define SUPPORT_TRANSACTIONS