mirror of
https://github.com/FreeRTOS/FreeRTOS-Kernel.git
synced 2025-04-23 06:51:58 -04:00
559 lines
12 KiB
C
559 lines
12 KiB
C
/* ge_low_mem.c
|
|
*
|
|
* Copyright (C) 2006-2015 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfSSL. (formerly known as CyaSSL)
|
|
*
|
|
* wolfSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/* Based from Daniel Beer's public domain work. */
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <wolfssl/wolfcrypt/settings.h>
|
|
|
|
#ifdef HAVE_ED25519
|
|
|
|
#include <wolfssl/wolfcrypt/ge_operations.h>
|
|
#include <wolfssl/wolfcrypt/error-crypt.h>
|
|
#ifdef NO_INLINE
|
|
#include <wolfssl/wolfcrypt/misc.h>
|
|
#else
|
|
#include <wolfcrypt/src/misc.c>
|
|
#endif
|
|
|
|
void ed25519_smult(ge_p3 *r, const ge_p3 *a, const byte *e);
|
|
void ed25519_add(ge_p3 *r, const ge_p3 *a, const ge_p3 *b);
|
|
void ed25519_double(ge_p3 *r, const ge_p3 *a);
|
|
|
|
|
|
static const byte ed25519_order[F25519_SIZE] = {
|
|
0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
|
|
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10
|
|
};
|
|
|
|
/*Arithmetic modulo the group order m = 2^252 +
|
|
27742317777372353535851937790883648493 =
|
|
7237005577332262213973186563042994240857116359379907606001950938285454250989 */
|
|
|
|
static const word32 m[32] = {
|
|
0xED,0xD3,0xF5,0x5C,0x1A,0x63,0x12,0x58,0xD6,0x9C,0xF7,0xA2,0xDE,0xF9,
|
|
0xDE,0x14,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
|
|
0x00,0x00,0x00,0x10
|
|
};
|
|
|
|
static const word32 mu[33] = {
|
|
0x1B,0x13,0x2C,0x0A,0xA3,0xE5,0x9C,0xED,0xA7,0x29,0x63,0x08,0x5D,0x21,
|
|
0x06,0x21,0xEB,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0x0F
|
|
};
|
|
|
|
|
|
int ge_compress_key(byte* out, const byte* xIn, const byte* yIn,
|
|
word32 keySz)
|
|
{
|
|
byte tmp[F25519_SIZE];
|
|
byte parity;
|
|
int i;
|
|
|
|
fe_copy(tmp, xIn);
|
|
parity = (tmp[0] & 1) << 7;
|
|
|
|
byte pt[32];
|
|
fe_copy(pt, yIn);
|
|
pt[31] |= parity;
|
|
|
|
for(i = 0; i < 32; i++) {
|
|
out[32-i-1] = pt[i];
|
|
}
|
|
(void)keySz;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static word32 lt(word32 a,word32 b) /* 16-bit inputs */
|
|
{
|
|
unsigned int x = a;
|
|
x -= (unsigned int) b; /* 0..65535: no; 4294901761..4294967295: yes */
|
|
x >>= 31; /* 0: no; 1: yes */
|
|
return x;
|
|
}
|
|
|
|
|
|
/* Reduce coefficients of r before calling reduce_add_sub */
|
|
static void reduce_add_sub(word32 *r)
