FreeRTOS-Kernel/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/hmac.c
TakayukiMatsuo 94aa31c3cb
Update wolfSSL to the latest version(v.4.4.0) (#186)
* deleted old version wolfSSL before updating

* updated wolfSSL to the latest version(v4.4.0)

* updated wolfSSL to the latest version(v4.4.0)

* added macros for timing resistance

Co-authored-by: RichardBarry <3073890+RichardBarry@users.noreply.github.com>
Co-authored-by: Ming Yue <mingyue86010@gmail.com>
2020-08-07 15:58:14 -07:00

1290 lines
37 KiB
C

/* hmac.c
*
* Copyright (C) 2006-2020 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#ifndef NO_HMAC
#if defined(HAVE_FIPS) && \
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#ifdef USE_WINDOWS_API
#pragma code_seg(".fipsA$b")
#pragma const_seg(".fipsB$b")
#endif
#endif
#include <wolfssl/wolfcrypt/hmac.h>
#ifdef WOLF_CRYPTO_CB
#include <wolfssl/wolfcrypt/cryptocb.h>
#endif
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
/* fips wrapper calls, user can call direct */
/* If building for old FIPS. */
#if defined(HAVE_FIPS) && \
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2))
/* does init */
int wc_HmacSetKey(Hmac* hmac, int type, const byte* key, word32 keySz)
{
if (hmac == NULL || (key == NULL && keySz != 0) ||
!(type == WC_MD5 || type == WC_SHA || type == WC_SHA256 ||
type == WC_SHA384 || type == WC_SHA512)) {
return BAD_FUNC_ARG;
}
return HmacSetKey_fips(hmac, type, key, keySz);
}
int wc_HmacUpdate(Hmac* hmac, const byte* in, word32 sz)
{
if (hmac == NULL || (in == NULL && sz > 0)) {
return BAD_FUNC_ARG;
}
return HmacUpdate_fips(hmac, in, sz);
}
int wc_HmacFinal(Hmac* hmac, byte* out)
{
if (hmac == NULL) {
return BAD_FUNC_ARG;
}
return HmacFinal_fips(hmac, out);
}
int wolfSSL_GetHmacMaxSize(void)
{
return CyaSSL_GetHmacMaxSize();
}
int wc_HmacInit(Hmac* hmac, void* heap, int devId)
{
(void)hmac;
(void)heap;
(void)devId;
/* FIPS doesn't support:
return HmacInit(hmac, heap, devId); */
return 0;
}
void wc_HmacFree(Hmac* hmac)
{
(void)hmac;
/* FIPS doesn't support:
HmacFree(hmac); */
}
#ifdef HAVE_HKDF
int wc_HKDF(int type, const byte* inKey, word32 inKeySz,
const byte* salt, word32 saltSz,
const byte* info, word32 infoSz,
byte* out, word32 outSz)
{
return HKDF(type, inKey, inKeySz, salt, saltSz,
info, infoSz, out, outSz);
}
#endif /* HAVE_HKDF */
#else /* else build without fips, or for new fips */
int wc_HmacSizeByType(int type)
{
int ret;
if (!(type == WC_MD5 || type == WC_SHA ||
type == WC_SHA224 || type == WC_SHA256 ||
type == WC_SHA384 || type == WC_SHA512 ||
type == WC_SHA3_224 || type == WC_SHA3_256 ||
type == WC_SHA3_384 || type == WC_SHA3_512)) {
return BAD_FUNC_ARG;
}
switch (type) {
#ifndef NO_MD5
case WC_MD5:
ret = WC_MD5_DIGEST_SIZE;
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = WC_SHA_DIGEST_SIZE;
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = WC_SHA224_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = WC_SHA256_DIGEST_SIZE;
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = WC_SHA384_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = WC_SHA512_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
case WC_SHA3_224:
ret = WC_SHA3_224_DIGEST_SIZE;
break;
case WC_SHA3_256:
ret = WC_SHA3_256_DIGEST_SIZE;
break;
case WC_SHA3_384:
ret = WC_SHA3_384_DIGEST_SIZE;
break;
case WC_SHA3_512:
ret = WC_SHA3_512_DIGEST_SIZE;
break;
#endif
default:
ret = BAD_FUNC_ARG;
break;
}
return ret;
}
int _InitHmac(Hmac* hmac, int type, void* heap)
{
int ret = 0;
