FreeRTOS-Kernel/FreeRTOS/Demo/PIC32MZ_MPLAB/main_full.c
Rahul Kar 121fbe295b
Fix formatting in kernel demo application files (#1148)
* Fix formatting in kernel demo application files

* Fix header check fail in the demo files

* Add ignored patterns in core header check file

* Fix formatting

* Update vApplicationStackOverflowHook for AVR_ATMega4809_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_ATMega4809_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_IAR/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_IAR/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationMallocFailedHook for AVR_Dx_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Fix formatting AVR32_UC3

---------

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>
2024-01-02 11:05:59 +05:30

419 lines
17 KiB
C

/*
* FreeRTOS V202212.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/******************************************************************************
* NOTE 1: This project provides two demo applications. A simple blinky style
* project, and a more comprehensive test and demo application. The
* mainCREATE_SIMPLE_BLINKY_DEMO_ONLY setting in main.c is used to select
* between the two. See the notes on using mainCREATE_SIMPLE_BLINKY_DEMO_ONLY
* in main.c. This file implements the comprehensive test and demo version.
*
* NOTE 2: This file only contains the source code that is specific to the
* full demo. Generic functions, such FreeRTOS hook functions, and functions
* required to configure the hardware, are defined in main.c.
******************************************************************************
*
* main_full() creates all the demo application tasks and software timers, then
* starts the scheduler. The WEB documentation provides more details of the
* standard demo application tasks. In addition to the standard demo tasks, the
* following tasks and tests are also defined:
*
* "Register test" tasks - These tasks are used in part to test the kernel port.
* They set each processor register to a known value, then check that the
* register still contains that value. Each of the tasks sets the registers
* to different values, and will get swapping in and out between setting and
* then subsequently checking the register values. Discovery of an incorrect
* value would be indicative of an error in the task switching mechanism.
*
* "ISR triggered task" - This is provided as an example of how to write a
* FreeRTOS compatible interrupt service routine. See the comments in
* ISRTriggeredTask.c.
*
* "High Frequency Timer Test" - The high frequency timer is created to test
* the interrupt nesting method. The standard demo interrupt nesting test tasks
* are created with priorities at or below configMAX_SYSCALL_INTERRUPT_PRIORITY
* because they use interrupt safe FreeRTOS API functions. The high frequency
* time is created with a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY,
* so cannot us the same API functions.
*
* By way of demonstration, the demo application defines
* configMAX_SYSCALL_INTERRUPT_PRIORITY to be 3, configKERNEL_INTERRUPT_PRIORITY
* to be 1, and all other interrupts as follows:
*
* See the online documentation for this demo for more information on interrupt
* usage.
*
* "Check" timer - The check software timer period is initially set to three
* seconds. The callback function associated with the check software timer
* checks that all the standard demo tasks, and the register check tasks, are
* not only still executing, but are executing without reporting any errors. If
* the check software timer discovers that a task has either stalled, or
* reported an error, then it changes its own execution period from the initial
* three seconds, to just 200ms. The check software timer also toggle LED
* mainCHECK_LED; If mainCHECK_LED toggles every 3 seconds, no errors have
* been detected. If mainCHECK_LED toggles every 200ms then an error has been
* detected in at least one task.
*
*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
#include "timers.h"
/* Demo application includes. */
#include "partest.h"
#include "blocktim.h"
#include "flash_timer.h"
#include "semtest.h"
#include "GenQTest.h"
#include "QPeek.h"
#include "IntQueue.h"
#include "countsem.h"
#include "dynamic.h"
#include "QueueOverwrite.h"
#include "QueueSet.h"
#include "recmutex.h"
#include "EventGroupsDemo.h"
#include "flop_mz.h"
/*-----------------------------------------------------------*/
/* The period after which the check timer will expire, in ms, provided no errors
* have been reported by any of the standard demo tasks. ms are converted to the
* equivalent in ticks using the portTICK_PERIOD_MS constant. */
#define mainCHECK_TIMER_PERIOD_MS ( 3000UL / portTICK_PERIOD_MS )
/* The period at which the check timer will expire, in ms, if an error has been
* reported in one of the standard demo tasks. ms are converted to the equivalent
* in ticks using the portTICK_PERIOD_MS constant. */
#define mainERROR_CHECK_TIMER_PERIOD_MS ( 200UL / portTICK_PERIOD_MS )
/* The priorities of the various demo application tasks. */