|
|
{
|
|
word32 pb = 0;
|
|
word32 b;
|
|
word32 mask;
|
|
int i;
|
|
unsigned char t[32];
|
|
|
|
for(i=0;i<32;i++)
|
|
{
|
|
pb += m[i];
|
|
b = lt(r[i],pb);
|
|
t[i] = r[i]-pb+(b<<8);
|
|
pb = b;
|
|
}
|
|
mask = b - 1;
|
|
for(i=0;i<32;i++)
|
|
r[i] ^= mask & (r[i] ^ t[i]);
|
|
}
|
|
|
|
|
|
/* Reduce coefficients of x before calling barrett_reduce */
|
|
static void barrett_reduce(word32* r, word32 x[64])
|
|
{
|
|
/* See HAC, Alg. 14.42 */
|
|
int i,j;
|
|
word32 q2[66];
|
|
word32 *q3 = q2 + 33;
|
|
word32 r1[33];
|
|
word32 r2[33];
|
|
word32 carry;
|
|
word32 pb = 0;
|
|
word32 b;
|
|
|
|
for (i = 0;i < 66;++i) q2[i] = 0;
|
|
for (i = 0;i < 33;++i) r2[i] = 0;
|
|
|
|
for(i=0;i<33;i++)
|
|
for(j=0;j<33;j++)
|
|
if(i+j >= 31) q2[i+j] += mu[i]*x[j+31];
|
|
carry = q2[31] >> 8;
|
|
q2[32] += carry;
|
|
carry = q2[32] >> 8;
|
|
q2[33] += carry;
|
|
|
|
for(i=0;i<33;i++)r1[i] = x[i];
|
|
for(i=0;i<32;i++)
|
|
for(j=0;j<33;j++)
|
|
if(i+j < 33) r2[i+j] += m[i]*q3[j];
|
|
|
|
for(i=0;i<32;i++)
|
|
{
|
|
carry = r2[i] >> 8;
|
|
r2[i+1] += carry;
|
|
r2[i] &= 0xff;
|
|
}
|
|
|
|
for(i=0;i<32;i++)
|
|
{
|
|
pb += r2[i];
|
|
b = lt(r1[i],pb);
|
|
r[i] = r1[i]-pb+(b<<8);
|
|
pb = b;
|
|
}
|
|
|
|
/* XXX: Can it really happen that r<0?, See HAC, Alg 14.42, Step 3
|
|
* r is an unsigned type.
|
|
* If so: Handle it here!
|
|
*/
|
|
|
|
reduce_add_sub(r);
|
|
reduce_add_sub(r);
|
|
}
|
|
|
|
|
|
void sc_reduce(unsigned char x[64])
|
|
{
|
|
int i;
|
|
word32 t[64];
|
|
word32 r[32];
|
|
for(i=0;i<64;i++) t[i] = x[i];
|
|
barrett_reduce(r, t);
|
|
for(i=0;i<32;i++) x[i] = (r[i] & 0xFF);
|
|
}
|
|
|
|
|
|
void sc_muladd(byte* out, const byte* a, const byte* b, const byte* c)
|
|
{
|
|
|
|
byte s[32];
|
|
byte e[64];
|
|
|
|
XMEMSET(e, 0, sizeof(e));
|
|
XMEMCPY(e, b, 32);
|
|
|
|
/* Obtain e */
|
|
sc_reduce(e);
|
|
|
|
/* Compute s = ze + k */
|
|
fprime_mul(s, a, e, ed25519_order);
|
|
fprime_add(s, c, ed25519_order);
|
|
|
|
XMEMCPY(out, s, 32);
|
|
}
|
|
|
|
|
|
/* Base point is (numbers wrapped):
|
|
*
|
|
* x = 151122213495354007725011514095885315114
|
|
* 54012693041857206046113283949847762202
|
|
* y = 463168356949264781694283940034751631413
|
|
* 07993866256225615783033603165251855960
|
|
*
|
|
* y is derived by transforming the original Montgomery base (u=9). x
|
|
* is the corresponding positive coordinate for the new curve equation.
|
|
* t is x*y.
