mirror of
				https://github.com/FreeRTOS/FreeRTOS-Kernel.git
				synced 2025-10-29 00:36:16 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			2233 lines
		
	
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2233 lines
		
	
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #define DEBUG_PRINTF( ... )		/*printf(__VA_ARGS__)*/
 | |
| 
 | |
| /**
 | |
|  * \defgroup uip The uIP TCP/IP stack
 | |
|  * @{
 | |
|  *
 | |
|  * uIP is an implementation of the TCP/IP protocol stack intended for
 | |
|  * small 8-bit and 16-bit microcontrollers.
 | |
|  *
 | |
|  * uIP provides the necessary protocols for Internet communication,
 | |
|  * with a very small code footprint and RAM requirements - the uIP
 | |
|  * code size is on the order of a few kilobytes and RAM usage is on
 | |
|  * the order of a few hundred bytes.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * \file
 | |
|  * The uIP TCP/IP stack code.
 | |
|  * \author Adam Dunkels <adam@dunkels.com>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2001-2003, Adam Dunkels.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. The name of the author may not be used to endorse or promote
 | |
|  *    products derived from this software without specific prior
 | |
|  *    written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 | |
|  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
|  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 | |
|  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 | |
|  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 | |
|  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  * This file is part of the uIP TCP/IP stack.
 | |
|  *
 | |
|  * $Id: uip.c,v 1.65 2006/06/11 21:46:39 adam Exp $
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * uIP is a small implementation of the IP, UDP and TCP protocols (as
 | |
|  * well as some basic ICMP stuff). The implementation couples the IP,
 | |
|  * UDP, TCP and the application layers very tightly. To keep the size
 | |
|  * of the compiled code down, this code frequently uses the goto
 | |
|  * statement. While it would be possible to break the uip_process()
 | |
|  * function into many smaller functions, this would increase the code
 | |
|  * size because of the overhead of parameter passing and the fact that
 | |
|  * the optimier would not be as efficient.
 | |
|  *
 | |
|  * The principle is that we have a small buffer, called the uip_buf,
 | |
|  * in which the device driver puts an incoming packet. The TCP/IP
 | |
|  * stack parses the headers in the packet, and calls the
 | |
|  * application. If the remote host has sent data to the application,
 | |
|  * this data is present in the uip_buf and the application read the
 | |
|  * data from there. It is up to the application to put this data into
 | |
|  * a byte stream if needed. The application will not be fed with data
 | |
|  * that is out of sequence.
 | |
|  *
 | |
|  * If the application whishes to send data to the peer, it should put
 | |
|  * its data into the uip_buf. The uip_appdata pointer points to the
 | |
|  * first available byte. The TCP/IP stack will calculate the
 | |
|  * checksums, and fill in the necessary header fields and finally send
 | |
|  * the packet back to the peer.
 | |
| */
 | |
| #include "uip.h"
 | |
| #include "uipopt.h"
 | |
| #include "uip_arch.h"
 | |
| #include "uip_arp.h"
 | |
| #include "FreeRTOS.h"
 | |
| 
 | |
| #if UIP_CONF_IPV6
 | |
| 	#include "uip-neighbor.h"
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 
 | |
| /* Variable definitions. */
 | |
| 
 | |
| /* The IP address of this host. If it is defined to be fixed (by
 | |
|    setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set
 | |
|    here. Otherwise, the address */
 | |
| #if UIP_FIXEDADDR > 0
 | |
| const uip_ipaddr_t			uip_hostaddr = { HTONS( (UIP_IPADDR0 << 8) | UIP_IPADDR1 ), HTONS( (UIP_IPADDR2 << 8) | UIP_IPADDR3 ) };
 | |
| const uip_ipaddr_t			uip_draddr = { HTONS( (UIP_DRIPADDR0 << 8) | UIP_DRIPADDR1 ), HTONS( (UIP_DRIPADDR2 << 8) | UIP_DRIPADDR3 ) };
 | |
| const uip_ipaddr_t			uip_netmask = { HTONS( (UIP_NETMASK0 << 8) | UIP_NETMASK1 ), HTONS( (UIP_NETMASK2 << 8) | UIP_NETMASK3 ) };
 | |
| #else
 | |
| uip_ipaddr_t				uip_hostaddr, uip_draddr, uip_netmask;
 | |
| #endif /* UIP_FIXEDADDR */
 | |
| 
 | |
| static const uip_ipaddr_t	all_ones_addr =
 | |
| #if UIP_CONF_IPV6
 | |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff };
 | |
| #else /* UIP_CONF_IPV6 */
 | |
| {
 | |
| 	0xffff, 0xffff
 | |
| };
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| static const uip_ipaddr_t	all_zeroes_addr =
 | |
| #if UIP_CONF_IPV6
 | |
| { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 };
 | |
| #else /* UIP_CONF_IPV6 */
 | |
| {
 | |
| 	0x0000, 0x0000
 | |
| };
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| #if UIP_FIXEDETHADDR
 | |
| const struct uip_eth_addr	uip_ethaddr = { { UIP_ETHADDR0, UIP_ETHADDR1, UIP_ETHADDR2, UIP_ETHADDR3, UIP_ETHADDR4, UIP_ETHADDR5 } };
 | |
| #else
 | |
| struct uip_eth_addr			uip_ethaddr = { { 0, 0, 0, 0, 0, 0 } };
 | |
| #endif
 | |
| #ifndef UIP_CONF_EXTERNAL_BUFFER
 | |
| 	#ifdef __ICCARM__
 | |
| 		#pragma data_alignment = 4
 | |
| u8_t uip_buf[UIP_BUFSIZE + 2];	/* The packet buffer that contains incoming packets. */
 | |
| 	#else
 | |
| u8_t				uip_buf[UIP_BUFSIZE + 2] ALIGN_STRUCT_END;	/* The packet buffer that contains incoming packets. */
 | |
| 	#endif
 | |
| #endif /* UIP_CONF_EXTERNAL_BUFFER */
 | |
| 
 | |
| void				*uip_appdata;				/* The uip_appdata pointer points to
 | |
| 				    application data. */
 | |
| void				*uip_sappdata;				/* The uip_appdata pointer points to
 | |
| 				    the application data which is to
 | |
| 				    be sent. */
 | |
| #if UIP_URGDATA > 0
 | |
| void				*uip_urgdata;				/* The uip_urgdata pointer points to
 | |
|    				    urgent data (out-of-band data), if
 | |
|    				    present. */
 | |
| u16_t				uip_urglen, uip_surglen;
 | |
| #endif /* UIP_URGDATA > 0 */
 | |
| 
 | |
| u16_t				uip_len, uip_slen;
 | |
| 
 | |
| /* The uip_len is either 8 or 16 bits,
 | |
| 				depending on the maximum packet
 | |
| 				size. */
 | |
| u8_t				uip_flags;					/* The uip_flags variable is used for
 | |
| 				communication between the TCP/IP stack
 | |
| 				and the application program. */
 | |
| struct uip_conn		*uip_conn;					/* uip_conn always points to the current
 | |
| 				connection. */
 | |
| 
 | |
| struct uip_conn		uip_conns[UIP_CONNS];
 | |
| 
 | |
| /* The uip_conns array holds all TCP
 | |
| 				connections. */
 | |
| u16_t				uip_listenports[UIP_LISTENPORTS];
 | |
| 
 | |
| /* The uip_listenports list all currently
 | |
| 				listning ports. */
 | |
| #if UIP_UDP
 | |
| struct uip_udp_conn *uip_udp_conn;
 | |
| struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
 | |
| #endif /* UIP_UDP */
 | |
| 
 | |
| static u16_t		ipid;						/* Ths ipid variable is an increasing
 | |
| 				number that is used for the IP ID
 | |
| 				field. */
 | |
| 
 | |
| void uip_setipid( u16_t id )
 | |
| {
 | |
| 	ipid = id;
 | |
| }
 | |
| 
 | |
| static u8_t		iss[4];							/* The iss variable is used for the TCP
 | |
| 				initial sequence number. */
 | |
| 
 | |
| #if UIP_ACTIVE_OPEN
 | |
| static u16_t	lastport;						/* Keeps track of the last port used for
 | |
| 				a new connection. */
 | |
| #endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| /* Temporary variables. */
 | |
| u8_t			uip_acc32[4];
 | |
| static u8_t		c, opt;
 | |
| static u16_t	tmp16;
 | |
| 
 | |
| /* Structures and definitions. */
 | |
| #define TCP_FIN								0x01
 | |
| #define TCP_SYN								0x02
 | |
| #define TCP_RST								0x04
 | |
| #define TCP_PSH								0x08
 | |
| #define TCP_ACK								0x10
 | |
| #define TCP_URG								0x20
 | |
| #define TCP_CTL								0x3f
 | |
| 
 | |
| #define TCP_OPT_END							0	/* End of TCP options list */
 | |
| #define TCP_OPT_NOOP						1	/* "No-operation" TCP option */
 | |
| #define TCP_OPT_MSS							2	/* Maximum segment size TCP option */
 | |
| 
 | |
| #define TCP_OPT_MSS_LEN						4	/* Length of TCP MSS option. */
 | |
| 
 | |
| #define ICMP_ECHO_REPLY						0
 | |
| #define ICMP_ECHO							8
 | |
| 
 | |
| #define ICMP6_ECHO_REPLY					129
 | |
| #define ICMP6_ECHO							128
 | |
| #define ICMP6_NEIGHBOR_SOLICITATION			135
 | |
| #define ICMP6_NEIGHBOR_ADVERTISEMENT		136
 | |
| 
 | |
| #define ICMP6_FLAG_S						( 1 << 6 )
 | |
| #define ICMP6_OPTION_SOURCE_LINK_ADDRESS	1
 | |
| #define ICMP6_OPTION_TARGET_LINK_ADDRESS	2
 | |
| 
 | |
| /* Macros. */
 | |
| #define BUF		( ( struct uip_tcpip_hdr * ) &uip_buf[UIP_LLH_LEN] )
 | |
| #define FBUF	( ( struct uip_tcpip_hdr * ) &uip_reassbuf[0] )
 | |
| #define ICMPBUF ( ( struct uip_icmpip_hdr * ) &uip_buf[UIP_LLH_LEN] )
 | |
| #define UDPBUF	( ( struct uip_udpip_hdr * ) &uip_buf[UIP_LLH_LEN] )
 | |
| #if UIP_STATISTICS == 1
 | |
| struct uip_stats	uip_stat;
 | |
| 	#define UIP_STAT( s )	s
 | |
| #else
 | |
| 	#define UIP_STAT( s )
 | |
| #endif /* UIP_STATISTICS == 1 */
 | |
| 
 | |
| #if UIP_LOGGING == 1
 | |
| 	#include <stdio.h>
 | |
| void	uip_log( char *msg );
 | |
| 	#define UIP_LOG( m )	uip_log( m )
 | |
| #else
 | |
| 	#define UIP_LOG( m )
 | |
| #endif /* UIP_LOGGING == 1 */
 | |
| 
 | |
| #if !UIP_ARCH_ADD32
 | |
| void uip_add32( u8_t *op32, u16_t op16 )
 | |
| {
 | |
| 	uip_acc32[3] = op32[3] + ( op16 & 0xff );
 | |
| 	uip_acc32[2] = op32[2] + ( op16 >> 8 );
 | |
| 	uip_acc32[1] = op32[1];
 | |
| 	uip_acc32[0] = op32[0];
 | |
| 
 | |
| 	if( uip_acc32[2] < (op16 >> 8) )
 | |
| 	{
 | |
| 		++uip_acc32[1];
 | |
| 		if( uip_acc32[1] == 0 )
 | |
| 		{
 | |
| 			++uip_acc32[0];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if( uip_acc32[3] < (op16 & 0xff) )
 | |
| 	{
 | |
| 		++uip_acc32[2];
 | |
| 		if( uip_acc32[2] == 0 )
