mirror of
https://github.com/FreeRTOS/FreeRTOS-Kernel.git
synced 2025-04-19 21:11:57 -04:00
armv8.1-m: Add task dedicated PAC key To harden the security, each task is assigned a dedicated PAC key, so that attackers needs to guess the all the tasks' PAC keys right to exploit the system using Return Oriented Programming. The kernel is now updated to support the following: * A PAC key set with a random number generated and is saved in the task's context when a task is created. * As part of scheduling, the task's PAC key is stored/restored to/from the task's context when a task is unscheduled/scheduled from/to run. stack-overflow-check: Introduce portGET_CURRENT_TOP_OF_STACK macro When MPU wrapper v2 is used, the task's context is stored in TCB and `pxTopOfStack`` member of TCB points to the context location in TCB. We, therefore, need to read PSP to find the task's current top of stack. Signed-off-by: Ahmed Ismail <Ahmed.Ismail@arm.com>
2283 lines
99 KiB
C
2283 lines
99 KiB
C
/*
|
|
* FreeRTOS Kernel <DEVELOPMENT BRANCH>
|
|
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
* Copyright 2024 Arm Limited and/or its affiliates
|
|
* <open-source-office@arm.com>
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* https://www.FreeRTOS.org
|
|
* https://github.com/FreeRTOS
|
|
*
|
|
*/
|
|
|
|
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
|
* all the API functions to use the MPU wrappers. That should only be done when
|
|
* task.h is included from an application file. */
|
|
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
|
/* Scheduler includes. */
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
|
|
/* MPU includes. */
|
|
#include "mpu_wrappers.h"
|
|
#include "mpu_syscall_numbers.h"
|
|
|
|
/* Portasm includes. */
|
|
#include "portasm.h"
|
|
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
/* Secure components includes. */
|
|
#include "secure_context.h"
|
|
#include "secure_init.h"
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
|
|
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
|
/**
|
|
* The FreeRTOS Cortex M33 port can be configured to run on the Secure Side only
|
|
* i.e. the processor boots as secure and never jumps to the non-secure side.
|
|
* The Trust Zone support in the port must be disabled in order to run FreeRTOS
|
|
* on the secure side. The following are the valid configuration settings:
|
|
*
|
|
* 1. Run FreeRTOS on the Secure Side:
|
|
* configRUN_FREERTOS_SECURE_ONLY = 1 and configENABLE_TRUSTZONE = 0
|
|
*
|
|
* 2. Run FreeRTOS on the Non-Secure Side with Secure Side function call support:
|
|
* configRUN_FREERTOS_SECURE_ONLY = 0 and configENABLE_TRUSTZONE = 1
|
|
*
|
|
* 3. Run FreeRTOS on the Non-Secure Side only i.e. no Secure Side function call support:
|
|
* configRUN_FREERTOS_SECURE_ONLY = 0 and configENABLE_TRUSTZONE = 0
|
|
*/
|
|
#if ( ( configRUN_FREERTOS_SECURE_ONLY == 1 ) && ( configENABLE_TRUSTZONE == 1 ) )
|
|
#error TrustZone needs to be disabled in order to run FreeRTOS on the Secure Side.
|
|
#endif
|
|
|
|
/**
|
|
* Cortex-M23 does not have non-secure PSPLIM. We should use PSPLIM on Cortex-M23
|
|
* only when FreeRTOS runs on secure side.
|
|
*/
|
|
#if ( ( portHAS_ARMV8M_MAIN_EXTENSION == 0 ) && ( configRUN_FREERTOS_SECURE_ONLY == 0 ) )
|
|
#define portUSE_PSPLIM_REGISTER 0
|
|
#else
|
|
#define portUSE_PSPLIM_REGISTER 1
|
|
#endif
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Prototype of all Interrupt Service Routines (ISRs).
|
|
*/
|
|
typedef void ( * portISR_t )( void );
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Constants required to manipulate the NVIC.
|
|
*/
|
|
#define portNVIC_SYSTICK_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000e010 ) )
|
|
#define portNVIC_SYSTICK_LOAD_REG ( *( ( volatile uint32_t * ) 0xe000e014 ) )
|
|
#define portNVIC_SYSTICK_CURRENT_VALUE_REG ( *( ( volatile uint32_t * ) 0xe000e018 ) )
|
|
#define portNVIC_SHPR3_REG ( *( ( volatile uint32_t * ) 0xe000ed20 ) )
|
|
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
|
|
#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
|
|
#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
|
|
#define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
|
|
#define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
|
|
#define portNVIC_PEND_SYSTICK_SET_BIT ( 1UL << 26UL )
|
|
#define portMIN_INTERRUPT_PRIORITY ( 255UL )
|
|
#define portNVIC_PENDSV_PRI ( portMIN_INTERRUPT_PRIORITY << 16UL )
|
|
#define portNVIC_SYSTICK_PRI ( portMIN_INTERRUPT_PRIORITY << 24UL )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Constants required to manipulate the SCB.