switch (type) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_InitMd5(&hmac->hash.md5);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_InitSha(&hmac->hash.sha);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_InitSha224(&hmac->hash.sha224);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_InitSha256(&hmac->hash.sha256);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_InitSha384(&hmac->hash.sha384);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_InitSha512(&hmac->hash.sha512);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_InitSha3_224(&hmac->hash.sha3, heap, INVALID_DEVID);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_InitSha3_256(&hmac->hash.sha3, heap, INVALID_DEVID);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_InitSha3_384(&hmac->hash.sha3, heap, INVALID_DEVID);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_InitSha3_512(&hmac->hash.sha3, heap, INVALID_DEVID);
break;
#endif
#endif
default:
ret = BAD_FUNC_ARG;
break;
}
/* default to NULL heap hint or test value */
#ifdef WOLFSSL_HEAP_TEST
hmac->heap = (void)WOLFSSL_HEAP_TEST;
#else
hmac->heap = heap;
#endif /* WOLFSSL_HEAP_TEST */
return ret;
}
int wc_HmacSetKey(Hmac* hmac, int type, const byte* key, word32 length)
{
byte* ip;
byte* op;
word32 i, hmac_block_size = 0;
int ret = 0;
void* heap = NULL;
if (hmac == NULL || (key == NULL && length != 0) ||
!(type == WC_MD5 || type == WC_SHA ||
type == WC_SHA224 || type == WC_SHA256 ||
type == WC_SHA384 || type == WC_SHA512 ||
type == WC_SHA3_224 || type == WC_SHA3_256 ||
type == WC_SHA3_384 || type == WC_SHA3_512)) {
return BAD_FUNC_ARG;
}
#ifndef HAVE_FIPS
/* if set key has already been run then make sure and free existing */
/* This is for async and PIC32MZ situations, and just normally OK,
provided the user calls wc_HmacInit() first. That function is not
available in FIPS builds. In current FIPS builds, the hashes are
not allocating resources. */
if (hmac->macType != WC_HASH_TYPE_NONE) {
wc_HmacFree(hmac);
}
#endif
hmac->innerHashKeyed = 0;
hmac->macType = (byte)type;
ret = _InitHmac(hmac, type, heap);
if (ret != 0)
return ret;
#ifdef HAVE_FIPS
if (length < HMAC_FIPS_MIN_KEY)
return HMAC_MIN_KEYLEN_E;
#endif
#ifdef WOLF_CRYPTO_CB
hmac->keyRaw = key; /* use buffer directly */
hmac->keyLen = length;
#endif
ip = (byte*)hmac->ipad;
op = (byte*)hmac->opad;
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
hmac_block_size = WC_MD5_BLOCK_SIZE;
if (length <= WC_MD5_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Md5Update(&hmac->hash.md5, key, length);
if (ret != 0)
break;
ret = wc_Md5Final(&hmac->hash.md5, ip);
if (ret != 0)
break;
length = WC_MD5_DIGEST_SIZE;
}
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
hmac_block_size = WC_SHA_BLOCK_SIZE;
if (length <= WC_SHA_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_ShaUpdate(&hmac->hash.sha, key, length);
if (ret != 0)
break;
ret = wc_ShaFinal(&hmac->hash.sha, ip);
if (ret != 0)
break;
length = WC_SHA_DIGEST_SIZE;
}
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
hmac_block_size = WC_SHA224_BLOCK_SIZE;
if (length <= WC_SHA224_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha224Update(&hmac->hash.sha224, key, length);
if (ret != 0)
break;
ret = wc_Sha224Final(&hmac->hash.sha224, ip);
if (ret != 0)
break;
length = WC_SHA224_DIGEST_SIZE;
}
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
hmac_block_size = WC_SHA256_BLOCK_SIZE;
if (length <= WC_SHA256_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha256Update(&hmac->hash.sha256, key, length);
if (ret != 0)
break;
ret = wc_Sha256Final(&hmac->hash.sha256, ip);
if (ret != 0)
break;
length = WC_SHA256_DIGEST_SIZE;
}