|
|
*/
|
|
const ge_p3 ed25519_base = {
|
|
.X = {
|
|
0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
|
|
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
|
|
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
|
|
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21
|
|
},
|
|
.Y = {
|
|
0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
|
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
|
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
|
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66
|
|
},
|
|
.T = {
|
|
0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
|
|
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
|
|
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
|
|
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67
|
|
},
|
|
.Z = {1, 0}
|
|
};
|
|
|
|
|
|
const ge_p3 ed25519_neutral = {
|
|
.X = {0},
|
|
.Y = {1, 0},
|
|
.T = {0},
|
|
.Z = {1, 0}
|
|
};
|
|
|
|
|
|
static const byte ed25519_d[F25519_SIZE] = {
|
|
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
|
|
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
|
|
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
|
|
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52
|
|
};
|
|
|
|
|
|
/* k = 2d */
|
|
static const byte ed25519_k[F25519_SIZE] = {
|
|
0x59, 0xf1, 0xb2, 0x26, 0x94, 0x9b, 0xd6, 0xeb,
|
|
0x56, 0xb1, 0x83, 0x82, 0x9a, 0x14, 0xe0, 0x00,
|
|
0x30, 0xd1, 0xf3, 0xee, 0xf2, 0x80, 0x8e, 0x19,
|
|
0xe7, 0xfc, 0xdf, 0x56, 0xdc, 0xd9, 0x06, 0x24
|
|
};
|
|
|
|
|
|
void ed25519_add(ge_p3 *r,
|
|
const ge_p3 *p1, const ge_p3 *p2)
|
|
{
|
|
/* Explicit formulas database: add-2008-hwcd-3
|
|
*
|
|
* source 2008 Hisil--Wong--Carter--Dawson,
|
|
* http://eprint.iacr.org/2008/522, Section 3.1
|
|
* appliesto extended-1
|
|
* parameter k
|
|
* assume k = 2 d
|
|
* compute A = (Y1-X1)(Y2-X2)
|
|
* compute B = (Y1+X1)(Y2+X2)
|
|
* compute C = T1 k T2
|
|
* compute D = Z1 2 Z2
|
|
* compute E = B - A
|
|
* compute F = D - C
|
|
* compute G = D + C
|
|
* compute H = B + A
|
|
* compute X3 = E F
|
|
* compute Y3 = G H
|
|
* compute T3 = E H
|
|
* compute Z3 = F G
|
|
*/
|
|
byte a[F25519_SIZE];
|
|
byte b[F25519_SIZE];
|
|
byte c[F25519_SIZE];
|
|
byte d[F25519_SIZE];
|
|
byte e[F25519_SIZE];
|
|
byte f[F25519_SIZE];
|
|
byte g[F25519_SIZE];
|
|
byte h[F25519_SIZE];
|
|
|
|
/* A = (Y1-X1)(Y2-X2) */
|
|
fe_sub(c, p1->Y, p1->X);
|
|
fe_sub(d, p2->Y, p2->X);
|
|
fe_mul__distinct(a, c, d);
|
|
|
|
/* B = (Y1+X1)(Y2+X2) */
|
|
fe_add(c, p1->Y, p1->X);
|
|
fe_add(d, p2->Y, p2->X);
|
|
fe_mul__distinct(b, c, d);
|
|
|
|
/* C = T1 k T2 */
|
|
fe_mul__distinct(d, p1->T, p2->T);