|
|
*/
|
|
#define portSCB_VTOR_REG ( *( ( portISR_t ** ) 0xe000ed08 ) )
|
|
#define portSCB_SYS_HANDLER_CTRL_STATE_REG ( *( ( volatile uint32_t * ) 0xe000ed24 ) )
|
|
#define portSCB_MEM_FAULT_ENABLE_BIT ( 1UL << 16UL )
|
|
#define portSCB_USG_FAULT_ENABLE_BIT ( 1UL << 18UL )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Constants used to check the installation of the FreeRTOS interrupt handlers.
|
|
*/
|
|
#define portVECTOR_INDEX_SVC ( 11 )
|
|
#define portVECTOR_INDEX_PENDSV ( 14 )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Constants required to check the validity of an interrupt priority.
|
|
*/
|
|
#define portNVIC_SHPR2_REG ( *( ( volatile uint32_t * ) 0xE000ED1C ) )
|
|
#define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
|
|
#define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
|
|
#define portAIRCR_REG ( *( ( volatile uint32_t * ) 0xE000ED0C ) )
|
|
#define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
|
|
#define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
|
|
#define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
|
|
#define portPRIGROUP_SHIFT ( 8UL )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Constants used during system call enter and exit.
|
|
*/
|
|
#define portPSR_STACK_PADDING_MASK ( 1UL << 9UL )
|
|
#define portEXC_RETURN_STACK_FRAME_TYPE_MASK ( 1UL << 4UL )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Constants required to manipulate the FPU.
|
|
*/
|
|
#define portCPACR ( ( volatile uint32_t * ) 0xe000ed88 ) /* Coprocessor Access Control Register. */
|
|
#define portCPACR_CP10_VALUE ( 3UL )
|
|
#define portCPACR_CP11_VALUE portCPACR_CP10_VALUE
|
|
#define portCPACR_CP10_POS ( 20UL )
|
|
#define portCPACR_CP11_POS ( 22UL )
|
|
|
|
#define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating Point Context Control Register. */
|
|
#define portFPCCR_ASPEN_POS ( 31UL )
|
|
#define portFPCCR_ASPEN_MASK ( 1UL << portFPCCR_ASPEN_POS )
|
|
#define portFPCCR_LSPEN_POS ( 30UL )
|
|
#define portFPCCR_LSPEN_MASK ( 1UL << portFPCCR_LSPEN_POS )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Offsets in the stack to the parameters when inside the SVC handler.
|
|
*/
|
|
#define portOFFSET_TO_LR ( 5 )
|
|
#define portOFFSET_TO_PC ( 6 )
|
|
#define portOFFSET_TO_PSR ( 7 )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Constants required to manipulate the MPU.
|
|
*/
|
|
#define portMPU_TYPE_REG ( *( ( volatile uint32_t * ) 0xe000ed90 ) )
|
|
#define portMPU_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000ed94 ) )
|
|
#define portMPU_RNR_REG ( *( ( volatile uint32_t * ) 0xe000ed98 ) )
|
|
|
|
#define portMPU_RBAR_REG ( *( ( volatile uint32_t * ) 0xe000ed9c ) )
|
|
#define portMPU_RLAR_REG ( *( ( volatile uint32_t * ) 0xe000eda0 ) )
|
|
|
|
#define portMPU_RBAR_A1_REG ( *( ( volatile uint32_t * ) 0xe000eda4 ) )
|
|
#define portMPU_RLAR_A1_REG ( *( ( volatile uint32_t * ) 0xe000eda8 ) )
|
|
|
|
#define portMPU_RBAR_A2_REG ( *( ( volatile uint32_t * ) 0xe000edac ) )
|
|
#define portMPU_RLAR_A2_REG ( *( ( volatile uint32_t * ) 0xe000edb0 ) )
|
|
|
|
#define portMPU_RBAR_A3_REG ( *( ( volatile uint32_t * ) 0xe000edb4 ) )
|
|
#define portMPU_RLAR_A3_REG ( *( ( volatile uint32_t * ) 0xe000edb8 ) )
|
|
|
|
#define portMPU_MAIR0_REG ( *( ( volatile uint32_t * ) 0xe000edc0 ) )
|
|
#define portMPU_MAIR1_REG ( *( ( volatile uint32_t * ) 0xe000edc4 ) )
|
|
|
|
#define portMPU_RBAR_ADDRESS_MASK ( 0xffffffe0 ) /* Must be 32-byte aligned. */
|
|