 | |
| 		{
 | |
| 			++uip_acc32[1];
 | |
| 			if( uip_acc32[1] == 0 )
 | |
| 			{
 | |
| 				++uip_acc32[0];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif /* UIP_ARCH_ADD32 */
 | |
| 
 | |
| #if !UIP_ARCH_CHKSUM
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| static u16_t chksum( u16_t sum, const u8_t *data, u16_t len )
 | |
| {
 | |
| 	u16_t		t;
 | |
| 	const u8_t	*dataptr;
 | |
| 	const u8_t	*last_byte;
 | |
| 
 | |
| 	dataptr = data;
 | |
| 	last_byte = data + len - 1;
 | |
| 
 | |
| 	while( dataptr < last_byte )
 | |
| 	{				/* At least two more bytes */
 | |
| 		t = ( dataptr[0] << 8 ) + dataptr[1];
 | |
| 		sum += t;
 | |
| 		if( sum < t )
 | |
| 		{
 | |
| 			sum++;	/* carry */
 | |
| 		}
 | |
| 
 | |
| 		dataptr += 2;
 | |
| 	}
 | |
| 
 | |
| 	if( dataptr == last_byte )
 | |
| 	{
 | |
| 		t = ( dataptr[0] << 8 ) + 0;
 | |
| 		sum += t;
 | |
| 		if( sum < t )
 | |
| 		{
 | |
| 			sum++;	/* carry */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Return sum in host byte order. */
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| u16_t uip_chksum( u16_t *data, u16_t len )
 | |
| {
 | |
| 	return htons( chksum(0, ( u8_t * ) data, len) );
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 	#ifndef UIP_ARCH_IPCHKSUM
 | |
| u16_t uip_ipchksum( void )
 | |
| {
 | |
| 	u16_t	sum;
 | |
| 
 | |
| 	sum = chksum( 0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN );
 | |
| 	DEBUG_PRINTF( "uip_ipchksum: sum 0x%04x\n", sum );
 | |
| 	return( sum == 0 ) ? 0xffff : htons( sum );
 | |
| }
 | |
| 
 | |
| 	#endif
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| static u16_t upper_layer_chksum( u8_t proto )
 | |
| {
 | |
| 	u16_t	upper_layer_len;
 | |
| 	u16_t	sum;
 | |
| 
 | |
| 		#if UIP_CONF_IPV6
 | |
| 	upper_layer_len = ( ((u16_t) (BUF->len[0]) << 8) + BUF->len[1] );
 | |
| 		#else /* UIP_CONF_IPV6 */
 | |
| 	upper_layer_len = ( ((u16_t) (BUF->len[0]) << 8) + BUF->len[1] ) - UIP_IPH_LEN;
 | |
| 		#endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 	/* First sum pseudoheader. */
 | |
| 
 | |
| 	/* IP protocol and length fields. This addition cannot carry. */
 | |
| 	sum = upper_layer_len + proto;
 | |
| 
 | |
| 	/* Sum IP source and destination addresses. */
 | |
| 	sum = chksum( sum, ( u8_t * ) &BUF->srcipaddr[0], 2 * sizeof(uip_ipaddr_t) );
 | |
| 
 | |
| 	/* Sum TCP header and data. */
 | |
| 	sum = chksum( sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN], upper_layer_len );
 | |
| 
 | |
| 	return( sum == 0 ) ? 0xffff : htons( sum );
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 	#if UIP_CONF_IPV6
 | |
| u16_t uip_icmp6chksum( void )
 | |
| {
 | |
| 	return upper_layer_chksum( UIP_PROTO_ICMP6 );
 | |
| }
 | |
| 
 | |
| 	#endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| u16_t uip_tcpchksum( void )
 | |
| {
 | |
| 	return upper_layer_chksum( UIP_PROTO_TCP );
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 	#if UIP_UDP_CHECKSUMS
 | |
| u16_t uip_udpchksum( void )
 | |
| {
 | |
| 	return upper_layer_chksum( UIP_PROTO_UDP );
 | |
| }
 | |
| 
 | |
| 	#endif /* UIP_UDP_CHECKSUMS */
 | |
| #endif /* UIP_ARCH_CHKSUM */
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void uip_init( void )
 | |
| {
 | |
| 	for( c = 0; c < UIP_LISTENPORTS; ++c )
 | |
| 	{
 | |
| 		uip_listenports[c] = 0;
 | |
| 	}
 | |
| 
 | |
| 	for( c = 0; c < UIP_CONNS; ++c )
 | |
| 	{
 | |
| 		uip_conns[c].tcpstateflags = UIP_CLOSED;
 | |
| 	}
 | |
| 
 | |
| 	#if UIP_ACTIVE_OPEN
 | |
| 	lastport = 1024;
 | |
| 	#endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| 	#if UIP_UDP
 | |
| 	for( c = 0; c < UIP_UDP_CONNS; ++c )
 | |
| 	{
 | |
| 		uip_udp_conns[c].lport = 0;
 | |
| 	}
 | |
| 
 | |
| 	#endif /* UIP_UDP */
 | |
| 
 | |
| 	/* IPv4 initialization. */
 | |
| 	#if UIP_FIXEDADDR == 0
 | |
| 
 | |
| 	/*  uip_hostaddr[0] = uip_hostaddr[1] = 0;*/
 | |
| 	#endif /* UIP_FIXEDADDR */
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| #if UIP_ACTIVE_OPEN
 | |
| struct uip_conn *uip_connect( uip_ipaddr_t *ripaddr, u16_t rport )
 | |
| {
 | |
| 	register struct uip_conn	*conn, *cconn;
 | |
| 
 | |
| 	/* Find an unused local port. */
 | |
| again:
 | |
| 	++lastport;
 | |
| 
 | |
| 	if( lastport >= 32000 )
 | |
| 	{
 | |
| 		lastport = 4096;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if this port is already in use, and if so try to find
 | |
|      another one. */
 | |
| 	for( c = 0; c < UIP_CONNS; ++c )
 | |
| 	{
 | |
| 		conn = &uip_conns[c];
 | |
| 		if( conn->tcpstateflags != UIP_CLOSED && conn->lport == htons(lastport) )
 | |
| 		{
 | |
| 			goto again;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	conn = 0;
 | |
| 	for( c = 0; c < UIP_CONNS; ++c )
 | |
| 	{
 | |
| 		cconn = &uip_conns[c];
 | |
| 		if( cconn->tcpstateflags == UIP_CLOSED )
 | |
| 		{
 | |
| 			conn = cconn;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if( cconn->tcpstateflags == UIP_TIME_WAIT )
 | |
| 		{
 | |
| 			if( conn == 0 || cconn->timer > conn->timer )
 | |
| 			{
 | |
| 				conn = cconn;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if( conn == 0 )
 | |
| 	{
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	conn->tcpstateflags = UIP_SYN_SENT;
 | |
| 
 | |
| 	conn->snd_nxt[0] = iss[0];
 | |
| 	conn->snd_nxt[1] = iss[1];
 | |
| 	conn->snd_nxt[2] = iss[2];
 | |
| 	conn->snd_nxt[3] = iss[3];
 | |
| 
 | |
| 	conn->initialmss = conn->mss = UIP_TCP_MSS;
 | |
| 
 | |
| 	conn->len = 1;		/* TCP length of the SYN is one. */
 | |
| 	conn->nrtx = 0;
 | |
| 	conn->timer = 1;	/* Send the SYN next time around. */
 | |
| 	conn->rto = UIP_RTO;
 | |
| 	conn->sa = 0;
 | |
| 	conn->sv = 16;		/* Initial value of the RTT variance. */
 | |
| 	conn->lport = htons( lastport );
 | |
| 	conn->rport = rport;
 | |
| 	uip_ipaddr_copy( &conn->ripaddr, ripaddr );
 | |
| 
 | |
| 	return conn;
 | |
| }
 | |
| 
 | |
| #endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| #if UIP_UDP
 | |
| struct uip_udp_conn *uip_udp_new( uip_ipaddr_t *ripaddr, u16_t rport )
 | |
| {
 | |
| 	register struct uip_udp_conn	*conn;
 | |
| 
 | |
| 	/* Find an unused local port. */
 | |
| again:
 | |
| 	++lastport;
 | |
| 
 | |
| 	if( lastport >= 32000 )
 | |
| 	{
 | |
| 		lastport = 4096;
 | |
| 	}
 | |
| 
 | |
| 	for( c = 0; c < UIP_UDP_CONNS; ++c )
 | |
| 	{
 | |
| 		if( uip_udp_conns[c].lport == htons(lastport) )
 | |
| 		{
 | |
| 			goto again;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	conn = 0;
 | |
| 	for( c = 0; c < UIP_UDP_CONNS; ++c )
 | |
| 	{
 | |
| 		if( uip_udp_conns[c].lport == 0 )
 | |
| 		{
 | |
| 			conn = &uip_udp_conns[c];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if( conn == 0 )
 | |
| 	{
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	conn->lport = HTONS( lastport );
 | |
| 	conn->rport = rport;
 | |
| 	if( ripaddr == NULL )
 | |
| 	{
 | |
| 		memset( conn->ripaddr, 0, sizeof(uip_ipaddr_t) );
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		uip_ipaddr_copy( &conn->ripaddr, ripaddr );
 | |
| 	}
 | |
| 
 | |
| 	conn->ttl = UIP_TTL;
 | |
| 
 | |
| 	return conn;
 | |
| }
 | |
| 
 | |
| #endif /* UIP_UDP */
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void uip_unlisten( u16_t port )
 | |
| {
 | |
| 	for( c = 0; c < UIP_LISTENPORTS; ++c )
 | |
| 	{
 | |
| 		if( uip_listenports[c] == port )
 | |
| 		{
 | |
| 			uip_listenports[c] = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void uip_listen( u16_t port )
 | |
| {
 | |
| 	for( c = 0; c < UIP_LISTENPORTS; ++c )
 | |
| 	{
 | |
| 		if( uip_listenports[c] == 0 )
 | |
| 		{
 | |
| 			uip_listenports[c] = port;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| 
 | |
| /* XXX: IP fragment reassembly: not well-tested. */
 | |
| #if UIP_REASSEMBLY && !UIP_CONF_IPV6
 | |
| 	#define UIP_REASS_BUFSIZE	( UIP_BUFSIZE - UIP_LLH_LEN )
 | |
| static u8_t			uip_reassbuf[UIP_REASS_BUFSIZE];
 | |
| static u8_t			uip_reassbitmap[UIP_REASS_BUFSIZE / ( 8 * 8 )];
 | |
| static const u8_t	bitmap_bits[8] = { 0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01 };
 | |
| static u16_t		uip_reasslen;
 | |
| static u8_t			uip_reassflags;
 | |
| 	#define UIP_REASS_FLAG_LASTFRAG 0x01
 | |
| static u8_t			uip_reasstmr;
 | |
| 
 | |
| 	#define IP_MF	0x20
 | |
| 
 | |
| static u8_t uip_reass( void )
 | |
| {
 | |
| 	u16_t	offset, len;
 | |
| 	u16_t	i;
 | |
| 
 | |
| 	/* If ip_reasstmr is zero, no packet is present in the buffer, so we
 | |
|      write the IP header of the fragment into the reassembly
 | |
|      buffer. The timer is updated with the maximum age. */
 | |
| 	if( uip_reasstmr == 0 )
 | |
| 	{
 | |
| 		memcpy( uip_reassbuf, &BUF->vhl, UIP_IPH_LEN );
 | |
| 		uip_reasstmr = UIP_REASS_MAXAGE;
 | |
| 		uip_reassflags = 0;
 | |
| 
 | |
| 		/* Clear the bitmap. */
 | |
| 		memset( uip_reassbitmap, 0, sizeof(uip_reassbitmap) );
 | |
| 	}
 | |
| 
 | |
| 	/* Check if the incoming fragment matches the one currently present
 | |
|      in the reasembly buffer. If so, we proceed with copying the
 | |
|      fragment into the buffer. */
 | |
| 	if
 | |
| 	(
 | |
| 		BUF->srcipaddr[0] == FBUF->srcipaddr[0] &&
 | |
| 		BUF->srcipaddr[1] == FBUF->srcipaddr[1] &&
 | |
| 		BUF->destipaddr[0] == FBUF->destipaddr[0] &&
 | |
| 		BUF->destipaddr[1] == FBUF->destipaddr[1] &&
 | |
| 		BUF->ipid[0] == FBUF->ipid[0] &&
 | |
| 		BUF->ipid[1] == FBUF->ipid[1]
 | |
| 	)
 | |
| 	{
 | |
| 		len = ( BUF->len[0] << 8 ) + BUF->len[1] - ( BUF->vhl & 0x0f ) * 4;
 | |
| 		offset = ( ((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1] ) * 8;
 | |
| 
 | |
| 		/* If the offset or the offset + fragment length overflows the
 | |
|        reassembly buffer, we discard the entire packet. */
 | |
| 		if( offset > UIP_REASS_BUFSIZE || offset + len > UIP_REASS_BUFSIZE )
 | |
| 		{
 | |
| 			uip_reasstmr = 0;
 | |
| 			goto nullreturn;
 | |
| 		}
 | |
| 
