FreeRTOS-Kernel/FreeRTOS/Demo/CORTEX_LM3S6965_GCC_QEMU/main.c
RichardBarry a9680a54cf
Fix warnings after moving callback prototypes (#208)
* Recently the prototypes for the application hook functions were
moved out of the kernel .c files and into the .h files.  That
changes results in compile time warnings for projects that provide
hook functions with a slightly different prototype - in particular
where signed char * is used in place of just char * as an older
FreeRTOS coding convention required chars to be explicitly qualified
as signed or unsigned.

This checkin fixes the warnings by ensuring the signature of
implemented hook functions matches the signature of the prototypes.
2020-08-27 00:40:47 -07:00

470 lines
16 KiB
C

/*
* FreeRTOS Kernel V10.3.1
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/*
* Creates all the demo application tasks, then starts the scheduler. The WEB
* documentation provides more details of the standard demo application tasks.
* In addition to the standard demo tasks, the following tasks and tests are
* defined and/or created within this file:
*
* "OLED" task - the OLED task is a 'gatekeeper' task. It is the only task that
* is permitted to access the display directly. Other tasks wishing to write a
* message to the OLED send the message on a queue to the OLED task instead of
* accessing the OLED themselves. The OLED task just blocks on the queue waiting
* for messages - waking and displaying the messages as they arrive.
*
* "Check" hook - This only executes every five seconds from the tick hook.
* Its main function is to check that all the standard demo tasks are still
* operational. Should any unexpected behaviour within a demo task be discovered
* the tick hook will write an error to the OLED (via the OLED task). If all the
* demo tasks are executing with their expected behaviour then the check task
* writes PASS to the OLED (again via the OLED task), as described above.
*
* Use the following command to start running the application in QEMU, pausing
* to wait for a debugger connection:
* "qemu-system-arm -machine lm3s6965evb -s -S -kernel [pat_to]\RTOSDemo.elf"
*
* To enable FreeRTOS+Trace:
* 1) Add #include "trcRecorder.h" to the bottom of FreeRTOSConfig.h.
* 2) Call vTraceEnable( TRC_START ); at the top of main.
* 3) Ensure the "FreeRTOS+Trace Recorder" folder in the Project Explorer
* window is not excluded from the build.
*
* To retrieve the trace files:
* 1) Use the Memory windows in the Debug perspective to dump RAM from the
* RecorderData variable.
*/
/*************************************************************************
* Please ensure to read http://www.freertos.org/portlm3sx965.html
* which provides information on configuring and running this demo for the
* various Luminary Micro EKs.
*************************************************************************/
/* Standard includes. */
#include <stdio.h>
#include <string.h>
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
/* Hardware library includes. */
#include "hw_memmap.h"
#include "hw_types.h"
#include "hw_sysctl.h"
#include "hw_uart.h"
#include "sysctl.h"
#include "gpio.h"
#include "grlib.h"
#include "osram128x64x4.h"
#include "uart.h"
/* Demo app includes. */
#include "death.h"
#include "blocktim.h"
#include "semtest.h"
#include "bitmap.h"
#include "QPeek.h"
#include "recmutex.h"
#include "QueueSet.h"
#include "EventGroupsDemo.h"
#include "MessageBufferDemo.h"
#include "StreamBufferDemo.h"
/*-----------------------------------------------------------*/
/* The time between cycles of the 'check' functionality (defined within the
tick hook. */
#define mainCHECK_DELAY ( ( TickType_t ) 5000 / portTICK_PERIOD_MS )
/* Task stack sizes. */
#define mainOLED_TASK_STACK_SIZE ( configMINIMAL_STACK_SIZE + 40 )
#define mainMESSAGE_BUFFER_TASKS_STACK_SIZE ( 100 )
/* Task priorities. */