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
hmac_block_size = WC_SHA384_BLOCK_SIZE;
if (length <= WC_SHA384_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha384Update(&hmac->hash.sha384, key, length);
if (ret != 0)
break;
ret = wc_Sha384Final(&hmac->hash.sha384, ip);
if (ret != 0)
break;
length = WC_SHA384_DIGEST_SIZE;
}
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
hmac_block_size = WC_SHA512_BLOCK_SIZE;
if (length <= WC_SHA512_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha512Update(&hmac->hash.sha512, key, length);
if (ret != 0)
break;
ret = wc_Sha512Final(&hmac->hash.sha512, ip);
if (ret != 0)
break;
length = WC_SHA512_DIGEST_SIZE;
}
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
hmac_block_size = WC_SHA3_224_BLOCK_SIZE;
if (length <= WC_SHA3_224_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha3_224_Update(&hmac->hash.sha3, key, length);
if (ret != 0)
break;
ret = wc_Sha3_224_Final(&hmac->hash.sha3, ip);
if (ret != 0)
break;
length = WC_SHA3_224_DIGEST_SIZE;
}
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
hmac_block_size = WC_SHA3_256_BLOCK_SIZE;
if (length <= WC_SHA3_256_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha3_256_Update(&hmac->hash.sha3, key, length);
if (ret != 0)
break;
ret = wc_Sha3_256_Final(&hmac->hash.sha3, ip);
if (ret != 0)
break;
length = WC_SHA3_256_DIGEST_SIZE;
}
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
hmac_block_size = WC_SHA3_384_BLOCK_SIZE;
if (length <= WC_SHA3_384_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha3_384_Update(&hmac->hash.sha3, key, length);
if (ret != 0)
break;
ret = wc_Sha3_384_Final(&hmac->hash.sha3, ip);
if (ret != 0)
break;
length = WC_SHA3_384_DIGEST_SIZE;
}
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
hmac_block_size = WC_SHA3_512_BLOCK_SIZE;
if (length <= WC_SHA3_512_BLOCK_SIZE) {
if (key != NULL) {
XMEMCPY(ip, key, length);
}
}
else {
ret = wc_Sha3_512_Update(&hmac->hash.sha3, key, length);
if (ret != 0)
break;
ret = wc_Sha3_512_Final(&hmac->hash.sha3, ip);
if (ret != 0)
break;
length = WC_SHA3_512_DIGEST_SIZE;
}
break;
#endif
#endif /* WOLFSSL_SHA3 */
default:
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
if (hmac->asyncDev.marker == WOLFSSL_ASYNC_MARKER_HMAC) {
#if defined(HAVE_INTEL_QA) || defined(HAVE_CAVIUM)
#ifdef HAVE_INTEL_QA
if (IntelQaHmacGetType(hmac->macType, NULL) == 0)
#endif
{
if (length > hmac_block_size)
length = hmac_block_size;
/* update key length */
hmac->keyLen = (word16)length;
return ret;
}
/* no need to pad below */
#endif
}
#endif
if (ret == 0) {
if (length < hmac_block_size)
XMEMSET(ip + length, 0, hmac_block_size - length);
for(i = 0; i < hmac_block_size; i++) {
op[i] = ip[i] ^ OPAD;
ip[i] ^= IPAD;
}
}
return ret;
}
static int HmacKeyInnerHash(Hmac* hmac)
{
int ret = 0;
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_Md5Update(&hmac->hash.md5, (byte*)hmac->ipad,
WC_MD5_BLOCK_SIZE);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaUpdate(&hmac->hash.sha, (byte*)hmac->ipad,
WC_SHA_BLOCK_SIZE);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_Sha224Update(&hmac->hash.sha224, (byte*)hmac->ipad,
WC_SHA224_BLOCK_SIZE);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Update(&hmac->hash.sha256, (byte*)hmac->ipad,
WC_SHA256_BLOCK_SIZE);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Update(&hmac->hash.sha384, (byte*)hmac->ipad,
WC_SHA384_BLOCK_SIZE);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Update(&hmac->hash.sha512, (byte*)hmac->ipad,
WC_SHA512_BLOCK_SIZE);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_Sha3_224_Update(&hmac->hash.sha3, (byte*)hmac->ipad,