 | |
| 		/* Copy the fragment into the reassembly buffer, at the right
 | |
|        offset. */
 | |
| 		memcpy( &uip_reassbuf[UIP_IPH_LEN + offset], ( char * ) BUF + ( int ) ((BUF->vhl & 0x0f) * 4), len );
 | |
| 
 | |
| 		/* Update the bitmap. */
 | |
| 		if( offset / (8 * 8) == (offset + len) / (8 * 8) )
 | |
| 		{
 | |
| 			/* If the two endpoints are in the same byte, we only update
 | |
| 	 that byte. */
 | |
| 			uip_reassbitmap[offset / ( 8 * 8 )] |= bitmap_bits[( offset / 8 ) & 7] &~bitmap_bits[( (offset + len) / 8 ) & 7];
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			/* If the two endpoints are in different bytes, we update the
 | |
| 	 bytes in the endpoints and fill the stuff inbetween with
 | |
| 	 0xff. */
 | |
| 			uip_reassbitmap[offset / ( 8 * 8 )] |= bitmap_bits[( offset / 8 ) & 7];
 | |
| 			for( i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i )
 | |
| 			{
 | |
| 				uip_reassbitmap[i] = 0xff;
 | |
| 			}
 | |
| 
 | |
| 			uip_reassbitmap[( offset + len ) / ( 8 * 8 )] |= ~bitmap_bits[( (offset + len) / 8 ) & 7];
 | |
| 		}
 | |
| 
 | |
| 		/* If this fragment has the More Fragments flag set to zero, we
 | |
|        know that this is the last fragment, so we can calculate the
 | |
|        size of the entire packet. We also set the
 | |
|        IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
 | |
|        the final fragment. */
 | |
| 		if( (BUF->ipoffset[0] & IP_MF) == 0 )
 | |
| 		{
 | |
| 			uip_reassflags |= UIP_REASS_FLAG_LASTFRAG;
 | |
| 			uip_reasslen = offset + len;
 | |
| 		}
 | |
| 
 | |
| 		/* Finally, we check if we have a full packet in the buffer. We do
 | |
|        this by checking if we have the last fragment and if all bits
 | |
|        in the bitmap are set. */
 | |
| 		if( uip_reassflags & UIP_REASS_FLAG_LASTFRAG )
 | |
| 		{
 | |
| 			/* Check all bytes up to and including all but the last byte in
 | |
| 	 the bitmap. */
 | |
| 			for( i = 0; i < uip_reasslen / (8 * 8) - 1; ++i )
 | |
| 			{
 | |
| 				if( uip_reassbitmap[i] != 0xff )
 | |
| 				{
 | |
| 					goto nullreturn;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* Check the last byte in the bitmap. It should contain just the
 | |
| 	 right amount of bits. */
 | |
| 			if( uip_reassbitmap[uip_reasslen / (8 * 8)] != (u8_t)~bitmap_bits[uip_reasslen / 8 & 7] )
 | |
| 			{
 | |
| 				goto nullreturn;
 | |
| 			}
 | |
| 
 | |
| 			/* If we have come this far, we have a full packet in the
 | |
| 	 buffer, so we allocate a pbuf and copy the packet into it. We
 | |
| 	 also reset the timer. */
 | |
| 			uip_reasstmr = 0;
 | |
| 			memcpy( BUF, FBUF, uip_reasslen );
 | |
| 
 | |
| 			/* Pretend to be a "normal" (i.e., not fragmented) IP packet
 | |
| 	 from now on. */
 | |
| 			BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
 | |
| 			BUF->len[0] = uip_reasslen >> 8;
 | |
| 			BUF->len[1] = uip_reasslen & 0xff;
 | |
| 			BUF->ipchksum = 0;
 | |
| 			BUF->ipchksum = ~( uip_ipchksum() );
 | |
| 
 | |
| 			return uip_reasslen;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| nullreturn:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* UIP_REASSEMBLY */
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| static void uip_add_rcv_nxt( u16_t n )
 | |
| {
 | |
| 	uip_add32( uip_conn->rcv_nxt, n );
 | |
| 	uip_conn->rcv_nxt[0] = uip_acc32[0];
 | |
| 	uip_conn->rcv_nxt[1] = uip_acc32[1];
 | |
| 	uip_conn->rcv_nxt[2] = uip_acc32[2];
 | |
| 	uip_conn->rcv_nxt[3] = uip_acc32[3];
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void uip_process( u8_t flag )
 | |
| {
 | |
| 	register struct uip_conn	*uip_connr = uip_conn;
 | |
| 
 | |
| 	#if UIP_UDP
 | |
| 	if( flag == UIP_UDP_SEND_CONN )
 | |
| 	{
 | |
| 		goto udp_send;
 | |
| 	}
 | |
| 
 | |
| 	#endif /* UIP_UDP */
 | |
| 
 | |
| 	uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN];
 | |
| 
 | |
| 	/* Check if we were invoked because of a poll request for a
 | |
|      particular connection. */
 | |
| 	if( flag == UIP_POLL_REQUEST )
 | |
| 	{
 | |
| 		if( (uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED && !uip_outstanding(uip_connr) )
 | |
| 		{
 | |
| 			uip_flags = UIP_POLL;
 | |
| 			UIP_APPCALL();
 | |
| 			goto appsend;
 | |
| 		}
 | |
| 
 | |
| 		goto drop;
 | |
| 
 | |
| 		/* Check if we were invoked because of the perodic timer fireing. */
 | |
| 	}
 | |
| 	else if( flag == UIP_TIMER )
 | |
| 	{
 | |
| 		#if UIP_REASSEMBLY
 | |
| 		if( uip_reasstmr != 0 )
 | |
| 		{
 | |
| 			--uip_reasstmr;
 | |
| 		}
 | |
| 
 | |
| 		#endif /* UIP_REASSEMBLY */
 | |
| 
 | |
| 		/* Increase the initial sequence number. */
 | |
| 		if( ++iss[3] == 0 )
 | |
| 		{
 | |
| 			if( ++iss[2] == 0 )
 | |
| 			{
 | |
| 				if( ++iss[1] == 0 )
 | |
| 				{
 | |
| 					++iss[0];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Reset the length variables. */
 | |
| 		uip_len = 0;
 | |
| 		uip_slen = 0;
 | |
| 
 | |
| 		/* Check if the connection is in a state in which we simply wait
 | |
|        for the connection to time out. If so, we increase the
 | |
|        connection's timer and remove the connection if it times
 | |
|        out. */
 | |
| 		if( uip_connr->tcpstateflags == UIP_TIME_WAIT || uip_connr->tcpstateflags == UIP_FIN_WAIT_2 )
 | |
| 		{
 | |
| 			++( uip_connr->timer );
 | |
| 			if( uip_connr->timer == UIP_TIME_WAIT_TIMEOUT )
 | |
| 			{
 | |
| 				uip_connr->tcpstateflags = UIP_CLOSED;
 | |
| 			}
 | |
| 		}
 | |
| 		else if( uip_connr->tcpstateflags != UIP_CLOSED )
 | |
| 		{
 | |
| 			/* If the connection has outstanding data, we increase the
 | |
| 	 connection's timer and see if it has reached the RTO value
 | |
| 	 in which case we retransmit. */
 | |
| 			if( uip_outstanding(uip_connr) )
 | |
| 			{
 | |
| 				uip_connr->timer = uip_connr->timer - 1;
 | |
| 				if( uip_connr->timer == 0 )
 | |
| 				{
 | |
| 					if
 | |
| 					(
 | |
| 						uip_connr->nrtx == UIP_MAXRTX ||
 | |
| 						(
 | |
| 							(uip_connr->tcpstateflags == UIP_SYN_SENT || uip_connr->tcpstateflags == UIP_SYN_RCVD) &&
 | |
| 							uip_connr->nrtx == UIP_MAXSYNRTX
 | |
| 						)
 | |
| 					)
 | |
| 					{
 | |
| 						uip_connr->tcpstateflags = UIP_CLOSED;
 | |
| 
 | |
| 						/* We call UIP_APPCALL() with uip_flags set to
 | |
| 	       UIP_TIMEDOUT to inform the application that the
 | |
| 	       connection has timed out. */
 | |
| 						uip_flags = UIP_TIMEDOUT;
 | |
| 						UIP_APPCALL();
 | |
| 
 | |
| 						/* We also send a reset packet to the remote host. */
 | |
| 						BUF->flags = TCP_RST | TCP_ACK;
 | |
| 						goto tcp_send_nodata;
 | |
| 					}
 | |
| 
 | |
| 					/* Exponential backoff. */
 | |
| 					uip_connr->timer = UIP_RTO << ( uip_connr->nrtx > 4 ? 4 : uip_connr->nrtx );
 | |
| 					++( uip_connr->nrtx );
 | |
| 
 | |
| 					/* Ok, so we need to retransmit. We do this differently
 | |
| 	     depending on which state we are in. In ESTABLISHED, we
 | |
| 	     call upon the application so that it may prepare the
 | |
| 	     data for the retransmit. In SYN_RCVD, we resend the
 | |
| 	     SYNACK that we sent earlier and in LAST_ACK we have to
 | |
| 	     retransmit our FINACK. */
 | |
| 					UIP_STAT( ++uip_stat.tcp.rexmit );
 | |
| 					switch( uip_connr->tcpstateflags & UIP_TS_MASK )
 | |
| 					{
 | |
| 						case UIP_SYN_RCVD:
 | |
| 							/* In the SYN_RCVD state, we should retransmit our
 | |
|                SYNACK. */
 | |
| 							goto tcp_send_synack;
 | |
| 
 | |
| 							#if UIP_ACTIVE_OPEN
 | |
| 
 | |
| 						case UIP_SYN_SENT:
 | |
| 							/* In the SYN_SENT state, we retransmit out SYN. */
 | |
| 							BUF->flags = 0;
 | |
| 							goto tcp_send_syn;
 | |
| 							#endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| 						case UIP_ESTABLISHED:
 | |
| 							/* In the ESTABLISHED state, we call upon the application
 | |
|                to do the actual retransmit after which we jump into
 | |
|                the code for sending out the packet (the apprexmit
 | |
|                label). */
 | |
| 							uip_flags = UIP_REXMIT;
 | |
| 							UIP_APPCALL();
 | |
| 							goto apprexmit;
 | |
| 
 | |
| 						case UIP_FIN_WAIT_1:
 | |
| 						case UIP_CLOSING:
 | |
| 						case UIP_LAST_ACK:
 | |
| 							/* In all these states we should retransmit a FINACK. */
 | |
| 							goto tcp_send_finack;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			else if( (uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED )
 | |
| 			{
 | |
| 				/* If there was no need for a retransmission, we poll the
 | |
|            application for new data. */
 | |
| 				uip_flags = UIP_POLL;
 | |
| 				UIP_APPCALL();
 | |
| 				goto appsend;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	#if UIP_UDP
 | |
| 	if( flag == UIP_UDP_TIMER )
 | |
| 	{
 | |
| 		if( uip_udp_conn->lport != 0 )
 | |
| 		{
 | |
| 			uip_conn = NULL;
 | |
| 			uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
 | |
| 			uip_len = uip_slen = 0;
 | |
| 			uip_flags = UIP_POLL;
 | |
| 			UIP_UDP_APPCALL();
 | |
| 			goto udp_send;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			goto drop;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	#endif
 | |
| 
 | |
| 	/* This is where the input processing starts. */
 | |
| 	UIP_STAT( ++uip_stat.ip.recv );
 | |
| 
 | |
| 	/* Start of IP input header processing code. */
 | |
| 	#if UIP_CONF_IPV6
 | |
| 
 | |
| 	/* Check validity of the IP header. */
 | |
| 	if( (BUF->vtc & 0xf0) != 0x60 )
 | |
| 	{					/* IP version and header length. */
 | |
| 		UIP_STAT( ++uip_stat.ip.drop );
 | |
| 		UIP_STAT( ++uip_stat.ip.vhlerr );
 | |
| 		UIP_LOG( "ipv6: invalid version." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	#else /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 	/* Check validity of the IP header. */
 | |
| 	if( BUF->vhl != 0x45 )
 | |
| 	{					/* IP version and header length. */