#define portMPU_RLAR_ADDRESS_MASK ( 0xffffffe0 ) /* Must be 32-byte aligned. */
|
|
|
|
#define portMPU_RBAR_ACCESS_PERMISSIONS_MASK ( 3UL << 1UL )
|
|
|
|
#define portMPU_MAIR_ATTR0_POS ( 0UL )
|
|
#define portMPU_MAIR_ATTR0_MASK ( 0x000000ff )
|
|
|
|
#define portMPU_MAIR_ATTR1_POS ( 8UL )
|
|
#define portMPU_MAIR_ATTR1_MASK ( 0x0000ff00 )
|
|
|
|
#define portMPU_MAIR_ATTR2_POS ( 16UL )
|
|
#define portMPU_MAIR_ATTR2_MASK ( 0x00ff0000 )
|
|
|
|
#define portMPU_MAIR_ATTR3_POS ( 24UL )
|
|
#define portMPU_MAIR_ATTR3_MASK ( 0xff000000 )
|
|
|
|
#define portMPU_MAIR_ATTR4_POS ( 0UL )
|
|
#define portMPU_MAIR_ATTR4_MASK ( 0x000000ff )
|
|
|
|
#define portMPU_MAIR_ATTR5_POS ( 8UL )
|
|
#define portMPU_MAIR_ATTR5_MASK ( 0x0000ff00 )
|
|
|
|
#define portMPU_MAIR_ATTR6_POS ( 16UL )
|
|
#define portMPU_MAIR_ATTR6_MASK ( 0x00ff0000 )
|
|
|
|
#define portMPU_MAIR_ATTR7_POS ( 24UL )
|
|
#define portMPU_MAIR_ATTR7_MASK ( 0xff000000 )
|
|
|
|
#define portMPU_RLAR_ATTR_INDEX0 ( 0UL << 1UL )
|
|
#define portMPU_RLAR_ATTR_INDEX1 ( 1UL << 1UL )
|
|
#define portMPU_RLAR_ATTR_INDEX2 ( 2UL << 1UL )
|
|
#define portMPU_RLAR_ATTR_INDEX3 ( 3UL << 1UL )
|
|
#define portMPU_RLAR_ATTR_INDEX4 ( 4UL << 1UL )
|
|
#define portMPU_RLAR_ATTR_INDEX5 ( 5UL << 1UL )
|
|
#define portMPU_RLAR_ATTR_INDEX6 ( 6UL << 1UL )
|
|
#define portMPU_RLAR_ATTR_INDEX7 ( 7UL << 1UL )
|
|
|
|
#define portMPU_RLAR_REGION_ENABLE ( 1UL )
|
|
|
|
#if ( portARMV8M_MINOR_VERSION >= 1 )
|
|
|
|
/* Enable Privileged eXecute Never MPU attribute for the selected memory
|
|
* region. */
|
|
#define portMPU_RLAR_PRIVILEGED_EXECUTE_NEVER ( 1UL << 4UL )
|
|
#endif /* portARMV8M_MINOR_VERSION >= 1 */
|
|
|
|
/* Enable privileged access to unmapped region. */
|
|
#define portMPU_PRIV_BACKGROUND_ENABLE_BIT ( 1UL << 2UL )
|
|
|
|
/* Enable MPU. */
|
|
#define portMPU_ENABLE_BIT ( 1UL << 0UL )
|
|
|
|
/* Expected value of the portMPU_TYPE register. */
|
|
#define portEXPECTED_MPU_TYPE_VALUE ( configTOTAL_MPU_REGIONS << 8UL )
|
|
|
|
/* Extract first address of the MPU region as encoded in the
|
|
* RBAR (Region Base Address Register) value. */
|
|
#define portEXTRACT_FIRST_ADDRESS_FROM_RBAR( rbar ) \
|
|
( ( rbar ) & portMPU_RBAR_ADDRESS_MASK )
|
|
|
|
/* Extract last address of the MPU region as encoded in the
|
|
* RLAR (Region Limit Address Register) value. */
|
|
#define portEXTRACT_LAST_ADDRESS_FROM_RLAR( rlar ) \
|
|
( ( ( rlar ) & portMPU_RLAR_ADDRESS_MASK ) | ~portMPU_RLAR_ADDRESS_MASK )
|
|
|
|
/* Does addr lies within [start, end] address range? */
|
|
#define portIS_ADDRESS_WITHIN_RANGE( addr, start, end ) \
|
|
( ( ( addr ) >= ( start ) ) && ( ( addr ) <= ( end ) ) )
|
|
|
|
/* Is the access request satisfied by the available permissions? */
|
|
#define portIS_AUTHORIZED( accessRequest, permissions ) \
|
|
( ( ( permissions ) & ( accessRequest ) ) == accessRequest )
|
|
|
|
/* Max value that fits in a uint32_t type. */
|
|
#define portUINT32_MAX ( ~( ( uint32_t ) 0 ) )
|
|
|
|
/* Check if adding a and b will result in overflow. */
|
|
#define portADD_UINT32_WILL_OVERFLOW( a, b ) ( ( a ) > ( portUINT32_MAX - ( b ) ) )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief The maximum 24-bit number.
|
|
*
|
|
* It is needed because the systick is a 24-bit counter.
|
|
*/
|
|
#define portMAX_24_BIT_NUMBER ( 0xffffffUL )
|
|
|
|
/**
|
|
* @brief A fiddle factor to estimate the number of SysTick counts that would
|
|
* have occurred while the SysTick counter is stopped during tickless idle
|
|
* calculations.