WC_SHA3_224_BLOCK_SIZE);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_Sha3_256_Update(&hmac->hash.sha3, (byte*)hmac->ipad,
WC_SHA3_256_BLOCK_SIZE);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_Sha3_384_Update(&hmac->hash.sha3, (byte*)hmac->ipad,
WC_SHA3_384_BLOCK_SIZE);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_Sha3_512_Update(&hmac->hash.sha3, (byte*)hmac->ipad,
WC_SHA3_512_BLOCK_SIZE);
break;
#endif
#endif /* WOLFSSL_SHA3 */
default:
break;
}
if (ret == 0)
hmac->innerHashKeyed = WC_HMAC_INNER_HASH_KEYED_SW;
return ret;
}
int wc_HmacUpdate(Hmac* hmac, const byte* msg, word32 length)
{
int ret = 0;
if (hmac == NULL || (msg == NULL && length > 0)) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
if (hmac->devId != INVALID_DEVID) {
ret = wc_CryptoCb_Hmac(hmac, hmac->macType, msg, length, NULL);
if (ret != CRYPTOCB_UNAVAILABLE)
return ret;
/* fall-through when unavailable */
ret = 0; /* reset error code */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
if (hmac->asyncDev.marker == WOLFSSL_ASYNC_MARKER_HMAC) {
#if defined(HAVE_CAVIUM)
return NitroxHmacUpdate(hmac, msg, length);
#elif defined(HAVE_INTEL_QA)
if (IntelQaHmacGetType(hmac->macType, NULL) == 0) {
return IntelQaHmac(&hmac->asyncDev, hmac->macType,
(byte*)hmac->ipad, hmac->keyLen, NULL, msg, length);
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
if (!hmac->innerHashKeyed) {
ret = HmacKeyInnerHash(hmac);
if (ret != 0)
return ret;
}
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_Md5Update(&hmac->hash.md5, msg, length);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaUpdate(&hmac->hash.sha, msg, length);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_Sha224Update(&hmac->hash.sha224, msg, length);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Update(&hmac->hash.sha256, msg, length);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Update(&hmac->hash.sha384, msg, length);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Update(&hmac->hash.sha512, msg, length);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_Sha3_224_Update(&hmac->hash.sha3, msg, length);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_Sha3_256_Update(&hmac->hash.sha3, msg, length);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_Sha3_384_Update(&hmac->hash.sha3, msg, length);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_Sha3_512_Update(&hmac->hash.sha3, msg, length);
break;
#endif
#endif /* WOLFSSL_SHA3 */
default:
break;
}
return ret;
}
int wc_HmacFinal(Hmac* hmac, byte* hash)
{
int ret;
if (hmac == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
if (hmac->devId != INVALID_DEVID) {
ret = wc_CryptoCb_Hmac(hmac, hmac->macType, NULL, 0, hash);
if (ret != CRYPTOCB_UNAVAILABLE)
return ret;
/* fall-through when unavailable */
}
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
if (hmac->asyncDev.marker == WOLFSSL_ASYNC_MARKER_HMAC) {
int hashLen = wc_HmacSizeByType(hmac->macType);
if (hashLen <= 0)
return hashLen;
#if defined(HAVE_CAVIUM)
return NitroxHmacFinal(hmac, hash, hashLen);
#elif defined(HAVE_INTEL_QA)
if (IntelQaHmacGetType(hmac->macType, NULL) == 0) {
return IntelQaHmac(&hmac->asyncDev, hmac->macType,
(byte*)hmac->ipad, hmac->keyLen, hash, NULL, hashLen);
}
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
if (!hmac->innerHashKeyed) {
ret = HmacKeyInnerHash(hmac);
if (ret != 0)
return ret;
}
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_Md5Final(&hmac->hash.md5, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Md5Update(&hmac->hash.md5, (byte*)hmac->opad,