 | |
| 		UIP_STAT( ++uip_stat.ip.drop );
 | |
| 		UIP_STAT( ++uip_stat.ip.vhlerr );
 | |
| 		UIP_LOG( "ip: invalid version or header length." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	#endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 	/* Check the size of the packet. If the size reported to us in
 | |
|      uip_len is smaller the size reported in the IP header, we assume
 | |
|      that the packet has been corrupted in transit. If the size of
 | |
|      uip_len is larger than the size reported in the IP packet header,
 | |
|      the packet has been padded and we set uip_len to the correct
 | |
|      value.. */
 | |
| 	if( (BUF->len[0] << 8) + BUF->len[1] <= uip_len )
 | |
| 	{
 | |
| 		uip_len = ( BUF->len[0] << 8 ) + BUF->len[1];
 | |
| 		#if UIP_CONF_IPV6
 | |
| 		uip_len += 40;	/* The length reported in the IPv6 header is the
 | |
| 		      length of the payload that follows the
 | |
| 		      header. However, uIP uses the uip_len variable
 | |
| 		      for holding the size of the entire packet,
 | |
| 		      including the IP header. For IPv4 this is not a
 | |
| 		      problem as the length field in the IPv4 header
 | |
| 		      contains the length of the entire packet. But
 | |
| 		      for IPv6 we need to add the size of the IPv6
 | |
| 		      header (40 bytes). */
 | |
| 		#endif /* UIP_CONF_IPV6 */
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		UIP_LOG( "ip: packet shorter than reported in IP header." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	#if !UIP_CONF_IPV6
 | |
| 
 | |
| 	/* Check the fragment flag. */
 | |
| 	if( (BUF->ipoffset[0] & 0x3f) != 0 || BUF->ipoffset[1] != 0 )
 | |
| 	{
 | |
| 			#if UIP_REASSEMBLY
 | |
| 		uip_len = uip_reass();
 | |
| 		if( uip_len == 0 )
 | |
| 		{
 | |
| 			goto drop;
 | |
| 		}
 | |
| 
 | |
| 			#else /* UIP_REASSEMBLY */
 | |
| 		UIP_STAT( ++uip_stat.ip.drop );
 | |
| 		UIP_STAT( ++uip_stat.ip.fragerr );
 | |
| 		UIP_LOG( "ip: fragment dropped." );
 | |
| 		goto drop;
 | |
| 			#endif /* UIP_REASSEMBLY */
 | |
| 	}
 | |
| 
 | |
| 	#endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 	if( uip_ipaddr_cmp(uip_hostaddr, all_zeroes_addr) )
 | |
| 	{
 | |
| 		/* If we are configured to use ping IP address configuration and
 | |
|        hasn't been assigned an IP address yet, we accept all ICMP
 | |
|        packets. */
 | |
| 		#if UIP_PINGADDRCONF && !UIP_CONF_IPV6
 | |
| 		if( BUF->proto == UIP_PROTO_ICMP )
 | |
| 		{
 | |
| 			UIP_LOG( "ip: possible ping config packet received." );
 | |
| 			goto icmp_input;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			UIP_LOG( "ip: packet dropped since no address assigned." );
 | |
| 			goto drop;
 | |
| 		}
 | |
| 
 | |
| 		#endif /* UIP_PINGADDRCONF */
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/* If IP broadcast support is configured, we check for a broadcast
 | |
|        UDP packet, which may be destined to us. */
 | |
| 		#if UIP_BROADCAST
 | |
| 		DEBUG_PRINTF( "UDP IP checksum 0x%04x\n", uip_ipchksum() );
 | |
| 		if( BUF->proto == UIP_PROTO_UDP && uip_ipaddr_cmp(BUF->destipaddr, all_ones_addr) /*&&
 | |
| 	 uip_ipchksum() == 0xffff*/ )
 | |
| 		{
 | |
| 			goto udp_input;
 | |
| 		}
 | |
| 
 | |
| 		#endif /* UIP_BROADCAST */
 | |
| 
 | |
| 		/* Check if the packet is destined for our IP address. */
 | |
| 		#if !UIP_CONF_IPV6
 | |
| 		if( !uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr) )
 | |
| 		{
 | |
| 			UIP_STAT( ++uip_stat.ip.drop );
 | |
| 			goto drop;
 | |
| 		}
 | |
| 
 | |
| 		#else /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 		/* For IPv6, packet reception is a little trickier as we need to
 | |
|        make sure that we listen to certain multicast addresses (all
 | |
|        hosts multicast address, and the solicited-node multicast
 | |
|        address) as well. However, we will cheat here and accept all
 | |
|        multicast packets that are sent to the ff02::/16 addresses. */
 | |
| 		if( !uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr) && BUF->destipaddr[0] != HTONS(0xff02) )
 | |
| 		{
 | |
| 			UIP_STAT( ++uip_stat.ip.drop );
 | |
| 			goto drop;
 | |
| 		}
 | |
| 
 | |
| 		#endif /* UIP_CONF_IPV6 */
 | |
| 	}
 | |
| 
 | |
| 	#if !UIP_CONF_IPV6
 | |
| 	if( uip_ipchksum() != 0xffff )
 | |
| 	{					/* Compute and check the IP header
 | |
| 				    checksum. */
 | |
| 		UIP_STAT( ++uip_stat.ip.drop );
 | |
| 		UIP_STAT( ++uip_stat.ip.chkerr );
 | |
| 		UIP_LOG( "ip: bad checksum." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	#endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 	if( BUF->proto == UIP_PROTO_TCP )
 | |
| 	{					/* Check for TCP packet. If so,
 | |
| 				       proceed with TCP input
 | |
| 				       processing. */
 | |
| 		goto tcp_input;
 | |
| 	}
 | |
| 
 | |
| 	#if UIP_UDP
 | |
| 	if( BUF->proto == UIP_PROTO_UDP )
 | |
| 	{
 | |
| 		goto udp_input;
 | |
| 	}
 | |
| 
 | |
| 	#endif /* UIP_UDP */
 | |
| 
 | |
| 	#if !UIP_CONF_IPV6
 | |
| 
 | |
| 	/* ICMPv4 processing code follows. */
 | |
| 	if( BUF->proto != UIP_PROTO_ICMP )
 | |
| 	{					/* We only allow ICMP packets from
 | |
| 					here. */
 | |
| 		UIP_STAT( ++uip_stat.ip.drop );
 | |
| 		UIP_STAT( ++uip_stat.ip.protoerr );
 | |
| 		UIP_LOG( "ip: neither tcp nor icmp." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 		#if UIP_PINGADDRCONF
 | |
| 	icmp_input :
 | |
| 		#endif /* UIP_PINGADDRCONF */
 | |
| 	UIP_STAT( ++uip_stat.icmp.recv );
 | |
| 
 | |
| 	/* ICMP echo (i.e., ping) processing. This is simple, we only change
 | |
|      the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP
 | |
|      checksum before we return the packet. */
 | |
| 	if( ICMPBUF->type != ICMP_ECHO )
 | |
| 	{
 | |
| 		UIP_STAT( ++uip_stat.icmp.drop );
 | |
| 		UIP_STAT( ++uip_stat.icmp.typeerr );
 | |
| 		UIP_LOG( "icmp: not icmp echo." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	/* If we are configured to use ping IP address assignment, we use
 | |
|      the destination IP address of this ping packet and assign it to
 | |
|      ourself. */
 | |
| 		#if UIP_PINGADDRCONF
 | |
| 	if( (uip_hostaddr[0] | uip_hostaddr[1]) == 0 )
 | |
| 	{
 | |
| 		uip_hostaddr[0] = BUF->destipaddr[0];
 | |
| 		uip_hostaddr[1] = BUF->destipaddr[1];
 | |
| 	}
 | |
| 
 | |
| 		#endif /* UIP_PINGADDRCONF */
 | |
| 
 | |
| 	ICMPBUF->type = ICMP_ECHO_REPLY;
 | |
| 
 | |
| 	if( ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8)) )
 | |
| 	{
 | |
| 		ICMPBUF->icmpchksum += HTONS( ICMP_ECHO << 8 ) + 1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		ICMPBUF->icmpchksum += HTONS( ICMP_ECHO << 8 );
 | |
| 	}
 | |
| 
 | |
| 	/* Swap IP addresses. */
 | |
| 	uip_ipaddr_copy( BUF->destipaddr, BUF->srcipaddr );
 | |
| 	uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
 | |
| 
 | |
| 	UIP_STAT( ++uip_stat.icmp.sent );
 | |
| 	goto send;
 | |
| 
 | |
| 	/* End of IPv4 input header processing code. */
 | |
| 	#else /* !UIP_CONF_IPV6 */
 | |
| 
 | |
| 	/* This is IPv6 ICMPv6 processing code. */
 | |
| 	DEBUG_PRINTF( "icmp6_input: length %d\n", uip_len );
 | |
| 
 | |
| 	if( BUF->proto != UIP_PROTO_ICMP6 )
 | |
| 	{					/* We only allow ICMPv6 packets from
 | |
| 					 here. */
 | |
| 		UIP_STAT( ++uip_stat.ip.drop );
 | |
| 		UIP_STAT( ++uip_stat.ip.protoerr );
 | |
| 		UIP_LOG( "ip: neither tcp nor icmp6." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	UIP_STAT( ++uip_stat.icmp.recv );
 | |
| 
 | |
| 	/* If we get a neighbor solicitation for our address we should send
 | |
|      a neighbor advertisement message back. */
 | |
| 	if( ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION )
 | |
| 	{
 | |
| 		if( uip_ipaddr_cmp(ICMPBUF->icmp6data, uip_hostaddr) )
 | |
| 		{
 | |
| 			if( ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS )
 | |
| 			{
 | |
| 				/* Save the sender's address in our neighbor list. */
 | |
| 				uip_neighbor_add( ICMPBUF->srcipaddr, &(ICMPBUF->options[2]) );
 | |
| 			}
 | |
| 
 | |
| 			/* We should now send a neighbor advertisement back to where the
 | |
| 	 neighbor solicication came from. */
 | |
| 			ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT;
 | |
| 			ICMPBUF->flags = ICMP6_FLAG_S;	/* Solicited flag. */
 | |
| 
 | |
| 			ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0;
 | |
| 
 | |
| 			uip_ipaddr_copy( ICMPBUF->destipaddr, ICMPBUF->srcipaddr );
 | |
| 			uip_ipaddr_copy( ICMPBUF->srcipaddr, uip_hostaddr );
 | |
| 			ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS;
 | |
| 			ICMPBUF->options[1] = 1;		/* Options length, 1 = 8 bytes. */
 | |
| 			memcpy( &(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr) );
 | |
| 			ICMPBUF->icmpchksum = 0;
 | |
| 			ICMPBUF->icmpchksum = ~uip_icmp6chksum();
 | |
| 			goto send;
 | |
| 		}
 | |
| 
 | |
| 		goto drop;
 | |
| 	}
 | |
| 	else if( ICMPBUF->type == ICMP6_ECHO )
 | |
| 	{
 | |
| 		/* ICMP echo (i.e., ping) processing. This is simple, we only
 | |
|        change the ICMP type from ECHO to ECHO_REPLY and update the
 | |
|        ICMP checksum before we return the packet. */
 | |
| 		ICMPBUF->type = ICMP6_ECHO_REPLY;
 | |
| 
 | |
| 		uip_ipaddr_copy( BUF->destipaddr, BUF->srcipaddr );
 | |
| 		uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
 | |
| 		ICMPBUF->icmpchksum = 0;
 | |
| 		ICMPBUF->icmpchksum = ~uip_icmp6chksum();
 | |
| 
 | |
| 		UIP_STAT( ++uip_stat.icmp.sent );
 | |
| 		goto send;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		DEBUG_PRINTF( "Unknown icmp6 message type %d\n", ICMPBUF->type );
 | |
| 		UIP_STAT( ++uip_stat.icmp.drop );
 | |
| 		UIP_STAT( ++uip_stat.icmp.typeerr );
 | |
| 		UIP_LOG( "icmp: unknown ICMP message." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	/* End of IPv6 ICMP processing. */
 | |
| 	#endif /* !UIP_CONF_IPV6 */
 | |
| 
 | |
| 	#if UIP_UDP