|
|
fe_mul__distinct(c, d, ed25519_k);
|
|
|
|
/* D = Z1 2 Z2 */
|
|
fe_mul__distinct(d, p1->Z, p2->Z);
|
|
fe_add(d, d, d);
|
|
|
|
/* E = B - A */
|
|
fe_sub(e, b, a);
|
|
|
|
/* F = D - C */
|
|
fe_sub(f, d, c);
|
|
|
|
/* G = D + C */
|
|
fe_add(g, d, c);
|
|
|
|
/* H = B + A */
|
|
fe_add(h, b, a);
|
|
|
|
/* X3 = E F */
|
|
fe_mul__distinct(r->X, e, f);
|
|
|
|
/* Y3 = G H */
|
|
fe_mul__distinct(r->Y, g, h);
|
|
|
|
/* T3 = E H */
|
|
fe_mul__distinct(r->T, e, h);
|
|
|
|
/* Z3 = F G */
|
|
fe_mul__distinct(r->Z, f, g);
|
|
}
|
|
|
|
|
|
void ed25519_double(ge_p3 *r, const ge_p3 *p)
|
|
{
|
|
/* Explicit formulas database: dbl-2008-hwcd
|
|
*
|
|
* source 2008 Hisil--Wong--Carter--Dawson,
|
|
* http://eprint.iacr.org/2008/522, Section 3.3
|
|
* compute A = X1^2
|
|
* compute B = Y1^2
|
|
* compute C = 2 Z1^2
|
|
* compute D = a A
|
|
* compute E = (X1+Y1)^2-A-B
|
|
* compute G = D + B
|
|
* compute F = G - C
|
|
* compute H = D - B
|
|
* compute X3 = E F
|
|
* compute Y3 = G H
|
|
* compute T3 = E H
|
|
* compute Z3 = F G
|
|
*/
|
|
byte a[F25519_SIZE];
|
|
byte b[F25519_SIZE];
|
|
byte c[F25519_SIZE];
|
|
byte e[F25519_SIZE];
|
|
byte f[F25519_SIZE];
|
|
byte g[F25519_SIZE];
|
|
byte h[F25519_SIZE];
|
|
|
|
/* A = X1^2 */
|
|
fe_mul__distinct(a, p->X, p->X);
|
|
|
|
/* B = Y1^2 */
|
|
fe_mul__distinct(b, p->Y, p->Y);
|
|
|
|
/* C = 2 Z1^2 */
|
|
fe_mul__distinct(c, p->Z, p->Z);
|
|
fe_add(c, c, c);
|
|
|
|
/* D = a A (alter sign) */
|
|
/* E = (X1+Y1)^2-A-B */
|
|
fe_add(f, p->X, p->Y);
|
|
fe_mul__distinct(e, f, f);
|
|
fe_sub(e, e, a);
|
|
fe_sub(e, e, b);
|
|
|
|
/* G = D + B */
|
|
fe_sub(g, b, a);
|
|
|
|
/* F = G - C */
|
|
fe_sub(f, g, c);
|
|
|
|
/* H = D - B */
|
|
fe_neg(h, b);
|
|
fe_sub(h, h, a);
|
|
|
|
/* X3 = E F */
|
|
fe_mul__distinct(r->X, e, f);
|
|
|
|
/* Y3 = G H */
|
|
fe_mul__distinct(r->Y, g, h);
|
|
|
|
/* T3 = E H */
|
|
fe_mul__distinct(r->T, e, h);
|
|
|
|
/* Z3 = F G */
|
|
fe_mul__distinct(r->Z, f, g);
|
|
}
|
|
|
|
|
|
void ed25519_smult(ge_p3 *r_out, const ge_p3 *p, const byte *e)
|
|
{
|
|
ge_p3 r;
|
|
int i;
|
|
|
|
XMEMCPY(&r, &ed25519_neutral, sizeof(r));
|
|
|
|
for (i = 255; i >= 0; i--) {
|
|
const byte bit = (e[i >> 3] >> (i & 7)) & 1;
|
|
ge_p3 s;
|
|
|
|
ed25519_double(&r, &r);
|
|
ed25519_add(&s, &r, p);
|
|
|
|
fe_select(r.X, r.X, s.X, bit);
|
|
fe_select(r.Y, r.Y, s.Y, bit);
|
|
fe_select(r.Z, r.Z, s.Z, bit);
|
|
fe_select(r.T, r.T, s.T, bit);
|
|
}
|
|
XMEMCPY(r_out, &r, sizeof(r));
|
|
}
|
|
|
|
|
|
void ge_scalarmult_base(ge_p3 *R,const unsigned char *nonce)
|
|
{
|
|
ed25519_smult(R, &ed25519_base, nonce);