#define mainCHECK_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 )
#define mainSEM_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainCREATOR_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 )
#define mainGEN_QUEUE_TASK_PRIORITY ( tskIDLE_PRIORITY )
/* The maximum number of message that can be waiting for display at any one
time. */
#define mainOLED_QUEUE_SIZE ( 3 )
/* Dimensions the buffer into which the jitter time is written. */
#define mainMAX_MSG_LEN 25
/* The period of the system clock in nano seconds. This is used to calculate
the jitter time in nano seconds. */
#define mainNS_PER_CLOCK ( ( uint32_t ) ( ( 1.0 / ( double ) configCPU_CLOCK_HZ ) * 1000000000.0 ) )
/* Constants used when writing strings to the display. */
#define mainCHARACTER_HEIGHT ( 9 )
#define mainMAX_ROWS_128 ( mainCHARACTER_HEIGHT * 14 )
#define mainMAX_ROWS_96 ( mainCHARACTER_HEIGHT * 10 )
#define mainMAX_ROWS_64 ( mainCHARACTER_HEIGHT * 7 )
#define mainFULL_SCALE ( 15 )
#define ulSSI_FREQUENCY ( 3500000UL )
/*-----------------------------------------------------------*/
/*
* The display is written two by more than one task so is controlled by a
* 'gatekeeper' task. This is the only task that is actually permitted to
* access the display directly. Other tasks wanting to display a message send
* the message to the gatekeeper.
*/
static void prvOLEDTask( void *pvParameters );
/*
* Configure the hardware for the demo.
*/
static void prvSetupHardware( void );
/*
* Configures the high frequency timers - those used to measure the timing
* jitter while the real time kernel is executing.
*/
extern void vSetupHighFrequencyTimer( void );
/*
* Hook functions that can get called by the kernel.
*/
void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName );
void vApplicationTickHook( void );
/*
* Basic polling UART write function.
*/
static void prvPrintString( const char * pcString );
/*-----------------------------------------------------------*/
/* The queue used to send messages to the OLED task. */
static QueueHandle_t xOLEDQueue;
/* The welcome text. */
const char * const pcWelcomeMessage = " www.FreeRTOS.org";
/*-----------------------------------------------------------*/
/*************************************************************************
* Please ensure to read http://www.freertos.org/portlm3sx965.html
* which provides information on configuring and running this demo for the
* various Luminary Micro EKs.
*************************************************************************/
int main( void )
{
/* Initialise the trace recorder. Use of the trace recorder is optional.
See http://www.FreeRTOS.org/trace for more information and the comments at
the top of this file regarding enabling trace in this demo.
vTraceEnable( TRC_START ); */
prvSetupHardware();
/* Create the queue used by the OLED task. Messages for display on the OLED
are received via this queue. */
xOLEDQueue = xQueueCreate( mainOLED_QUEUE_SIZE, sizeof( char * ) );
/* Start the standard demo tasks. */
vStartRecursiveMutexTasks();
vCreateBlockTimeTasks();
vStartSemaphoreTasks( mainSEM_TEST_PRIORITY );
vStartQueuePeekTasks();
vStartQueueSetTasks();
vStartEventGroupTasks();
vStartMessageBufferTasks( mainMESSAGE_BUFFER_TASKS_STACK_SIZE );
vStartStreamBufferTasks();
/* Start the tasks defined within this file/specific to this demo. */
xTaskCreate( prvOLEDTask, "OLED", mainOLED_TASK_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
/* The suicide tasks must be created last as they need to know how many
tasks were running prior to their creation in order to ascertain whether
or not the correct/expected number of tasks are running at any given time. */
vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );
/* Uncomment the following line to configure the high frequency interrupt
used to measure the interrupt jitter time.