 | |
| 
 | |
| 	/* UDP input processing. */
 | |
| 	udp_input :
 | |
| 	/* UDP processing is really just a hack. We don't do anything to the
 | |
|      UDP/IP headers, but let the UDP application do all the hard
 | |
|      work. If the application sets uip_slen, it has a packet to
 | |
|      send. */
 | |
| 		#if UIP_UDP_CHECKSUMS
 | |
| 	uip_len = uip_len - UIP_IPUDPH_LEN;
 | |
| 	uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
 | |
| 	if( UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff )
 | |
| 	{
 | |
| 		UIP_STAT( ++uip_stat.udp.drop );
 | |
| 		UIP_STAT( ++uip_stat.udp.chkerr );
 | |
| 		UIP_LOG( "udp: bad checksum." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 		#else /* UIP_UDP_CHECKSUMS */
 | |
| 	uip_len = uip_len - UIP_IPUDPH_LEN;
 | |
| 		#endif /* UIP_UDP_CHECKSUMS */
 | |
| 
 | |
| 	/* Demultiplex this UDP packet between the UDP "connections". */
 | |
| 	for( uip_udp_conn = &uip_udp_conns[0]; uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS]; ++uip_udp_conn )
 | |
| 	{
 | |
| 		/* If the local UDP port is non-zero, the connection is considered
 | |
|        to be used. If so, the local port number is checked against the
 | |
|        destination port number in the received packet. If the two port
 | |
|        numbers match, the remote port number is checked if the
 | |
|        connection is bound to a remote port. Finally, if the
 | |
|        connection is bound to a remote IP address, the source IP
 | |
|        address of the packet is checked. */
 | |
| 		if
 | |
| 		(
 | |
| 			uip_udp_conn->lport != 0 &&
 | |
| 			UDPBUF->destport == uip_udp_conn->lport &&
 | |
| 			(uip_udp_conn->rport == 0 || UDPBUF->srcport == uip_udp_conn->rport) &&
 | |
| 			(
 | |
| 				uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_zeroes_addr) ||
 | |
| 				uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_ones_addr) ||
 | |
| 				uip_ipaddr_cmp(BUF->srcipaddr, uip_udp_conn->ripaddr)
 | |
| 			)
 | |
| 		)
 | |
| 		{
 | |
| 			goto udp_found;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	UIP_LOG( "udp: no matching connection found" );
 | |
| 	goto drop;
 | |
| 
 | |
| udp_found:
 | |
| 	UIP_STAT( ++uip_stat.udp.recv );
 | |
| 	uip_conn = NULL;
 | |
| 	uip_flags = UIP_NEWDATA;
 | |
| 	uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
 | |
| 	uip_slen = 0;
 | |
| 	UIP_UDP_APPCALL();
 | |
| udp_send:
 | |
| 	if( uip_slen == 0 )
 | |
| 	{
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	uip_len = uip_slen + UIP_IPUDPH_LEN;
 | |
| 
 | |
| 		#if UIP_CONF_IPV6
 | |
| 
 | |
| 	/* For IPv6, the IP length field does not include the IPv6 IP header
 | |
|      length. */
 | |
| 	BUF->len[0] = ( (uip_len - UIP_IPH_LEN) >> 8 );
 | |
| 	BUF->len[1] = ( (uip_len - UIP_IPH_LEN) & 0xff );
 | |
| 		#else /* UIP_CONF_IPV6 */
 | |
| 	BUF->len[0] = ( uip_len >> 8 );
 | |
| 	BUF->len[1] = ( uip_len & 0xff );
 | |
| 		#endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 	BUF->ttl = uip_udp_conn->ttl;
 | |
| 	BUF->proto = UIP_PROTO_UDP;
 | |
| 
 | |
| 	UDPBUF->udplen = HTONS( uip_slen + UIP_UDPH_LEN );
 | |
| 	UDPBUF->udpchksum = 0;
 | |
| 
 | |
| 	BUF->srcport = uip_udp_conn->lport;
 | |
| 	BUF->destport = uip_udp_conn->rport;
 | |
| 
 | |
| 	uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
 | |
| 	uip_ipaddr_copy( BUF->destipaddr, uip_udp_conn->ripaddr );
 | |
| 
 | |
| 	uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN];
 | |
| 
 | |
| 		#if UIP_UDP_CHECKSUMS
 | |
| 
 | |
| 	/* Calculate UDP checksum. */
 | |
| 	UDPBUF->udpchksum = ~( uip_udpchksum() );
 | |
| 	if( UDPBUF->udpchksum == 0 )
 | |
| 	{
 | |
| 		UDPBUF->udpchksum = 0xffff;
 | |
| 	}
 | |
| 
 | |
| 		#endif /* UIP_UDP_CHECKSUMS */
 | |
| 	UIP_STAT( ++uip_stat.udp.sent );
 | |
| 	goto ip_send_nolen;
 | |
| 	#endif /* UIP_UDP */
 | |
| 
 | |
| 	/* TCP input processing. */
 | |
| 	tcp_input : UIP_STAT( ++uip_stat.tcp.recv );
 | |
| 
 | |
| 	/* Start of TCP input header processing code. */
 | |
| 	if( uip_tcpchksum() != 0xffff )
 | |
| 	{	/* Compute and check the TCP
 | |
| 				       checksum. */
 | |
| 		UIP_STAT( ++uip_stat.tcp.drop );
 | |
| 		UIP_STAT( ++uip_stat.tcp.chkerr );
 | |
| 		UIP_LOG( "tcp: bad checksum." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	/* Demultiplex this segment. */
 | |
| 
 | |
| 	/* First check any active connections. */
 | |
| 	for( uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1]; ++uip_connr )
 | |
| 	{
 | |
| 		if
 | |
| 		(
 | |
| 			uip_connr->tcpstateflags != UIP_CLOSED &&
 | |
| 			BUF->destport == uip_connr->lport &&
 | |
| 			BUF->srcport == uip_connr->rport &&
 | |
| 			uip_ipaddr_cmp(BUF->srcipaddr, uip_connr->ripaddr)
 | |
| 		)
 | |
| 		{
 | |
| 			goto found;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If we didn't find and active connection that expected the packet,
 | |
|      either this packet is an old duplicate, or this is a SYN packet
 | |
|      destined for a connection in LISTEN. If the SYN flag isn't set,
 | |
|      it is an old packet and we send a RST. */
 | |
| 	if( (BUF->flags & TCP_CTL) != TCP_SYN )
 | |
| 	{
 | |
| 		goto reset;
 | |
| 	}
 | |
| 
 | |
| 	tmp16 = BUF->destport;
 | |
| 
 | |
| 	/* Next, check listening connections. */
 | |
| 	for( c = 0; c < UIP_LISTENPORTS; ++c )
 | |
| 	{
 | |
| 		if( tmp16 == uip_listenports[c] )
 | |
| 		{
 | |
| 			goto found_listen;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* No matching connection found, so we send a RST packet. */
 | |
| 	UIP_STAT( ++uip_stat.tcp.synrst );
 | |
| reset:
 | |
| 	/* We do not send resets in response to resets. */
 | |
| 	if( BUF->flags & TCP_RST )
 | |
| 	{
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	UIP_STAT( ++uip_stat.tcp.rst );
 | |
| 
 | |
| 	BUF->flags = TCP_RST | TCP_ACK;
 | |
| 	uip_len = UIP_IPTCPH_LEN;
 | |
| 	BUF->tcpoffset = 5 << 4;
 | |
| 
 | |
| 	/* Flip the seqno and ackno fields in the TCP header. */
 | |
| 	c = BUF->seqno[3];
 | |
| 	BUF->seqno[3] = BUF->ackno[3];
 | |
| 	BUF->ackno[3] = c;
 | |
| 
 | |
| 	c = BUF->seqno[2];
 | |
| 	BUF->seqno[2] = BUF->ackno[2];
 | |
| 	BUF->ackno[2] = c;
 | |
| 
 | |
| 	c = BUF->seqno[1];
 | |
| 	BUF->seqno[1] = BUF->ackno[1];
 | |
| 	BUF->ackno[1] = c;
 | |
| 
 | |
| 	c = BUF->seqno[0];
 | |
| 	BUF->seqno[0] = BUF->ackno[0];
 | |
| 	BUF->ackno[0] = c;
 | |
| 
 | |
| 	/* We also have to increase the sequence number we are
 | |
|      acknowledging. If the least significant byte overflowed, we need
 | |
|      to propagate the carry to the other bytes as well. */
 | |
| 	if( ++BUF->ackno[3] == 0 )
 | |
| 	{
 | |
| 		if( ++BUF->ackno[2] == 0 )
 | |
| 		{
 | |
| 			if( ++BUF->ackno[1] == 0 )
 | |
| 			{
 | |
| 				++BUF->ackno[0];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Swap port numbers. */
 | |
| 	tmp16 = BUF->srcport;
 | |
| 	BUF->srcport = BUF->destport;
 | |
| 	BUF->destport = tmp16;
 | |
| 
 | |
| 	/* Swap IP addresses. */
 | |
| 	uip_ipaddr_copy( BUF->destipaddr, BUF->srcipaddr );
 | |
| 	uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
 | |
| 
 | |
| 	/* And send out the RST packet! */
 | |
| 	goto tcp_send_noconn;
 | |
| 
 | |
| 	/* This label will be jumped to if we matched the incoming packet
 | |
|      with a connection in LISTEN. In that case, we should create a new
 | |
|      connection and send a SYNACK in return. */
 | |
| found_listen:
 | |
| 	/* First we check if there are any connections avaliable. Unused
 | |
|      connections are kept in the same table as used connections, but
 | |
|      unused ones have the tcpstate set to CLOSED. Also, connections in
 | |
|      TIME_WAIT are kept track of and we'll use the oldest one if no
 | |
|      CLOSED connections are found. Thanks to Eddie C. Dost for a very
 | |
|      nice algorithm for the TIME_WAIT search. */
 | |
| 	uip_connr = 0;
 | |
| 	for( c = 0; c < UIP_CONNS; ++c )
 | |
| 	{
 | |
| 		if( uip_conns[c].tcpstateflags == UIP_CLOSED )
 | |
| 		{
 | |
| 			uip_connr = &uip_conns[c];
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if( uip_conns[c].tcpstateflags == UIP_TIME_WAIT )
 | |
| 		{
 | |
| 			if( uip_connr == 0 || uip_conns[c].timer > uip_connr->timer )
 | |
| 			{
 | |
| 				uip_connr = &uip_conns[c];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if( uip_connr == 0 )
 | |
| 	{
 | |
| 		/* All connections are used already, we drop packet and hope that
 | |
|        the remote end will retransmit the packet at a time when we
 | |
|        have more spare connections. */
 | |
| 		UIP_STAT( ++uip_stat.tcp.syndrop );
 | |
| 		UIP_LOG( "tcp: found no unused connections." );
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	uip_conn = uip_connr;
 | |
| 
 | |
| 	/* Fill in the necessary fields for the new connection. */
 | |
| 	uip_connr->rto = uip_connr->timer = UIP_RTO;
 | |
| 	uip_connr->sa = 0;
 | |
| 	uip_connr->sv = 4;
 | |
| 	uip_connr->nrtx = 0;
 | |
| 	uip_connr->lport = BUF->destport;
 | |
| 	uip_connr->rport = BUF->srcport;
 | |
| 	uip_ipaddr_copy( uip_connr->ripaddr, BUF->srcipaddr );
 | |
| 	uip_connr->tcpstateflags = UIP_SYN_RCVD;
 | |
| 
 | |
| 	uip_connr->snd_nxt[0] = iss[0];
 | |
| 	uip_connr->snd_nxt[1] = iss[1];
 | |
| 	uip_connr->snd_nxt[2] = iss[2];
 | |
| 	uip_connr->snd_nxt[3] = iss[3];
 | |
| 	uip_connr->len = 1;
 | |
| 
 | |
| 	/* rcv_nxt should be the seqno from the incoming packet + 1. */
 | |
| 	uip_connr->rcv_nxt[3] = BUF->seqno[3];
 | |
| 	uip_connr->rcv_nxt[2] = BUF->seqno[2];
 | |
| 	uip_connr->rcv_nxt[1] = BUF->seqno[1];
 | |
| 	uip_connr->rcv_nxt[0] = BUF->seqno[0];
 | |
| 	uip_add_rcv_nxt( 1 );
 | |
| 
 | |
| 	/* Parse the TCP MSS option, if present. */
 | |
| 	if( (BUF->tcpoffset & 0xf0) > 0x50 )
 | |
| 	{
 | |
| 		for( c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2; )
 | |
| 		{
 | |
| 			opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c];