#define mainSEM_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainBLOCK_Q_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define mainCOM_TEST_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define mainINTEGER_TASK_PRIORITY ( tskIDLE_PRIORITY )
#define mainGEN_QUEUE_TASK_PRIORITY ( tskIDLE_PRIORITY )
#define mainQUEUE_OVERWRITE_TASK_PRIORITY ( tskIDLE_PRIORITY )
#define mainFLOP_TASK_PRIORITY ( tskIDLE_PRIORITY )
/* The LED controlled by the 'check' software timer. */
#define mainCHECK_LED ( 2 )
/* The number of LEDs that should be controlled by the flash software timer
* standard demo. In this case it is only 1 as the starter kit has three LEDs, one
* of which is controlled by the check timer and one of which is controlled by the
* ISR triggered task. */
#define mainNUM_FLASH_TIMER_LEDS ( 1 )
/* Misc. */
#define mainDONT_BLOCK ( 0 )
/* The frequency at which the "high frequency interrupt" interrupt will
* occur. */
#define mainTEST_INTERRUPT_FREQUENCY ( 20000 )
/*-----------------------------------------------------------*/
/*
* The check timer callback function, as described at the top of this file.
*/
static void prvCheckTimerCallback( TimerHandle_t xTimer );
/*
* It is important to ensure the high frequency timer test does not start before
* the kernel. It is therefore started from inside a software timer callback
* function, which will not execute until the timer service/daemon task is
* executing. A one-shot timer is used, so the callback function will only
* execute once (unless it is manually reset/restarted).
*/
static void prvSetupHighFrequencyTimerTest( TimerHandle_t xTimer );
/*
* Tasks that test the context switch mechanism by filling the processor
* registers with known values, then checking that the values contained
* within the registers is as expected. The tasks are likely to get swapped
* in and out between setting the register values and checking the register
* values.
*/
static void prvRegTestTask1( void * pvParameters );
static void prvRegTestTask2( void * pvParameters );
/*
* The task that is periodically triggered by an interrupt, as described at the
* top of this file.
*/
extern void vStartISRTriggeredTask( void );
/*-----------------------------------------------------------*/
/* Variables incremented by prvRegTestTask1() and prvRegTestTask2() respectively
* on each iteration of their function. These are used to detect errors in the
* reg test tasks. */
volatile unsigned long ulRegTest1Cycles = 0, ulRegTest2Cycles = 0;
/*-----------------------------------------------------------*/
/*
* Create the demo tasks then start the scheduler.
*/
int main_full( void )
{
TimerHandle_t xTimer = NULL;
/* Create all the other standard demo tasks. */
vStartLEDFlashTimers( mainNUM_FLASH_TIMER_LEDS );
vCreateBlockTimeTasks();
vStartSemaphoreTasks( mainSEM_TEST_PRIORITY );
vStartGenericQueueTasks( mainGEN_QUEUE_TASK_PRIORITY );
vStartQueuePeekTasks();
vStartInterruptQueueTasks();
vStartISRTriggeredTask();
vStartCountingSemaphoreTasks();
vStartDynamicPriorityTasks();
vStartQueueOverwriteTask( mainQUEUE_OVERWRITE_TASK_PRIORITY );
vStartQueueSetTasks();
vStartRecursiveMutexTasks();
vStartEventGroupTasks();
vStartMathTasks( mainFLOP_TASK_PRIORITY );
/* Create the tasks defined within this file. */
xTaskCreate( prvRegTestTask1, /* The function that implements the task. */
"Reg1", /* Text name for the task to assist debugger - not used by FreeRTOS itself. */
configMINIMAL_STACK_SIZE, /* The stack size to allocate for the task - specified in words not bytes. */
NULL, /* The parameter to pass into the task - not used in this case so set to NULL. */
tskIDLE_PRIORITY, /* The priority to assign to the task. */
NULL ); /* Used to obtain a handle to the task being created - not used in this case so set to NULL. */
xTaskCreate( prvRegTestTask2, "Reg2", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
/* Create the software timer that performs the 'check' functionality, as
* described at the top of this file. */
xTimer = xTimerCreate( "CheckTimer", /* A text name, purely to help debugging. */
( mainCHECK_TIMER_PERIOD_MS ), /* The timer period, in this case 3000ms (3s). */
pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
( void * ) 0, /* The ID is not used, so can be set to anything. */
prvCheckTimerCallback ); /* The callback function that inspects the status of all the other tasks. */
if( xTimer != NULL )
{
xTimerStart( xTimer, mainDONT_BLOCK );
}
/* A software timer is also used to start the high frequency timer test.
* This is to ensure the test does not start before the kernel. This time a
* one-shot software timer is used. */
xTimer = xTimerCreate( "HighHzTimerSetup", 1, pdFALSE, ( void * ) 0, prvSetupHighFrequencyTimerTest );
if( xTimer != NULL )
{
xTimerStart( xTimer, mainDONT_BLOCK );
}
/* Finally start the scheduler. */
vTaskStartScheduler();
/* If all is well, the scheduler will now be running, and the following line
* will never be reached. If the following line does execute, then there was
* insufficient FreeRTOS heap memory available for the idle and/or timer tasks