|
|
*/
|
|
#define portMISSED_COUNTS_FACTOR ( 94UL )
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Constants required to set up the initial stack.
|
|
*/
|
|
#define portINITIAL_XPSR ( 0x01000000 )
|
|
|
|
#if ( configRUN_FREERTOS_SECURE_ONLY == 1 )
|
|
|
|
/**
|
|
* @brief Initial EXC_RETURN value.
|
|
*
|
|
* FF FF FF FD
|
|
* 1111 1111 1111 1111 1111 1111 1111 1101
|
|
*
|
|
* Bit[6] - 1 --> The exception was taken from the Secure state.
|
|
* Bit[5] - 1 --> Do not skip stacking of additional state context.
|
|
* Bit[4] - 1 --> The PE did not allocate space on the stack for FP context.
|
|
* Bit[3] - 1 --> Return to the Thread mode.
|
|
* Bit[2] - 1 --> Restore registers from the process stack.
|
|
* Bit[1] - 0 --> Reserved, 0.
|
|
* Bit[0] - 1 --> The exception was taken to the Secure state.
|
|
*/
|
|
#define portINITIAL_EXC_RETURN ( 0xfffffffd )
|
|
#else
|
|
|
|
/**
|
|
* @brief Initial EXC_RETURN value.
|
|
*
|
|
* FF FF FF BC
|
|
* 1111 1111 1111 1111 1111 1111 1011 1100
|
|
*
|
|
* Bit[6] - 0 --> The exception was taken from the Non-Secure state.
|
|
* Bit[5] - 1 --> Do not skip stacking of additional state context.
|
|
* Bit[4] - 1 --> The PE did not allocate space on the stack for FP context.
|
|
* Bit[3] - 1 --> Return to the Thread mode.
|
|
* Bit[2] - 1 --> Restore registers from the process stack.
|
|
* Bit[1] - 0 --> Reserved, 0.
|
|
* Bit[0] - 0 --> The exception was taken to the Non-Secure state.
|
|
*/
|
|
#define portINITIAL_EXC_RETURN ( 0xffffffbc )
|
|
#endif /* configRUN_FREERTOS_SECURE_ONLY */
|
|
|
|
/**
|
|
* @brief CONTROL register privileged bit mask.
|
|
*
|
|
* Bit[0] in CONTROL register tells the privilege:
|
|
* Bit[0] = 0 ==> The task is privileged.
|
|
* Bit[0] = 1 ==> The task is not privileged.
|
|
*/
|
|
#define portCONTROL_PRIVILEGED_MASK ( 1UL << 0UL )
|
|
|
|
/**
|
|
* @brief Initial CONTROL register values.
|
|
*/
|
|
#define portINITIAL_CONTROL_UNPRIVILEGED ( 0x3 )
|
|
#define portINITIAL_CONTROL_PRIVILEGED ( 0x2 )
|
|
|
|
/**
|
|
* @brief Let the user override the default SysTick clock rate. If defined by the
|
|
* user, this symbol must equal the SysTick clock rate when the CLK bit is 0 in the
|
|
* configuration register.
|
|
*/
|
|
#ifndef configSYSTICK_CLOCK_HZ
|
|
#define configSYSTICK_CLOCK_HZ ( configCPU_CLOCK_HZ )
|
|
/* Ensure the SysTick is clocked at the same frequency as the core. */
|
|
#define portNVIC_SYSTICK_CLK_BIT_CONFIG ( portNVIC_SYSTICK_CLK_BIT )
|
|
#else
|
|
/* Select the option to clock SysTick not at the same frequency as the core. */
|
|
#define portNVIC_SYSTICK_CLK_BIT_CONFIG ( 0 )
|
|
#endif
|
|
|
|
/**
|
|
* @brief Let the user override the pre-loading of the initial LR with the
|
|
* address of prvTaskExitError() in case it messes up unwinding of the stack
|
|
* in the debugger.
|
|
*/
|
|
#ifdef configTASK_RETURN_ADDRESS
|
|
#define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS
|
|
#else
|
|
#define portTASK_RETURN_ADDRESS prvTaskExitError
|
|
#endif
|
|
|
|
/**
|
|
* @brief If portPRELOAD_REGISTERS then registers will be given an initial value
|
|
* when a task is created. This helps in debugging at the cost of code size.
|
|
*/
|
|
#define portPRELOAD_REGISTERS 1
|
|
|
|
/**
|
|
* @brief A task is created without a secure context, and must call
|
|
* portALLOCATE_SECURE_CONTEXT() to give itself a secure context before it makes
|
|
* any secure calls.
|
|
*/
|
|
#define portNO_SECURE_CONTEXT 0
|
|
|
|
/**
|
|
* @brief Constants required to check and configure PACBTI security feature implementation.