 | |
| 			if( opt == TCP_OPT_END )
 | |
| 			{
 | |
| 				/* End of options. */
 | |
| 				break;
 | |
| 			}
 | |
| 			else if( opt == TCP_OPT_NOOP )
 | |
| 			{
 | |
| 				++c;
 | |
| 
 | |
| 				/* NOP option. */
 | |
| 			}
 | |
| 			else if( opt == TCP_OPT_MSS && uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN )
 | |
| 			{
 | |
| 				/* An MSS option with the right option length. */
 | |
| 				tmp16 = ( (u16_t) uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8 ) | ( u16_t ) uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c];
 | |
| 				uip_connr->initialmss = uip_connr->mss = tmp16 > UIP_TCP_MSS ? UIP_TCP_MSS : tmp16;
 | |
| 
 | |
| 				/* And we are done processing options. */
 | |
| 				break;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				/* All other options have a length field, so that we easily
 | |
| 	   can skip past them. */
 | |
| 				if( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0 )
 | |
| 				{
 | |
| 					/* If the length field is zero, the options are malformed
 | |
| 	     and we don't process them further. */
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Our response will be a SYNACK. */
 | |
| 	#if UIP_ACTIVE_OPEN
 | |
| 	tcp_send_synack : BUF->flags = TCP_ACK;
 | |
| 
 | |
| tcp_send_syn:
 | |
| 	BUF->flags |= TCP_SYN;
 | |
| 	#else /* UIP_ACTIVE_OPEN */
 | |
| 	tcp_send_synack : BUF->flags = TCP_SYN | TCP_ACK;
 | |
| 	#endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| 	/* We send out the TCP Maximum Segment Size option with our
 | |
|      SYNACK. */
 | |
| 	BUF->optdata[0] = TCP_OPT_MSS;
 | |
| 	BUF->optdata[1] = TCP_OPT_MSS_LEN;
 | |
| 	BUF->optdata[2] = ( UIP_TCP_MSS ) / 256;
 | |
| 	BUF->optdata[3] = ( UIP_TCP_MSS ) & 255;
 | |
| 	uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN;
 | |
| 	BUF->tcpoffset = ( (UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4 ) << 4;
 | |
| 	goto tcp_send;
 | |
| 
 | |
| 	/* This label will be jumped to if we found an active connection. */
 | |
| found:
 | |
| 	uip_conn = uip_connr;
 | |
| 	uip_flags = 0;
 | |
| 
 | |
| 	/* We do a very naive form of TCP reset processing; we just accept
 | |
|      any RST and kill our connection. We should in fact check if the
 | |
|      sequence number of this reset is wihtin our advertised window
 | |
|      before we accept the reset. */
 | |
| 	if( BUF->flags & TCP_RST )
 | |
| 	{
 | |
| 		uip_connr->tcpstateflags = UIP_CLOSED;
 | |
| 		UIP_LOG( "tcp: got reset, aborting connection." );
 | |
| 		uip_flags = UIP_ABORT;
 | |
| 		UIP_APPCALL();
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculated the length of the data, if the application has sent
 | |
|      any data to us. */
 | |
| 	c = ( BUF->tcpoffset >> 4 ) << 2;
 | |
| 
 | |
| 	/* uip_len will contain the length of the actual TCP data. This is
 | |
|      calculated by subtracing the length of the TCP header (in
 | |
|      c) and the length of the IP header (20 bytes). */
 | |
| 	uip_len = uip_len - c - UIP_IPH_LEN;
 | |
| 
 | |
| 	/* First, check if the sequence number of the incoming packet is
 | |
|      what we're expecting next. If not, we send out an ACK with the
 | |
|      correct numbers in. */
 | |
| 	if( !(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) && ((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK))) )
 | |
| 	{
 | |
| 		if
 | |
| 		(
 | |
| 			(uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) &&
 | |
| 			(
 | |
| 				BUF->seqno[0] != uip_connr->rcv_nxt[0] ||
 | |
| 				BUF->seqno[1] != uip_connr->rcv_nxt[1] ||
 | |
| 				BUF->seqno[2] != uip_connr->rcv_nxt[2] ||
 | |
| 				BUF->seqno[3] != uip_connr->rcv_nxt[3]
 | |
| 			)
 | |
| 		)
 | |
| 		{
 | |
| 			goto tcp_send_ack;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Next, check if the incoming segment acknowledges any outstanding
 | |
|      data. If so, we update the sequence number, reset the length of
 | |
|      the outstanding data, calculate RTT estimations, and reset the
 | |
|      retransmission timer. */
 | |
| 	if( (BUF->flags & TCP_ACK) && uip_outstanding(uip_connr) )
 | |
| 	{
 | |
| 		uip_add32( uip_connr->snd_nxt, uip_connr->len );
 | |
| 
 | |
| 		if
 | |
| 		(
 | |
| 			BUF->ackno[0] == uip_acc32[0] &&
 | |
| 			BUF->ackno[1] == uip_acc32[1] &&
 | |
| 			BUF->ackno[2] == uip_acc32[2] &&
 | |
| 			BUF->ackno[3] == uip_acc32[3]
 | |
| 		)
 | |
| 		{
 | |
| 			/* Update sequence number. */
 | |
| 			uip_connr->snd_nxt[0] = uip_acc32[0];
 | |
| 			uip_connr->snd_nxt[1] = uip_acc32[1];
 | |
| 			uip_connr->snd_nxt[2] = uip_acc32[2];
 | |
| 			uip_connr->snd_nxt[3] = uip_acc32[3];
 | |
| 
 | |
| 			/* Do RTT estimation, unless we have done retransmissions. */
 | |
| 			if( uip_connr->nrtx == 0 )
 | |
| 			{
 | |
| 				signed char m;
 | |
| 				m = uip_connr->rto - uip_connr->timer;
 | |
| 
 | |
| 				/* This is taken directly from VJs original code in his paper */
 | |
| 				m = m - ( uip_connr->sa >> 3 );
 | |
| 				uip_connr->sa += m;
 | |
| 				if( m < 0 )
 | |
| 				{
 | |
| 					m = -m;
 | |
| 				}
 | |
| 
 | |
| 				m = m - ( uip_connr->sv >> 2 );
 | |
| 				uip_connr->sv += m;
 | |
| 				uip_connr->rto = ( uip_connr->sa >> 3 ) + uip_connr->sv;
 | |
| 			}
 | |
| 
 | |
| 			/* Set the acknowledged flag. */
 | |
| 			uip_flags = UIP_ACKDATA;
 | |
| 
 | |
| 			/* Reset the retransmission timer. */
 | |
| 			uip_connr->timer = uip_connr->rto;
 | |
| 
 | |
| 			/* Reset length of outstanding data. */
 | |
| 			uip_connr->len = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Do different things depending on in what state the connection is. */
 | |
| 	switch( uip_connr->tcpstateflags & UIP_TS_MASK )
 | |
| 	{
 | |
| 		/* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not
 | |
| 	implemented, since we force the application to close when the
 | |
| 	peer sends a FIN (hence the application goes directly from
 | |
| 	ESTABLISHED to LAST_ACK). */
 | |
| 		case UIP_SYN_RCVD:
 | |
| 			/* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and
 | |
|        we are waiting for an ACK that acknowledges the data we sent
 | |
|        out the last time. Therefore, we want to have the UIP_ACKDATA
 | |
|        flag set. If so, we enter the ESTABLISHED state. */
 | |
| 			if( uip_flags & UIP_ACKDATA )
 | |
| 			{
 | |
| 				uip_connr->tcpstateflags = UIP_ESTABLISHED;
 | |
| 				uip_flags = UIP_CONNECTED;
 | |
| 				uip_connr->len = 0;
 | |
| 				if( uip_len > 0 )
 | |
| 				{
 | |
| 					uip_flags |= UIP_NEWDATA;
 | |
| 					uip_add_rcv_nxt( uip_len );
 | |
| 				}
 | |
| 
 | |
| 				uip_slen = 0;
 | |
| 				UIP_APPCALL();
 | |
| 				goto appsend;
 | |
| 			}
 | |
| 
 | |
| 			goto drop;
 | |
| 			#if UIP_ACTIVE_OPEN
 | |
| 
 | |
| 		case UIP_SYN_SENT:
 | |
| 			/* In SYN_SENT, we wait for a SYNACK that is sent in response to
 | |
|        our SYN. The rcv_nxt is set to sequence number in the SYNACK
 | |
|        plus one, and we send an ACK. We move into the ESTABLISHED
 | |
|        state. */
 | |
| 			if( (uip_flags & UIP_ACKDATA) && (BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK) )
 | |
| 			{
 | |
| 				/* Parse the TCP MSS option, if present. */
 | |
| 				if( (BUF->tcpoffset & 0xf0) > 0x50 )
 | |
| 				{
 | |
| 					for( c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2; )
 | |
| 					{
 | |
| 						opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c];
 | |
| 						if( opt == TCP_OPT_END )
 | |
| 						{
 | |
| 							/* End of options. */
 | |
| 							break;
 | |
| 						}
 | |
| 						else if( opt == TCP_OPT_NOOP )
 | |
| 						{
 | |
| 							++c;
 | |
| 
 | |
| 							/* NOP option. */
 | |
| 						}
 | |
| 						else if( opt == TCP_OPT_MSS && uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN )
 | |
| 						{
 | |
| 							/* An MSS option with the right option length. */
 | |
| 							tmp16 = ( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8 ) | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c];
 | |
| 							uip_connr->initialmss = uip_connr->mss = tmp16 > UIP_TCP_MSS ? UIP_TCP_MSS : tmp16;
 | |
| 
 | |
| 							/* And we are done processing options. */
 | |
| 							break;
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
| 							/* All other options have a length field, so that we easily
 | |
| 	       can skip past them. */
 | |
| 							if( uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0 )
 | |
| 							{
 | |
| 								/* If the length field is zero, the options are malformed
 | |
| 		 and we don't process them further. */
 | |
| 								break;
 | |
| 							}
 | |
| 
 | |
| 							c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				uip_connr->tcpstateflags = UIP_ESTABLISHED;
 | |
| 				uip_connr->rcv_nxt[0] = BUF->seqno[0];
 | |
| 				uip_connr->rcv_nxt[1] = BUF->seqno[1];
 | |
| 				uip_connr->rcv_nxt[2] = BUF->seqno[2];
 | |
| 				uip_connr->rcv_nxt[3] = BUF->seqno[3];
 | |
| 				uip_add_rcv_nxt( 1 );
 | |
| 				uip_flags = UIP_CONNECTED | UIP_NEWDATA;
 | |
| 				uip_connr->len = 0;
 | |
| 				uip_len = 0;
 | |
| 				uip_slen = 0;
 | |
| 				UIP_APPCALL();
 | |
| 				goto appsend;
 | |
| 			}
 | |
| 
 | |
| 			/* Inform the application that the connection failed */
 | |
| 			uip_flags = UIP_ABORT;
 | |
| 			UIP_APPCALL();
 | |
| 
 | |
| 			/* The connection is closed after we send the RST */
 | |
| 			uip_conn->tcpstateflags = UIP_CLOSED;
 | |
| 			goto reset;
 | |
| 			#endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| 		case UIP_ESTABLISHED:
 | |
| 			/* In the ESTABLISHED state, we call upon the application to feed
 | |
|     data into the uip_buf. If the UIP_ACKDATA flag is set, the
 | |
|     application should put new data into the buffer, otherwise we are
 | |
|     retransmitting an old segment, and the application should put that
 | |
|     data into the buffer.