vSetupHighFrequencyTimer(); */
/* Start the scheduler. */
vTaskStartScheduler();
/* Will only get here if there was insufficient memory to create the idle
task. */
for( ;; );
}
/*-----------------------------------------------------------*/
void prvSetupHardware( void )
{
/* If running on Rev A2 silicon, turn the LDO voltage up to 2.75V. This is
a workaround to allow the PLL to operate reliably. */
if( DEVICE_IS_REVA2 )
{
SysCtlLDOSet( SYSCTL_LDO_2_75V );
}
/* Set the clocking to run from the PLL at 50 MHz */
SysCtlClockSet( SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ );
/* Initialise the UART - QEMU usage does not seem to require this
initialisation. */
SysCtlPeripheralEnable( SYSCTL_PERIPH_UART0 );
UARTEnable( UART0_BASE );
}
/*-----------------------------------------------------------*/
void vApplicationTickHook( void )
{
static const char * pcMessage = "PASS";
static uint32_t ulTicksSinceLastDisplay = 0;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
/* Called from every tick interrupt. Have enough ticks passed to make it
time to perform our health status check again? */
ulTicksSinceLastDisplay++;
if( ulTicksSinceLastDisplay >= mainCHECK_DELAY )
{
ulTicksSinceLastDisplay = 0;
/* Has an error been found in any task? */
if( xAreStreamBufferTasksStillRunning() != pdTRUE )
{
pcMessage = "ERROR IN STRM";
}
else if( xAreMessageBufferTasksStillRunning() != pdTRUE )
{
pcMessage = "ERROR IN MSG";
}
else if( xIsCreateTaskStillRunning() != pdTRUE )
{
pcMessage = "ERROR IN CREATE";
}
else if( xAreBlockTimeTestTasksStillRunning() != pdTRUE )
{
pcMessage = "ERROR IN BLOCK TIME";
}
else if( xAreSemaphoreTasksStillRunning() != pdTRUE )
{
pcMessage = "ERROR IN SEMAPHORE";
}
else if( xAreQueuePeekTasksStillRunning() != pdTRUE )
{
pcMessage = "ERROR IN PEEK Q";
}
else if( xAreRecursiveMutexTasksStillRunning() != pdTRUE )
{
pcMessage = "ERROR IN REC MUTEX";
}
else if( xAreQueueSetTasksStillRunning() != pdPASS )
{
pcMessage = "ERROR IN Q SET";
}
else if( xAreEventGroupTasksStillRunning() != pdTRUE )
{
pcMessage = "ERROR IN EVNT GRP";
}
/* Send the message to the OLED gatekeeper for display. */
xHigherPriorityTaskWoken = pdFALSE;
xQueueSendFromISR( xOLEDQueue, &pcMessage, &xHigherPriorityTaskWoken );
}
/* Write to a queue that is in use as part of the queue set demo to
demonstrate using queue sets from an ISR. */
vQueueSetAccessQueueSetFromISR();
/* Call the event group ISR tests. */
vPeriodicEventGroupsProcessing();
/* Exercise stream buffers from interrupts. */
vPeriodicStreamBufferProcessing();
}
/*-----------------------------------------------------------*/
static void prvPrintString( const char * pcString )
{
while( *pcString != 0x00 )
{
UARTCharPut( UART0_BASE, *pcString );
pcString++;
}
}
/*-----------------------------------------------------------*/
void prvOLEDTask( void *pvParameters )
{
const char *pcMessage;
uint32_t ulY, ulMaxY;
static char cMessage[ mainMAX_MSG_LEN ];
const unsigned char *pucImage;
/* Functions to access the OLED. The one used depends on the dev kit
being used. */
void ( *vOLEDInit )( uint32_t ) = NULL;
void ( *vOLEDStringDraw )( const char *, uint32_t, uint32_t, unsigned char ) = NULL;
void ( *vOLEDImageDraw )( const unsigned char *, uint32_t, uint32_t, uint32_t, uint32_t ) = NULL;
void ( *vOLEDClear )( void ) = NULL;
/* Prevent warnings about unused parameters. */
( void ) pvParameters;
/* Map the OLED access functions to the driver functions that are appropriate
for the evaluation kit being used. */
configASSERT( ( HWREG( SYSCTL_DID1 ) & SYSCTL_DID1_PRTNO_MASK ) == SYSCTL_DID1_PRTNO_6965 );
vOLEDInit = OSRAM128x64x4Init;
vOLEDStringDraw = OSRAM128x64x4StringDraw;
vOLEDImageDraw = OSRAM128x64x4ImageDraw;
vOLEDClear = OSRAM128x64x4Clear;
ulMaxY = mainMAX_ROWS_64;