|
|
*/
|
|
#if ( ( configENABLE_PAC == 1 ) || ( configENABLE_BTI == 1 ) )
|
|
|
|
#define portID_ISAR5_REG ( *( ( volatile uint32_t * ) 0xe000ed74 ) )
|
|
|
|
#define portCONTROL_UPAC_EN ( 1UL << 7UL )
|
|
#define portCONTROL_PAC_EN ( 1UL << 6UL )
|
|
#define portCONTROL_UBTI_EN ( 1UL << 5UL )
|
|
#define portCONTROL_BTI_EN ( 1UL << 4UL )
|
|
|
|
#endif /* configENABLE_PAC == 1 || configENABLE_BTI == 1 */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief Used to catch tasks that attempt to return from their implementing
|
|
* function.
|
|
*/
|
|
static void prvTaskExitError( void );
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
/**
|
|
* @brief Extract MPU region's access permissions from the Region Base Address
|
|
* Register (RBAR) value.
|
|
*
|
|
* @param ulRBARValue RBAR value for the MPU region.
|
|
*
|
|
* @return uint32_t Access permissions.
|
|
*/
|
|
static uint32_t prvGetRegionAccessPermissions( uint32_t ulRBARValue ) PRIVILEGED_FUNCTION;
|
|
#endif /* configENABLE_MPU == 1 && configUSE_MPU_WRAPPERS_V1 == 0 */
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
|
|
/**
|
|
* @brief Setup the Memory Protection Unit (MPU).
|
|
*/
|
|
static void prvSetupMPU( void ) PRIVILEGED_FUNCTION;
|
|
#endif /* configENABLE_MPU */
|
|
|
|
#if ( configENABLE_FPU == 1 )
|
|
|
|
/**
|
|
* @brief Setup the Floating Point Unit (FPU).
|
|
*/
|
|
static void prvSetupFPU( void ) PRIVILEGED_FUNCTION;
|
|
#endif /* configENABLE_FPU */
|
|
|
|
#if ( ( configENABLE_PAC == 1 ) || ( configENABLE_BTI == 1 ) )
|
|
|
|
/**
|
|
* @brief Configures PACBTI features.
|
|
*
|
|
* This function configures the Pointer Authentication, and Branch Target
|
|
* Identification security features as per the user configuration. It returns
|
|
* the value of the special purpose CONTROL register accordingly, and optionally
|
|
* updates the CONTROL register value. Currently, only Cortex-M85 (ARMv8.1-M
|
|
* architecture based) target supports PACBTI security feature.
|
|
*
|
|
* @param xWriteControlRegister Used to control whether the special purpose
|
|
* CONTROL register should be updated or not.
|
|
*
|
|
* @return CONTROL register value according to the configured PACBTI option.
|
|
*/
|
|
static uint32_t prvConfigurePACBTI( BaseType_t xWriteControlRegister );
|
|
|
|
#endif /* configENABLE_PAC == 1 || configENABLE_BTI == 1 */
|
|
|
|
/**
|
|
* @brief Setup the timer to generate the tick interrupts.
|
|
*
|
|
* The implementation in this file is weak to allow application writers to
|
|
* change the timer used to generate the tick interrupt.
|
|
*/
|
|
void vPortSetupTimerInterrupt( void ) PRIVILEGED_FUNCTION;
|
|
|
|
/**
|
|
* @brief Checks whether the current execution context is interrupt.
|
|
*
|
|
* @return pdTRUE if the current execution context is interrupt, pdFALSE
|
|
* otherwise.
|
|
*/
|
|
BaseType_t xPortIsInsideInterrupt( void );
|
|
|
|
/**
|
|
* @brief Yield the processor.
|
|
*/
|
|
void vPortYield( void ) PRIVILEGED_FUNCTION;
|
|
|
|
/**
|
|
* @brief Enter critical section.
|
|
*/
|
|
void vPortEnterCritical( void ) PRIVILEGED_FUNCTION;
|
|
|
|
/**
|
|
* @brief Exit from critical section.
|
|
*/
|
|
void vPortExitCritical( void ) PRIVILEGED_FUNCTION;
|
|
|
|
/**
|
|
* @brief SysTick handler.
|
|
*/
|
|
void SysTick_Handler( void ) PRIVILEGED_FUNCTION;
|
|
|
|
/**
|
|
* @brief C part of SVC handler.
|
|
*/
|
|
portDONT_DISCARD void vPortSVCHandler_C( uint32_t * pulCallerStackAddress ) PRIVILEGED_FUNCTION;
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
/**
|
|
* @brief Sets up the system call stack so that upon returning from
|
|
* SVC, the system call stack is used.
|
|
*
|
|
* @param pulTaskStack The current SP when the SVC was raised.
|
|
* @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler.
|
|
* @param ucSystemCallNumber The system call number of the system call.
|
|
*/
|
|
void vSystemCallEnter( uint32_t * pulTaskStack,
|
|
uint32_t ulLR,
|
|
uint8_t ucSystemCallNumber ) PRIVILEGED_FUNCTION;
|
|
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
/**
|
|
* @brief Raise SVC for exiting from a system call.