WC_MD5_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Md5Update(&hmac->hash.md5, (byte*)hmac->innerHash,
WC_MD5_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Md5Final(&hmac->hash.md5, hash);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaFinal(&hmac->hash.sha, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_ShaUpdate(&hmac->hash.sha, (byte*)hmac->opad,
WC_SHA_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_ShaUpdate(&hmac->hash.sha, (byte*)hmac->innerHash,
WC_SHA_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_ShaFinal(&hmac->hash.sha, hash);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_Sha224Final(&hmac->hash.sha224, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Sha224Update(&hmac->hash.sha224, (byte*)hmac->opad,
WC_SHA224_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Sha224Update(&hmac->hash.sha224, (byte*)hmac->innerHash,
WC_SHA224_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha224Final(&hmac->hash.sha224, hash);
if (ret != 0)
break;
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Final(&hmac->hash.sha256, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Sha256Update(&hmac->hash.sha256, (byte*)hmac->opad,
WC_SHA256_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Sha256Update(&hmac->hash.sha256, (byte*)hmac->innerHash,
WC_SHA256_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha256Final(&hmac->hash.sha256, hash);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Final(&hmac->hash.sha384, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Sha384Update(&hmac->hash.sha384, (byte*)hmac->opad,
WC_SHA384_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Sha384Update(&hmac->hash.sha384, (byte*)hmac->innerHash,
WC_SHA384_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha384Final(&hmac->hash.sha384, hash);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Final(&hmac->hash.sha512, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Sha512Update(&hmac->hash.sha512, (byte*)hmac->opad,
WC_SHA512_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Sha512Update(&hmac->hash.sha512, (byte*)hmac->innerHash,
WC_SHA512_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha512Final(&hmac->hash.sha512, hash);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_Sha3_224_Final(&hmac->hash.sha3, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Sha3_224_Update(&hmac->hash.sha3, (byte*)hmac->opad,
WC_SHA3_224_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_224_Update(&hmac->hash.sha3, (byte*)hmac->innerHash,
WC_SHA3_224_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_224_Final(&hmac->hash.sha3, hash);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_Sha3_256_Final(&hmac->hash.sha3, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Sha3_256_Update(&hmac->hash.sha3, (byte*)hmac->opad,
WC_SHA3_256_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_256_Update(&hmac->hash.sha3, (byte*)hmac->innerHash,
WC_SHA3_256_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_256_Final(&hmac->hash.sha3, hash);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_Sha3_384_Final(&hmac->hash.sha3, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Sha3_384_Update(&hmac->hash.sha3, (byte*)hmac->opad,
WC_SHA3_384_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_384_Update(&hmac->hash.sha3, (byte*)hmac->innerHash,
WC_SHA3_384_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_384_Final(&hmac->hash.sha3, hash);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_Sha3_512_Final(&hmac->hash.sha3, (byte*)hmac->innerHash);