 | |
| 
 | |
|     If the incoming packet is a FIN, we should close the connection on
 | |
|     this side as well, and we send out a FIN and enter the LAST_ACK
 | |
|     state. We require that there is no outstanding data; otherwise the
 | |
|     sequence numbers will be screwed up. */
 | |
| 			if( BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED) )
 | |
| 			{
 | |
| 				if( uip_outstanding(uip_connr) )
 | |
| 				{
 | |
| 					goto drop;
 | |
| 				}
 | |
| 
 | |
| 				uip_add_rcv_nxt( 1 + uip_len );
 | |
| 				uip_flags |= UIP_CLOSE;
 | |
| 				if( uip_len > 0 )
 | |
| 				{
 | |
| 					uip_flags |= UIP_NEWDATA;
 | |
| 				}
 | |
| 
 | |
| 				UIP_APPCALL();
 | |
| 				uip_connr->len = 1;
 | |
| 				uip_connr->tcpstateflags = UIP_LAST_ACK;
 | |
| 				uip_connr->nrtx = 0;
 | |
| 	tcp_send_finack:
 | |
| 				BUF->flags = TCP_FIN | TCP_ACK;
 | |
| 				goto tcp_send_nodata;
 | |
| 			}
 | |
| 
 | |
| 			/* Check the URG flag. If this is set, the segment carries urgent
 | |
|        data that we must pass to the application. */
 | |
| 			if( (BUF->flags & TCP_URG) != 0 )
 | |
| 			{
 | |
| 				#if UIP_URGDATA > 0
 | |
| 				uip_urglen = ( BUF->urgp[0] << 8 ) | BUF->urgp[1];
 | |
| 				if( uip_urglen > uip_len )
 | |
| 				{
 | |
| 					/* There is more urgent data in the next segment to come. */
 | |
| 					uip_urglen = uip_len;
 | |
| 				}
 | |
| 
 | |
| 				uip_add_rcv_nxt( uip_urglen );
 | |
| 				uip_len -= uip_urglen;
 | |
| 				uip_urgdata = uip_appdata;
 | |
| 				uip_appdata += uip_urglen;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				uip_urglen = 0;
 | |
| 				#else /* UIP_URGDATA > 0 */
 | |
| 				uip_appdata = ( ( char * ) uip_appdata ) + ( (BUF->urgp[0] << 8) | BUF->urgp[1] );
 | |
| 				uip_len -= ( BUF->urgp[0] << 8 ) | BUF->urgp[1];
 | |
| 				#endif /* UIP_URGDATA > 0 */
 | |
| 			}
 | |
| 
 | |
| 			/* If uip_len > 0 we have TCP data in the packet, and we flag this
 | |
|        by setting the UIP_NEWDATA flag and update the sequence number
 | |
|        we acknowledge. If the application has stopped the dataflow
 | |
|        using uip_stop(), we must not accept any data packets from the
 | |
|        remote host. */
 | |
| 			if( uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED) )
 | |
| 			{
 | |
| 				uip_flags |= UIP_NEWDATA;
 | |
| 				uip_add_rcv_nxt( uip_len );
 | |
| 			}
 | |
| 
 | |
| 			/* Check if the available buffer space advertised by the other end
 | |
|        is smaller than the initial MSS for this connection. If so, we
 | |
|        set the current MSS to the window size to ensure that the
 | |
|        application does not send more data than the other end can
 | |
|        handle.
 | |
| 
 | |
|        If the remote host advertises a zero window, we set the MSS to
 | |
|        the initial MSS so that the application will send an entire MSS
 | |
|        of data. This data will not be acknowledged by the receiver,
 | |
|        and the application will retransmit it. This is called the
 | |
|        "persistent timer" and uses the retransmission mechanim.
 | |
|     */
 | |
| 			tmp16 = ( (u16_t) BUF->wnd[0] << 8 ) + ( u16_t ) BUF->wnd[1];
 | |
| 			if( tmp16 > (uip_connr->initialmss * FRAME_MULTIPLE) || tmp16 == 0 )
 | |
| 			{
 | |
| 				tmp16 = uip_connr->initialmss * FRAME_MULTIPLE;
 | |
| 			}
 | |
| 
 | |
| 			uip_connr->mss = tmp16;
 | |
| 
 | |
| 			/* If this packet constitutes an ACK for outstanding data (flagged
 | |
|        by the UIP_ACKDATA flag, we should call the application since it
 | |
|        might want to send more data. If the incoming packet had data
 | |
|        from the peer (as flagged by the UIP_NEWDATA flag), the
 | |
|        application must also be notified.
 | |
| 
 | |
|        When the application is called, the global variable uip_len
 | |
|        contains the length of the incoming data. The application can
 | |
|        access the incoming data through the global pointer
 | |
|        uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN
 | |
|        bytes into the uip_buf array.
 | |
| 
 | |
|        If the application wishes to send any data, this data should be
 | |
|        put into the uip_appdata and the length of the data should be
 | |
|        put into uip_len. If the application don't have any data to
 | |
|        send, uip_len must be set to 0. */
 | |
| 			if( uip_flags & (UIP_NEWDATA | UIP_ACKDATA) )
 | |
| 			{
 | |
| 				uip_slen = 0;
 | |
| 				UIP_APPCALL();
 | |
| 
 | |
| 	appsend:
 | |
| 				if( uip_flags & UIP_ABORT )
 | |
| 				{
 | |
| 					uip_slen = 0;
 | |
| 					uip_connr->tcpstateflags = UIP_CLOSED;
 | |
| 					BUF->flags = TCP_RST | TCP_ACK;
 | |
| 					goto tcp_send_nodata;
 | |
| 				}
 | |
| 
 | |
| 				if( uip_flags & UIP_CLOSE )
 | |
| 				{
 | |
| 					uip_slen = 0;
 | |
| 					uip_connr->len = 1;
 | |
| 					uip_connr->tcpstateflags = UIP_FIN_WAIT_1;
 | |
| 					uip_connr->nrtx = 0;
 | |
| 					BUF->flags = TCP_FIN | TCP_ACK;
 | |
| 					goto tcp_send_nodata;
 | |
| 				}
 | |
| 
 | |
| 				/* If uip_slen > 0, the application has data to be sent. */
 | |
| 				if( uip_slen > 0 )
 | |
| 				{
 | |
| 					/* If the connection has acknowledged data, the contents of
 | |
| 	   the ->len variable should be discarded. */
 | |
| 					if( (uip_flags & UIP_ACKDATA) != 0 )
 | |
| 					{
 | |
| 						uip_connr->len = 0;
 | |
| 					}
 | |
| 
 | |
| 					/* If the ->len variable is non-zero the connection has
 | |
| 	   already data in transit and cannot send anymore right
 | |
| 	   now. */
 | |
| 					if( uip_connr->len == 0 )
 | |
| 					{
 | |
| 						/* The application cannot send more than what is allowed by
 | |
| 	     the mss (the minumum of the MSS and the available
 | |
| 	     window). */
 | |
| 						if( uip_slen > uip_connr->mss )
 | |
| 						{
 | |
| 							uip_slen = uip_connr->mss;
 | |
| 						}
 | |
| 
 | |
| 						/* Remember how much data we send out now so that we know
 | |
| 	     when everything has been acknowledged. */
 | |
| 						uip_connr->len = uip_slen;
 | |
| 					}
 | |
| 					else
 | |
| 					{
 | |
| 						/* If the application already had unacknowledged data, we
 | |
| 	     make sure that the application does not send (i.e.,
 | |
| 	     retransmit) out more than it previously sent out. */
 | |
| 						uip_slen = uip_connr->len;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				uip_connr->nrtx = 0;
 | |
| 	apprexmit:
 | |
| 				uip_appdata = uip_sappdata;
 | |
| 
 | |
| 				/* If the application has data to be sent, or if the incoming
 | |
|          packet had new data in it, we must send out a packet. */
 | |
| 				if( uip_slen > 0 && uip_connr->len > 0 )
 | |
| 				{
 | |
| 					/* Add the length of the IP and TCP headers. */
 | |
| 					uip_len = uip_connr->len + UIP_TCPIP_HLEN;
 | |
| 
 | |
| 					/* We always set the ACK flag in response packets. */
 | |
| 					BUF->flags = TCP_ACK | TCP_PSH;
 | |
| 
 | |
| 					/* Send the packet. */
 | |
| 					goto tcp_send_noopts;
 | |
| 				}
 | |
| 
 | |
| 				/* If there is no data to send, just send out a pure ACK if
 | |
| 	 there is newdata. */
 | |
| 				if( uip_flags & UIP_NEWDATA )
 | |
| 				{
 | |
| 					uip_len = UIP_TCPIP_HLEN;
 | |
| 					BUF->flags = TCP_ACK;
 | |
| 					goto tcp_send_noopts;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			goto drop;
 | |
| 
 | |
| 		case UIP_LAST_ACK:
 | |
| 			/* We can close this connection if the peer has acknowledged our
 | |
|        FIN. This is indicated by the UIP_ACKDATA flag. */
 | |
| 			if( uip_flags & UIP_ACKDATA )
 | |
| 			{
 | |
| 				uip_connr->tcpstateflags = UIP_CLOSED;
 | |
| 				uip_flags = UIP_CLOSE;
 | |
| 				UIP_APPCALL();
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case UIP_FIN_WAIT_1:
 | |
| 			/* The application has closed the connection, but the remote host
 | |
|        hasn't closed its end yet. Thus we do nothing but wait for a
 | |
|        FIN from the other side. */
 | |
| 			if( uip_len > 0 )
 | |
| 			{
 | |
| 				uip_add_rcv_nxt( uip_len );
 | |
| 			}
 | |
| 
 | |
| 			if( BUF->flags & TCP_FIN )
 | |
| 			{
 | |
