FreeRTOS-Kernel/verification/verifast/proof/verifast_lists_extended.h

128 lines
No EOL
3.8 KiB
C

#ifndef VERIFAST_LISTS_EXTENDED_H
#define VERIFAST_LISTS_EXTENDED_H
/* This file contains lemmas that would fit `list.gh` which is part
* of VeriFast's standard library.
*/
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
/*@
lemma void head_drop_n_equals_nths<t>(list<t> xs, int n)
requires n >= 0;
ensures head(drop(n, xs)) == nth(n, xs);
{
// Will prove later. For now, we only validate with an example.
list<int> _xs = cons(1, cons(2, cons(3, cons(4, cons(5, cons(6, cons(7, nil)))))));
int _n = 4;
list<int> dn = drop(_n, _xs);
int hdn = head(dn);
int nthn = nth(_n, _xs);
assert( hdn == head(drop(_n, _xs)) );
assert( nthn == nth(_n, _xs ));
assert( head(drop(_n, _xs)) == nth(_n, _xs) );
// ADMIT LEMMA, PROVE LATER
assume(false);
}
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void drop_index_equals_singleton_implies_last_element<t>(list<t> xs, t x)
requires drop(index_of(x, xs), xs) == cons(x, nil);
ensures index_of(x, xs) == length(xs) - 1;
{
// Will prove later. For now, we only validate with an example.
list<int> _xs = cons(1, cons(2, cons(3, cons(4, cons(5, cons(6, cons(7, nil)))))));
int _x = 7;
int i = index_of(_x, _xs);
list<int> d = drop(index_of(x, xs), _xs);
assert( index_of(_x, _xs) == length(_xs) - 1 );
// ADMIT LEMMA, PROVE LATER
assume(false);
}
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
// Can we replace this by standard lemma `drop_n_plus_one`?
lemma void drop_cons<t>(list<t> xs, int n)
requires n < length(xs);
ensures drop(n, xs) == cons(nth(n, xs), drop(n+1, xs));
{
// Will prove later. For now, we only validate with an example.
list<int> _xs = cons(1, cons(2, cons(3, cons(4, cons(5, cons(6, cons(7, nil)))))));
int _n = 3;
list<int> dn = drop(_n, _xs);
int nthn = nth(_n, _xs);
list<int> dnp1 = drop(_n + 1, _xs);
assert( drop(_n, _xs) == cons(nth(_n, _xs), drop(_n+1, _xs)) );
// ADMIT LEMMA, PROVE LATER
assume(false);
}
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void nth_index<t>(list<t> xs, t x)
requires mem(x, xs) == true;
ensures nth(index_of(x, xs), xs) == x;
{
// Will prove later. For now, we only validate with an example.
list<int> _xs = cons(1, cons(2, cons(3, cons(4, cons(5, cons(6, cons(7, nil)))))));
int _x = 4;
int i = index_of(_x, _xs);
int nthi = nth(index_of(_x, _xs), _xs);
assert( nth(index_of(_x, _xs), _xs) == _x );
// ADMIT LEMMA, PROVE LATER
assume(false);
}
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void mem_prefix_implies_mem<t>(t x, list<t> xs, int n);
requires mem(x, take(n, xs)) == true;
ensures mem(x, xs) == true;
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void mem_suffix_implies_mem<t>(t x, list<t> xs, int n);
requires mem(x, drop(n, xs)) == true;
ensures mem(x, xs) == true;
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void drop_n_plus_m<t>(list<t> xs, int n, int m);
requires true;
ensures drop(n, drop(m, xs)) == drop(n + m, xs);
// Can use `forall_mem` from `listex.gh` instead
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void forall_instantiate<t>(t x, list<t> xs, fixpoint(t, bool) f);
requires forall(xs, f) == true &*& mem(x, xs) == true;
ensures forall(xs, f) == true &*& f(x) == true;
// Can use `neq_mem_remove` from `listex.gh` instead
// TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void mem_after_remove<t>(t x, list<t> xs, t r);
requires true;
ensures mem(x, remove(r, xs)) == (mem(x, xs) && x != r);
fixpoint bool superset<t>(list<t> super, list<t> sub) {
return subset(sub, super);
}
@*/
#endif /* VERIFAST_LISTS_EXTENDED_H */