if (ret != 0)
break;
ret = wc_Sha3_512_Update(&hmac->hash.sha3, (byte*)hmac->opad,
WC_SHA3_512_BLOCK_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_512_Update(&hmac->hash.sha3, (byte*)hmac->innerHash,
WC_SHA3_512_DIGEST_SIZE);
if (ret != 0)
break;
ret = wc_Sha3_512_Final(&hmac->hash.sha3, hash);
break;
#endif
#endif /* WOLFSSL_SHA3 */
default:
ret = BAD_FUNC_ARG;
break;
}
if (ret == 0) {
hmac->innerHashKeyed = 0;
}
return ret;
}
/* Initialize Hmac for use with async device */
int wc_HmacInit(Hmac* hmac, void* heap, int devId)
{
int ret = 0;
if (hmac == NULL)
return BAD_FUNC_ARG;
XMEMSET(hmac, 0, sizeof(Hmac));
hmac->macType = WC_HASH_TYPE_NONE;
hmac->heap = heap;
#ifdef WOLF_CRYPTO_CB
hmac->devId = devId;
hmac->devCtx = NULL;
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
ret = wolfAsync_DevCtxInit(&hmac->asyncDev, WOLFSSL_ASYNC_MARKER_HMAC,
hmac->heap, devId);
#else
(void)devId;
#endif /* WOLFSSL_ASYNC_CRYPT */
return ret;
}
#ifdef HAVE_PKCS11
int wc_HmacInit_Id(Hmac* hmac, unsigned char* id, int len, void* heap,
int devId)
{
int ret = 0;
if (hmac == NULL)
ret = BAD_FUNC_ARG;
if (ret == 0 && (len < 0 || len > HMAC_MAX_ID_LEN))
ret = BUFFER_E;
if (ret == 0)
ret = wc_HmacInit(hmac, heap, devId);
if (ret == 0) {
XMEMCPY(hmac->id, id, len);
hmac->idLen = len;
}
return ret;
}
#endif
/* Free Hmac from use with async device */
void wc_HmacFree(Hmac* hmac)
{
if (hmac == NULL)
return;
#ifdef WOLF_CRYPTO_CB
/* handle cleanup case where final is not called */
if (hmac->devId != INVALID_DEVID && hmac->devCtx != NULL) {
int ret;
byte finalHash[WC_HMAC_BLOCK_SIZE];
ret = wc_CryptoCb_Hmac(hmac, hmac->macType, NULL, 0, finalHash);
(void)ret; /* must ignore return code here */
(void)finalHash;
}
#endif
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
wc_Md5Free(&hmac->hash.md5);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
wc_ShaFree(&hmac->hash.sha);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
wc_Sha224Free(&hmac->hash.sha224);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
wc_Sha256Free(&hmac->hash.sha256);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
wc_Sha384Free(&hmac->hash.sha384);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
wc_Sha512Free(&hmac->hash.sha512);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
wc_Sha3_224_Free(&hmac->hash.sha3);
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
wc_Sha3_256_Free(&hmac->hash.sha3);
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
wc_Sha3_384_Free(&hmac->hash.sha3);
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
wc_Sha3_512_Free(&hmac->hash.sha3);
break;
#endif
#endif /* WOLFSSL_SHA3 */
default:
break;
}
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
wolfAsync_DevCtxFree(&hmac->asyncDev, WOLFSSL_ASYNC_MARKER_HMAC);
#endif /* WOLFSSL_ASYNC_CRYPT */
switch (hmac->macType) {
#ifndef NO_MD5
case WC_MD5:
wc_Md5Free(&hmac->hash.md5);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
wc_ShaFree(&hmac->hash.sha);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
wc_Sha224Free(&hmac->hash.sha224);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
wc_Sha256Free(&hmac->hash.sha256);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA512
#ifdef WOLFSSL_SHA384
case WC_SHA384:
wc_Sha384Free(&hmac->hash.sha384);
break;
#endif /* WOLFSSL_SHA384 */
case WC_SHA512:
wc_Sha512Free(&hmac->hash.sha512);
break;
#endif /* WOLFSSL_SHA512 */
}
}
int wolfSSL_GetHmacMaxSize(void)
{
return WC_MAX_DIGEST_SIZE;
}
#ifdef HAVE_HKDF
/* HMAC-KDF-Extract.
* RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF).
*
* type The hash algorithm type.
* salt The optional salt value.
* saltSz The size of the salt.
* inKey The input keying material.
* inKeySz The size of the input keying material.
* out The pseudorandom key with the length that of the hash.
* returns 0 on success, otherwise failure.
*/
int wc_HKDF_Extract(int type, const byte* salt, word32 saltSz,
const byte* inKey, word32 inKeySz, byte* out)
{
byte tmp[WC_MAX_DIGEST_SIZE]; /* localSalt helper */
Hmac myHmac;
int ret;
const byte* localSalt; /* either points to user input or tmp */
int hashSz;
ret = wc_HmacSizeByType(type);
if (ret < 0)
return ret;
hashSz = ret;
localSalt = salt;
if (localSalt == NULL) {
XMEMSET(tmp, 0, hashSz);
localSalt = tmp;
saltSz = hashSz;
}
ret = wc_HmacInit(&myHmac, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_HmacSetKey(&myHmac, type, localSalt, saltSz);
if (ret == 0)
ret = wc_HmacUpdate(&myHmac, inKey, inKeySz);
if (ret == 0)
ret = wc_HmacFinal(&myHmac, out);
wc_HmacFree(&myHmac);
}
return ret;
}
/* HMAC-KDF-Expand.
* RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF).
*
* type The hash algorithm type.
* inKey The input key.
* inKeySz The size of the input key.
* info The application specific information.
* infoSz The size of the application specific information.
* out The output keying material.
* returns 0 on success, otherwise failure.
*/
int wc_HKDF_Expand(int type, const byte* inKey, word32 inKeySz,
const byte* info, word32 infoSz, byte* out, word32 outSz)
{
byte tmp[WC_MAX_DIGEST_SIZE];
Hmac myHmac;
int ret = 0;
word32 outIdx = 0;
word32 hashSz = wc_HmacSizeByType(type);
byte n = 0x1;
ret = wc_HmacInit(&myHmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
while (outIdx < outSz) {
int tmpSz = (n == 1) ? 0 : hashSz;
word32 left = outSz - outIdx;
ret = wc_HmacSetKey(&myHmac, type, inKey, inKeySz);
if (ret != 0)
break;
ret = wc_HmacUpdate(&myHmac, tmp, tmpSz);
if (ret != 0)
break;
ret = wc_HmacUpdate(&myHmac, info, infoSz);
if (ret != 0)
break;
ret = wc_HmacUpdate(&myHmac, &n, 1);
if (ret != 0)
break;
ret = wc_HmacFinal(&myHmac, tmp);
if (ret != 0)
break;
left = min(left, hashSz);
XMEMCPY(out+outIdx, tmp, left);
outIdx += hashSz;
n++;
}
wc_HmacFree(&myHmac);
return ret;
}
/* HMAC-KDF.
* RFC 5869 - HMAC-based Extract-and-Expand Key Derivation Function (HKDF).
*
* type The hash algorithm type.
* inKey The input keying material.
* inKeySz The size of the input keying material.
* salt The optional salt value.
* saltSz The size of the salt.
* info The application specific information.
* infoSz The size of the application specific information.
* out The output keying material.
* returns 0 on success, otherwise failure.
*/
int wc_HKDF(int type, const byte* inKey, word32 inKeySz,
const byte* salt, word32 saltSz,
const byte* info, word32 infoSz,
byte* out, word32 outSz)
{
byte prk[WC_MAX_DIGEST_SIZE];
int hashSz = wc_HmacSizeByType(type);
int ret;
if (hashSz < 0)
return BAD_FUNC_ARG;
ret = wc_HKDF_Extract(type, salt, saltSz, inKey, inKeySz, prk);
if (ret != 0)
return ret;
return wc_HKDF_Expand(type, prk, hashSz, info, infoSz, out, outSz);
}
#endif /* HAVE_HKDF */
#endif /* HAVE_FIPS */
#endif /* NO_HMAC */