|
|
*/
|
|
void vRequestSystemCallExit( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION;
|
|
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
/**
|
|
* @brief Sets up the task stack so that upon returning from
|
|
* SVC, the task stack is used again.
|
|
*
|
|
* @param pulSystemCallStack The current SP when the SVC was raised.
|
|
* @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler.
|
|
*/
|
|
void vSystemCallExit( uint32_t * pulSystemCallStack,
|
|
uint32_t ulLR ) PRIVILEGED_FUNCTION;
|
|
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
|
|
/**
|
|
* @brief Checks whether or not the calling task is privileged.
|
|
*
|
|
* @return pdTRUE if the calling task is privileged, pdFALSE otherwise.
|
|
*/
|
|
BaseType_t xPortIsTaskPrivileged( void ) PRIVILEGED_FUNCTION;
|
|
|
|
#endif /* configENABLE_MPU == 1 */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
/**
|
|
* @brief This variable is set to pdTRUE when the scheduler is started.
|
|
*/
|
|
PRIVILEGED_DATA static BaseType_t xSchedulerRunning = pdFALSE;
|
|
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
|
|
|
|
/**
|
|
* @brief Each task maintains its own interrupt status in the critical nesting
|
|
* variable.
|
|
*/
|
|
PRIVILEGED_DATA static volatile uint32_t ulCriticalNesting = 0xaaaaaaaaUL;
|
|
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
|
|
/**
|
|
* @brief Saved as part of the task context to indicate which context the
|
|
* task is using on the secure side.
|
|
*/
|
|
PRIVILEGED_DATA portDONT_DISCARD volatile SecureContextHandle_t xSecureContext = portNO_SECURE_CONTEXT;
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
|
|
/**
|
|
* @brief Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
|
|
* FreeRTOS API functions are not called from interrupts that have been assigned
|
|
* a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
|
|
*/
|
|
#if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) )
|
|
|
|
static uint8_t ucMaxSysCallPriority = 0;
|
|
static uint32_t ulMaxPRIGROUPValue = 0;
|
|
static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * ) portNVIC_IP_REGISTERS_OFFSET_16;
|
|
|
|
#endif /* #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) ) */
|
|
|
|
#if ( configUSE_TICKLESS_IDLE == 1 )
|
|
|
|
/**
|
|
* @brief The number of SysTick increments that make up one tick period.
|
|
*/
|
|
PRIVILEGED_DATA static uint32_t ulTimerCountsForOneTick = 0;
|
|
|
|
/**
|
|
* @brief The maximum number of tick periods that can be suppressed is
|
|
* limited by the 24 bit resolution of the SysTick timer.
|
|
*/
|
|
PRIVILEGED_DATA static uint32_t xMaximumPossibleSuppressedTicks = 0;
|
|
|
|
/**
|
|
* @brief Compensate for the CPU cycles that pass while the SysTick is
|
|
* stopped (low power functionality only).
|
|
*/
|
|
PRIVILEGED_DATA static uint32_t ulStoppedTimerCompensation = 0;
|
|
#endif /* configUSE_TICKLESS_IDLE */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TICKLESS_IDLE == 1 )
|
|
|
|
__attribute__( ( weak ) ) void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
|
|
{
|
|
uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickDecrementsLeft;
|
|
TickType_t xModifiableIdleTime;
|
|
|
|
/* Make sure the SysTick reload value does not overflow the counter. */
|
|
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
|
|
{
|
|
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
|
|
}
|
|
|
|
/* Enter a critical section but don't use the taskENTER_CRITICAL()
|
|
* method as that will mask interrupts that should exit sleep mode. */
|
|
__asm volatile ( "cpsid i" ::: "memory" );
|
|
__asm volatile ( "dsb" );
|
|
__asm volatile ( "isb" );
|
|
|
|
/* If a context switch is pending or a task is waiting for the scheduler
|
|
* to be unsuspended then abandon the low power entry. */
|
|
if( eTaskConfirmSleepModeStatus() == eAbortSleep )
|
|
{
|
|
/* Re-enable interrupts - see comments above the cpsid instruction
|
|
* above. */
|
|
__asm volatile ( "cpsie i" ::: "memory" );
|
|
}
|
|
else
|
|
{
|
|
/* Stop the SysTick momentarily. The time the SysTick is stopped for
|
|
* is accounted for as best it can be, but using the tickless mode will
|
|
* inevitably result in some tiny drift of the time maintained by the
|
|
* kernel with respect to calendar time. */
|
|
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
|
|
|
|
/* Use the SysTick current-value register to determine the number of
|
|
* SysTick decrements remaining until the next tick interrupt. If the
|
|
* current-value register is zero, then there are actually
|
|
* ulTimerCountsForOneTick decrements remaining, not zero, because the
|
|
* SysTick requests the interrupt when decrementing from 1 to 0. */
|
|
ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
|
|
|
|
if( ulSysTickDecrementsLeft == 0 )
|
|
{
|
|
ulSysTickDecrementsLeft = ulTimerCountsForOneTick;
|
|
}
|
|
|
|
/* Calculate the reload value required to wait xExpectedIdleTime
|
|