pucImage = pucBasicBitmap;
ulY = ulMaxY;
/* Initialise the OLED and display a startup message. */
vOLEDInit( ulSSI_FREQUENCY );
vOLEDStringDraw( "POWERED BY FreeRTOS", 0, 0, mainFULL_SCALE );
vOLEDImageDraw( pucImage, 0, mainCHARACTER_HEIGHT + 1, bmpBITMAP_WIDTH, bmpBITMAP_HEIGHT );
for( ;; )
{
/* Wait for a message to arrive that requires displaying. */
xQueueReceive( xOLEDQueue, &pcMessage, portMAX_DELAY );
/* Write the message on the next available row. */
ulY += mainCHARACTER_HEIGHT;
if( ulY >= ulMaxY )
{
ulY = mainCHARACTER_HEIGHT;
vOLEDClear();
vOLEDStringDraw( pcWelcomeMessage, 0, 0, mainFULL_SCALE );
}
/* Display the message along with the maximum jitter time from the
high priority time test. */
sprintf( cMessage, "%s %u", pcMessage, ( unsigned int ) xTaskGetTickCount() );
vOLEDStringDraw( cMessage, 0, ulY, mainFULL_SCALE );
prvPrintString( cMessage );
prvPrintString( "\r\n" );
}
}
/*-----------------------------------------------------------*/
volatile char *pcOverflowedTask = NULL; /* Prevent task name being optimised away. */
void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName )
{
( void ) pxTask;
pcOverflowedTask = pcTaskName;
vAssertCalled( __FILE__, __LINE__ );
for( ;; );
}
/*-----------------------------------------------------------*/
void vAssertCalled( const char *pcFile, uint32_t ulLine )
{
volatile uint32_t ulSetTo1InDebuggerToExit = 0;
taskENTER_CRITICAL();
{
while( ulSetTo1InDebuggerToExit == 0 )
{
/* Nothing to do here. Set the loop variable to a non zero value in
the debugger to step out of this function to the point that caused
the assertion. */
( void ) pcFile;
( void ) ulLine;
}
}
taskEXIT_CRITICAL();
}
/* configUSE_STATIC_ALLOCATION is set to 1, so the application must provide an
implementation of vApplicationGetIdleTaskMemory() to provide the memory that is
used by the Idle task. */
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize )
{
/* If the buffers to be provided to the Idle task are declared inside this
function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits. */
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
state will be stored. */
*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;
/* Pass out the array that will be used as the Idle task's stack. */
*ppxIdleTaskStackBuffer = uxIdleTaskStack;
/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
Note that, as the array is necessarily of type StackType_t,
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
}
/*-----------------------------------------------------------*/
/* configUSE_STATIC_ALLOCATION and configUSE_TIMERS are both set to 1, so the
application must provide an implementation of vApplicationGetTimerTaskMemory()
to provide the memory that is used by the Timer service task. */
void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize )
{
/* If the buffers to be provided to the Timer task are declared inside this
function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits. */
static StaticTask_t xTimerTaskTCB;
static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
/* Pass out a pointer to the StaticTask_t structure in which the Timer
task's state will be stored. */
*ppxTimerTaskTCBBuffer = &xTimerTaskTCB;
/* Pass out the array that will be used as the Timer task's stack. */
*ppxTimerTaskStackBuffer = uxTimerTaskStack;
/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
Note that, as the array is necessarily of type StackType_t,
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
/*-----------------------------------------------------------*/
char * _sbrk_r (struct _reent *r, int incr)
{
/* Just to keep the linker quiet. */
( void ) r;
( void ) incr;
/* Check this function is never called by forcing an assert() if it is. */
configASSERT( incr == -1 );
return NULL;
}