* to be created. See the memory management section on the FreeRTOS web site
* for more details. http://www.freertos.org/a00111.html */
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
static void prvRegTestTask1( void * pvParameters )
{
extern void vRegTest1( volatile unsigned long * );
/* Avoid compiler warnings. */
( void ) pvParameters;
/* Must be called before any hardware floating point operations are
* performed to let the RTOS portable layer know that this task requires
* a floating point context. */
portTASK_USES_FLOATING_POINT();
/* Pass the address of the RegTest1 loop counter into the test function,
* which is necessarily implemented in assembler. */
vRegTest1( &ulRegTest1Cycles );
/* vRegTest1 should never exit! */
vTaskDelete( NULL );
}
/*-----------------------------------------------------------*/
static void prvRegTestTask2( void * pvParameters )
{
extern void vRegTest2( volatile unsigned long * );
/* Avoid compiler warnings. */
( void ) pvParameters;
/* Must be called before any hardware floating point operations are
* performed to let the RTOS portable layer know that this task requires
* a floating point context. */
portTASK_USES_FLOATING_POINT();
/* Pass the address of the RegTest2 loop counter into the test function,
* which is necessarily implemented in assembler. */
vRegTest2( &ulRegTest2Cycles );
/* vRegTest1 should never exit! */
vTaskDelete( NULL );
}
/*-----------------------------------------------------------*/
static void prvCheckTimerCallback( TimerHandle_t xTimer )
{
static long lChangedTimerPeriodAlready = pdFALSE;
static unsigned long ulLastRegTest1Value = 0, ulLastRegTest2Value = 0, ulLastHighFrequencyTimerInterrupts = 0;
static const unsigned long ulExpectedHighFrequencyInterrupts = ( ( mainTEST_INTERRUPT_FREQUENCY / 1000UL ) * mainCHECK_TIMER_PERIOD_MS ) - 10; /* 10 allows for a margin of error. */
unsigned long ulErrorOccurred = pdFALSE;
/* The count of the high frequency timer interrupts. */
extern unsigned long ulHighFrequencyTimerInterrupts;
/* Avoid compiler warnings. */
( void ) xTimer;
/* Check that the register test 1 task is still running. */
if( ulLastRegTest1Value == ulRegTest1Cycles )
{
ulErrorOccurred |= ( 0x01UL << 1UL );
}
ulLastRegTest1Value = ulRegTest1Cycles;
/* Check that the register test 2 task is still running. */
if( ulLastRegTest2Value == ulRegTest2Cycles )
{
ulErrorOccurred |= ( 0x01UL << 2UL );
}
ulLastRegTest2Value = ulRegTest2Cycles;
/* Have any of the standard demo tasks detected an error in their
* operation? */
if( xAreGenericQueueTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 3UL );
}
else if( xAreQueuePeekTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 4UL );
}
else if( xAreBlockTimeTestTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 5UL );
}
else if( xAreSemaphoreTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 6UL );
}
else if( xAreIntQueueTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 7UL );
}
else if( xAreCountingSemaphoreTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 8UL );
}
else if( xAreDynamicPriorityTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 9UL );
}
else if( xIsQueueOverwriteTaskStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 10UL );
}
else if( xAreQueueSetTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 11UL );
}
else if( xAreRecursiveMutexTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 12UL );
}
else if( xAreEventGroupTasksStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 13UL );
}
else if( xAreMathsTaskStillRunning() != pdTRUE )
{
ulErrorOccurred |= ( 0x01UL << 15UL );
}
/* Ensure the expected number of high frequency interrupts have occurred. */
if( ulLastHighFrequencyTimerInterrupts != 0 )
{
if( ( ulHighFrequencyTimerInterrupts - ulLastHighFrequencyTimerInterrupts ) < ulExpectedHighFrequencyInterrupts )
{
ulErrorOccurred |= ( 0x01UL << 14UL );
}
}
ulLastHighFrequencyTimerInterrupts = ulHighFrequencyTimerInterrupts;
if( ulErrorOccurred != pdFALSE )
{
/* An error occurred. Increase the frequency at which the check timer
* toggles its LED to give visual feedback of the potential error
* condition. */
if( lChangedTimerPeriodAlready == pdFALSE )
{
lChangedTimerPeriodAlready = pdTRUE;
/* This call to xTimerChangePeriod() uses a zero block time.
* Functions called from inside of a timer callback function must
* never* attempt to block as to do so could impact other software
* timers. */
xTimerChangePeriod( xTimer, ( mainERROR_CHECK_TIMER_PERIOD_MS ), mainDONT_BLOCK );
}
}
vParTestToggleLED( mainCHECK_LED );
}
/*-----------------------------------------------------------*/
static void prvSetupHighFrequencyTimerTest( TimerHandle_t xTimer )
{
void vSetupTimerTest( unsigned short usFrequencyHz );
/* Avoid compiler warnings. */
( void ) xTimer;
/* Setup the high frequency, high priority, timer test. It is setup in this
* software timer callback to ensure it does not start before the kernel does.
* This is a one-shot timer - so the setup routine will only be executed once. */
vSetupTimerTest( mainTEST_INTERRUPT_FREQUENCY );
}
/*-----------------------------------------------------------*/