* tick periods. -1 is used because this code normally executes part
|
|
* way through the first tick period. But if the SysTick IRQ is now
|
|
* pending, then clear the IRQ, suppressing the first tick, and correct
|
|
* the reload value to reflect that the second tick period is already
|
|
* underway. The expected idle time is always at least two ticks. */
|
|
ulReloadValue = ulSysTickDecrementsLeft + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
|
|
|
|
if( ( portNVIC_INT_CTRL_REG & portNVIC_PEND_SYSTICK_SET_BIT ) != 0 )
|
|
{
|
|
portNVIC_INT_CTRL_REG = portNVIC_PEND_SYSTICK_CLEAR_BIT;
|
|
ulReloadValue -= ulTimerCountsForOneTick;
|
|
}
|
|
|
|
if( ulReloadValue > ulStoppedTimerCompensation )
|
|
{
|
|
ulReloadValue -= ulStoppedTimerCompensation;
|
|
}
|
|
|
|
/* Set the new reload value. */
|
|
portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
|
|
|
|
/* Clear the SysTick count flag and set the count value back to
|
|
* zero. */
|
|
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
|
|
|
|
/* Restart SysTick. */
|
|
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
|
|
|
|
/* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
|
|
* set its parameter to 0 to indicate that its implementation contains
|
|
* its own wait for interrupt or wait for event instruction, and so wfi
|
|
* should not be executed again. However, the original expected idle
|
|
* time variable must remain unmodified, so a copy is taken. */
|
|
xModifiableIdleTime = xExpectedIdleTime;
|
|
configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
|
|
|
|
if( xModifiableIdleTime > 0 )
|
|
{
|
|
__asm volatile ( "dsb" ::: "memory" );
|
|
__asm volatile ( "wfi" );
|
|
__asm volatile ( "isb" );
|
|
}
|
|
|
|
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
|
|
|
|
/* Re-enable interrupts to allow the interrupt that brought the MCU
|
|
* out of sleep mode to execute immediately. See comments above
|
|
* the cpsid instruction above. */
|
|
__asm volatile ( "cpsie i" ::: "memory" );
|
|
__asm volatile ( "dsb" );
|
|
__asm volatile ( "isb" );
|
|
|
|
/* Disable interrupts again because the clock is about to be stopped
|
|
* and interrupts that execute while the clock is stopped will increase
|
|
* any slippage between the time maintained by the RTOS and calendar
|
|
* time. */
|
|
__asm volatile ( "cpsid i" ::: "memory" );
|
|
__asm volatile ( "dsb" );
|
|
__asm volatile ( "isb" );
|
|
|
|
/* Disable the SysTick clock without reading the
|
|
* portNVIC_SYSTICK_CTRL_REG register to ensure the
|
|
* portNVIC_SYSTICK_COUNT_FLAG_BIT is not cleared if it is set. Again,
|
|
* the time the SysTick is stopped for is accounted for as best it can
|
|
* be, but using the tickless mode will inevitably result in some tiny
|
|
* drift of the time maintained by the kernel with respect to calendar
|
|
* time*/
|
|
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT );
|
|
|
|
/* Determine whether the SysTick has already counted to zero. */
|
|
if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
|
|
{
|
|
uint32_t ulCalculatedLoadValue;
|
|
|
|
/* The tick interrupt ended the sleep (or is now pending), and
|
|
* a new tick period has started. Reset portNVIC_SYSTICK_LOAD_REG
|
|
* with whatever remains of the new tick period. */
|
|
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
|
|
|
|
/* Don't allow a tiny value, or values that have somehow
|
|
* underflowed because the post sleep hook did something
|
|
* that took too long or because the SysTick current-value register
|
|
* is zero. */
|
|
if( ( ulCalculatedLoadValue <= ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
|
|
{
|
|
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
|
|
}
|
|
|
|
portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
|
|
|
|
/* As the pending tick will be processed as soon as this
|
|
* function exits, the tick value maintained by the tick is stepped
|
|
* forward by one less than the time spent waiting. */
|
|
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
|
|
}
|
|
else
|
|
{
|
|
/* Something other than the tick interrupt ended the sleep. */
|
|
|
|
/* Use the SysTick current-value register to determine the
|
|
* number of SysTick decrements remaining until the expected idle
|
|
* time would have ended. */
|
|
ulSysTickDecrementsLeft = portNVIC_SYSTICK_CURRENT_VALUE_REG;
|
|
#if ( portNVIC_SYSTICK_CLK_BIT_CONFIG != portNVIC_SYSTICK_CLK_BIT )
|
|
{
|
|
/* If the SysTick is not using the core clock, the current-
|
|
* value register might still be zero here. In that case, the
|
|
* SysTick didn't load from the reload register, and there are
|
|
* ulReloadValue decrements remaining in the expected idle
|
|
* time, not zero. */
|
|
if( ulSysTickDecrementsLeft == 0 )
|
|
{
|
|
ulSysTickDecrementsLeft = ulReloadValue;
|
|
}
|
|
}
|
|
#endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
|
|
|
|
/* Work out how long the sleep lasted rounded to complete tick
|
|