|
|
}
|
|
|
|
|
|
/* pack the point h into array s */
|
|
void ge_p3_tobytes(unsigned char *s,const ge_p3 *h)
|
|
{
|
|
byte x[F25519_SIZE];
|
|
byte y[F25519_SIZE];
|
|
byte z1[F25519_SIZE];
|
|
byte parity;
|
|
|
|
fe_inv__distinct(z1, h->Z);
|
|
fe_mul__distinct(x, h->X, z1);
|
|
fe_mul__distinct(y, h->Y, z1);
|
|
|
|
fe_normalize(x);
|
|
fe_normalize(y);
|
|
|
|
parity = (x[0] & 1) << 7;
|
|
fe_copy(s, y);
|
|
fe_normalize(s);
|
|
s[31] |= parity;
|
|
}
|
|
|
|
|
|
/* pack the point h into array s */
|
|
void ge_tobytes(unsigned char *s,const ge_p2 *h)
|
|
{
|
|
byte x[F25519_SIZE];
|
|
byte y[F25519_SIZE];
|
|
byte z1[F25519_SIZE];
|
|
byte parity;
|
|
|
|
fe_inv__distinct(z1, h->Z);
|
|
fe_mul__distinct(x, h->X, z1);
|
|
fe_mul__distinct(y, h->Y, z1);
|
|
|
|
fe_normalize(x);
|
|
fe_normalize(y);
|
|
|
|
parity = (x[0] & 1) << 7;
|
|
fe_copy(s, y);
|
|
fe_normalize(s);
|
|
s[31] |= parity;
|
|
}
|
|
|
|
|
|
/*
|
|
Test if the public key can be uncommpressed and negate it (-X,Y,Z,-T)
|
|
return 0 on success
|
|
*/
|
|
int ge_frombytes_negate_vartime(ge_p3 *p,const unsigned char *s)
|
|
{
|
|
|
|
byte parity;
|
|
byte x[F25519_SIZE];
|
|
byte y[F25519_SIZE];
|
|
byte a[F25519_SIZE];
|
|
byte b[F25519_SIZE];
|
|
byte c[F25519_SIZE];
|
|
int ret = 0;
|
|
|
|
/* unpack the key s */
|
|
parity = s[31] >> 7;
|
|
fe_copy(y, s);
|
|
y[31] &= 127;
|
|
|
|
fe_mul__distinct(c, y, y);
|
|
fe_mul__distinct(b, c, ed25519_d);
|
|
fe_add(a, b, f25519_one);
|
|
fe_inv__distinct(b, a);
|
|
fe_sub(a, c, f25519_one);
|
|
fe_mul__distinct(c, a, b);
|
|
fe_sqrt(a, c);
|
|
fe_neg(b, a);
|
|
fe_select(x, a, b, (a[0] ^ parity) & 1);
|
|
|
|
/* test that x^2 is equal to c */
|
|
fe_mul__distinct(a, x, x);
|
|
fe_normalize(a);
|
|
fe_normalize(c);
|
|
ret |= ConstantCompare(a, c, F25519_SIZE);
|
|
|
|
/* project the key s onto p */
|
|
fe_copy(p->X, x);
|
|
fe_copy(p->Y, y);
|
|
fe_load(p->Z, 1);
|
|
fe_mul__distinct(p->T, x, y);
|
|
|
|
/* negate, the point becomes (-X,Y,Z,-T) */
|
|
fe_neg(p->X,p->X);
|
|
fe_neg(p->T,p->T);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int ge_double_scalarmult_vartime(ge_p2* R, const unsigned char *h,
|
|
const ge_p3 *inA,const unsigned char *sig)
|
|
{
|
|
ge_p3 p, A;
|
|
int ret = 0;
|
|
|
|
XMEMCPY(&A, inA, sizeof(ge_p3));
|
|
|
|
/* find SB */
|
|
ed25519_smult(&p, &ed25519_base, sig);
|
|
|
|
/* find H(R,A,M) * -A */
|
|
ed25519_smult(&A, &A, h);
|
|
|
|
/* SB + -H(R,A,M)A */
|
|
ed25519_add(&A, &p, &A);
|
|
|
|
fe_copy(R->X, A.X);
|
|
fe_copy(R->Y, A.Y);
|
|
fe_copy(R->Z, A.Z);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* HAVE_ED25519 */
|
|
|