| 				if( uip_flags & UIP_ACKDATA )
 | |
| 				{
 | |
| 					uip_connr->tcpstateflags = UIP_TIME_WAIT;
 | |
| 					uip_connr->timer = 0;
 | |
| 					uip_connr->len = 0;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					uip_connr->tcpstateflags = UIP_CLOSING;
 | |
| 				}
 | |
| 
 | |
| 				uip_add_rcv_nxt( 1 );
 | |
| 				uip_flags = UIP_CLOSE;
 | |
| 				UIP_APPCALL();
 | |
| 				goto tcp_send_ack;
 | |
| 			}
 | |
| 			else if( uip_flags & UIP_ACKDATA )
 | |
| 			{
 | |
| 				uip_connr->tcpstateflags = UIP_FIN_WAIT_2;
 | |
| 				uip_connr->len = 0;
 | |
| 				goto drop;
 | |
| 			}
 | |
| 
 | |
| 			if( uip_len > 0 )
 | |
| 			{
 | |
| 				goto tcp_send_ack;
 | |
| 			}
 | |
| 
 | |
| 			goto drop;
 | |
| 
 | |
| 		case UIP_FIN_WAIT_2:
 | |
| 			if( uip_len > 0 )
 | |
| 			{
 | |
| 				uip_add_rcv_nxt( uip_len );
 | |
| 			}
 | |
| 
 | |
| 			if( BUF->flags & TCP_FIN )
 | |
| 			{
 | |
| 				uip_connr->tcpstateflags = UIP_TIME_WAIT;
 | |
| 				uip_connr->timer = 0;
 | |
| 				uip_add_rcv_nxt( 1 );
 | |
| 				uip_flags = UIP_CLOSE;
 | |
| 				UIP_APPCALL();
 | |
| 				goto tcp_send_ack;
 | |
| 			}
 | |
| 
 | |
| 			if( uip_len > 0 )
 | |
| 			{
 | |
| 				goto tcp_send_ack;
 | |
| 			}
 | |
| 
 | |
| 			goto drop;
 | |
| 
 | |
| 		case UIP_TIME_WAIT:
 | |
| 			goto tcp_send_ack;
 | |
| 
 | |
| 		case UIP_CLOSING:
 | |
| 			if( uip_flags & UIP_ACKDATA )
 | |
| 			{
 | |
| 				uip_connr->tcpstateflags = UIP_TIME_WAIT;
 | |
| 				uip_connr->timer = 0;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	goto drop;
 | |
| 
 | |
| 	/* We jump here when we are ready to send the packet, and just want
 | |
|      to set the appropriate TCP sequence numbers in the TCP header. */
 | |
| tcp_send_ack:
 | |
| 	BUF->flags = TCP_ACK;
 | |
| tcp_send_nodata:
 | |
| 	uip_len = UIP_IPTCPH_LEN;
 | |
| tcp_send_noopts:
 | |
| 	BUF->tcpoffset = ( UIP_TCPH_LEN / 4 ) << 4;
 | |
| tcp_send:
 | |
| 	/* We're done with the input processing. We are now ready to send a
 | |
|      reply. Our job is to fill in all the fields of the TCP and IP
 | |
|      headers before calculating the checksum and finally send the
 | |
|      packet. */
 | |
| 	BUF->ackno[0] = uip_connr->rcv_nxt[0];
 | |
| 	BUF->ackno[1] = uip_connr->rcv_nxt[1];
 | |
| 	BUF->ackno[2] = uip_connr->rcv_nxt[2];
 | |
| 	BUF->ackno[3] = uip_connr->rcv_nxt[3];
 | |
| 
 | |
| 	BUF->seqno[0] = uip_connr->snd_nxt[0];
 | |
| 	BUF->seqno[1] = uip_connr->snd_nxt[1];
 | |
| 	BUF->seqno[2] = uip_connr->snd_nxt[2];
 | |
| 	BUF->seqno[3] = uip_connr->snd_nxt[3];
 | |
| 
 | |
| 	BUF->proto = UIP_PROTO_TCP;
 | |
| 
 | |
| 	BUF->srcport = uip_connr->lport;
 | |
| 	BUF->destport = uip_connr->rport;
 | |
| 
 | |
| 	uip_ipaddr_copy( BUF->srcipaddr, uip_hostaddr );
 | |
| 	uip_ipaddr_copy( BUF->destipaddr, uip_connr->ripaddr );
 | |
| 
 | |
| 	if( uip_connr->tcpstateflags & UIP_STOPPED )
 | |
| 	{
 | |
| 		/* If the connection has issued uip_stop(), we advertise a zero
 | |
|        window so that the remote host will stop sending data. */
 | |
| 		BUF->wnd[0] = BUF->wnd[1] = 0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		BUF->wnd[0] = ( (UIP_RECEIVE_WINDOW) >> 8 );
 | |
| 		BUF->wnd[1] = ( (UIP_RECEIVE_WINDOW) & 0xff );
 | |
| 	}
 | |
| 
 | |
| tcp_send_noconn:
 | |
| 	BUF->ttl = UIP_TTL;
 | |
| 	#if UIP_CONF_IPV6
 | |
| 
 | |
| 	/* For IPv6, the IP length field does not include the IPv6 IP header
 | |
|      length. */
 | |
| 	BUF->len[0] = ( (uip_len - UIP_IPH_LEN) >> 8 );
 | |
| 	BUF->len[1] = ( (uip_len - UIP_IPH_LEN) & 0xff );
 | |
| 	#else /* UIP_CONF_IPV6 */
 | |
| 	BUF->len[0] = ( uip_len >> 8 );
 | |
| 	BUF->len[1] = ( uip_len & 0xff );
 | |
| 	#endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 	BUF->urgp[0] = BUF->urgp[1] = 0;
 | |
| 
 | |
| 	/* Calculate TCP checksum. */
 | |
| 	BUF->tcpchksum = 0;
 | |
| 	BUF->tcpchksum = ~( uip_tcpchksum() );
 | |
| 
 | |
| 	#if UIP_UDP
 | |
| 	ip_send_nolen :
 | |
| 	#endif
 | |
| 	#if UIP_CONF_IPV6
 | |
| 	BUF->vtc = 0x60;
 | |
| 	BUF->tcflow = 0x00;
 | |
| 	BUF->flow = 0x00;
 | |
| 	#else /* UIP_CONF_IPV6 */
 | |
| 	BUF->vhl = 0x45;
 | |
| 	BUF->tos = 0;
 | |
| 	BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
 | |
| 	++ipid;
 | |
| 	BUF->ipid[0] = ipid >> 8;
 | |
| 	BUF->ipid[1] = ipid & 0xff;
 | |
| 
 | |
| 	/* Calculate IP checksum. */
 | |
| 	BUF->ipchksum = 0;
 | |
| 	BUF->ipchksum = ~( uip_ipchksum() );
 | |
| 	DEBUG_PRINTF( "uip ip_send_nolen: chkecum 0x%04x\n", uip_ipchksum() );
 | |
| 	#endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| 	UIP_STAT( ++uip_stat.tcp.sent );
 | |
| send:
 | |
| 	DEBUG_PRINTF( "Sending packet with length %d (%d)\n", uip_len, (BUF->len[0] << 8) | BUF->len[1] );
 | |
| 
 | |
| 	UIP_STAT( ++uip_stat.ip.sent );
 | |
| 
 | |
| 	/* Return and let the caller do the actual transmission. */
 | |
| 	uip_flags = 0;
 | |
| 	return;
 | |
| drop:
 | |
| 	uip_len = 0;
 | |
| 	uip_flags = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| u16_t htons( u16_t val )
 | |
| {
 | |
| 	return HTONS( val );
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void uip_send( const void *data, int len )
 | |
| {
 | |
| 	if( len > 0 )
 | |
| 	{
 | |
| 		uip_slen = len;
 | |
| 		if( data != uip_sappdata )
 | |
| 		{
 | |
| 			memcpy( uip_sappdata, (data), uip_slen );
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| int uip_fast_send( int xARP )
 | |
| {
 | |
| 	( void ) xARP;
 | |
| 	#if NOT_YET_COMPLETE
 | |
| 
 | |
| 	u16_t		tcplen, len1 = 0, uiAccumulatedLen = 0, len_previous = 0, split_len;
 | |
| 	int			iSplitNo = 0;
 | |
| 	extern int	uip_low_level_output( unsigned char *pcBuf, int ilen );
 | |
| 
 | |
| 	if( xARP == pdTRUE )
 | |
| 	{
 | |
| 		if( BUF->proto == UIP_PROTO_TCP && uip_slen > 1 )
 | |
| 		{
 | |
| 			tcplen = uip_len - UIP_TCPIP_HLEN;
 | |
| 
 | |
| 			if( tcplen > UIP_TCP_MSS )
 | |
| 			{
 | |
| 				split_len = UIP_TCP_MSS;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				split_len = tcplen / 2;
 | |
| 			}
 | |
| 
 | |
| 			while( tcplen > 0 )
 | |
| 			{
 | |
| 				uiAccumulatedLen += len1;
 | |
| 
 | |
| 				if( tcplen > split_len )
 | |
| 				{
 | |
| 					len1 = split_len;
 | |
| 					tcplen -= split_len;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					len1 = tcplen;
 | |
| 					tcplen = 0;
 | |
| 				}
 | |
| 
 | |
| 				uip_len = len1 + UIP_TCPIP_HLEN;
 | |
| 				BUF->len[0] = uip_len >> 8;
 | |
| 				BUF->len[1] = uip_len & 0xff;
 | |
| 				if( iSplitNo == 0 )
 | |
| 				{
 | |
| 					iSplitNo++;
 | |
| 
 | |
| 					/* Create the first packet. This is done by altering the length
 | |
| 					field of the IP header and updating the checksums. */
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					/* Now, create the second packet. To do this, it is not enough to
 | |
| 					just alter the length field, but we must also update the TCP
 | |
| 					sequence number and point the uip_appdata to a new place in
 | |
| 					memory. This place is determined by the length of the first
 | |
| 					packet (len1). */
 | |
| 
 | |
| 					/*    uip_appdata += len1;*/
 | |
| 					memcpy( uip_appdata, ( u8_t * ) uip_appdata + uiAccumulatedLen, len1 );
 | |
| 					uip_add32( BUF->seqno, len_previous );
 | |
| 					BUF->seqno[0] = uip_acc32[0];
 | |
| 					BUF->seqno[1] = uip_acc32[1];
 | |
| 					BUF->seqno[2] = uip_acc32[2];
 | |
| 					BUF->seqno[3] = uip_acc32[3];
 | |
| 				}
 | |
| 
 | |
| 				/* Recalculate the TCP checksum. */
 | |
| 				BUF->tcpchksum = 0;
 | |
| 				BUF->tcpchksum = ~( uip_tcpchksum() );
 | |
| 
 | |
| 				/* Recalculate the IP checksum. */
 | |
| 				BUF->ipchksum = 0;
 | |
| 				BUF->ipchksum = ~( uip_ipchksum() );
 | |
| 
 | |
| 				/* Transmit the packet. */
 | |
| 				uip_arp_out();
 | |
| 				uip_low_level_output( uip_buf, uip_len );
 | |
| 
 | |
| 				len_previous = len1;
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			uip_arp_out();
 | |
| 			uip_low_level_output( uip_buf, uip_len );
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		uip_low_level_output( uip_buf, uip_len );
 | |
| 	}
 | |
| 
 | |
| 	#endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /** @} */
 |