* periods (not the ulReload value which accounted for part
|
|
* ticks). */
|
|
ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - ulSysTickDecrementsLeft;
|
|
|
|
/* How many complete tick periods passed while the processor
|
|
* was waiting? */
|
|
ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
|
|
|
|
/* The reload value is set to whatever fraction of a single tick
|
|
* period remains. */
|
|
portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
|
|
}
|
|
|
|
/* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again,
|
|
* then set portNVIC_SYSTICK_LOAD_REG back to its standard value. If
|
|
* the SysTick is not using the core clock, temporarily configure it to
|
|
* use the core clock. This configuration forces the SysTick to load
|
|
* from portNVIC_SYSTICK_LOAD_REG immediately instead of at the next
|
|
* cycle of the other clock. Then portNVIC_SYSTICK_LOAD_REG is ready
|
|
* to receive the standard value immediately. */
|
|
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
|
|
portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
|
|
#if ( portNVIC_SYSTICK_CLK_BIT_CONFIG == portNVIC_SYSTICK_CLK_BIT )
|
|
{
|
|
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
|
|
}
|
|
#else
|
|
{
|
|
/* The temporary usage of the core clock has served its purpose,
|
|
* as described above. Resume usage of the other clock. */
|
|
portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT;
|
|
|
|
if( ( portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
|
|
{
|
|
/* The partial tick period already ended. Be sure the SysTick
|
|
* counts it only once. */
|
|
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0;
|
|
}
|
|
|
|
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
|
|
portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
|
|
}
|
|
#endif /* portNVIC_SYSTICK_CLK_BIT_CONFIG */
|
|
|
|
/* Step the tick to account for any tick periods that elapsed. */
|
|
vTaskStepTick( ulCompleteTickPeriods );
|
|
|
|
/* Exit with interrupts enabled. */
|
|
__asm volatile ( "cpsie i" ::: "memory" );
|
|
}
|
|
}
|
|
|
|
#endif /* configUSE_TICKLESS_IDLE */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
__attribute__( ( weak ) ) void vPortSetupTimerInterrupt( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
/* Calculate the constants required to configure the tick interrupt. */
|
|
#if ( configUSE_TICKLESS_IDLE == 1 )
|
|
{
|
|
ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
|
|
xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
|
|
ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
|
|
}
|
|
#endif /* configUSE_TICKLESS_IDLE */
|
|
|
|
/* Stop and reset SysTick.
|
|
*
|
|
* QEMU versions older than 7.0.0 contain a bug which causes an error if we
|
|
* enable SysTick without first selecting a valid clock source. We trigger
|
|
* the bug if we change clock sources from a clock with a zero clock period
|
|
* to one with a nonzero clock period and enable Systick at the same time.
|
|
* So we configure the CLKSOURCE bit here, prior to setting the ENABLE bit.
|
|
* This workaround avoids the bug in QEMU versions older than 7.0.0. */
|
|
portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG;
|
|
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
|
|
|
|
/* Configure SysTick to interrupt at the requested rate. */
|
|
portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
|
|
portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT_CONFIG | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvTaskExitError( void )
|
|
{
|
|
volatile uint32_t ulDummy = 0UL;
|
|
|
|
/* A function that implements a task must not exit or attempt to return to
|
|
* its caller as there is nothing to return to. If a task wants to exit it
|
|
* should instead call vTaskDelete( NULL ). Artificially force an assert()
|
|
* to be triggered if configASSERT() is defined, then stop here so
|
|
* application writers can catch the error. */
|
|
configASSERT( ulCriticalNesting == ~0UL );
|
|
portDISABLE_INTERRUPTS();
|
|
|
|
while( ulDummy == 0 )
|
|
{
|
|
/* This file calls prvTaskExitError() after the scheduler has been
|
|
* started to remove a compiler warning about the function being
|
|
* defined but never called. ulDummy is used purely to quieten other
|
|
* warnings about code appearing after this function is called - making
|
|
* ulDummy volatile makes the compiler think the function could return
|
|
* and therefore not output an 'unreachable code' warning for code that
|
|
* appears after it. */
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
static uint32_t prvGetRegionAccessPermissions( uint32_t ulRBARValue ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
uint32_t ulAccessPermissions = 0;
|
|
|
|
if( ( ulRBARValue & portMPU_RBAR_ACCESS_PERMISSIONS_MASK ) == portMPU_REGION_READ_ONLY )
|
|
{
|
|
ulAccessPermissions = tskMPU_READ_PERMISSION;
|
|
}
|
|
|
|
if( ( ulRBARValue & portMPU_RBAR_ACCESS_PERMISSIONS_MASK ) == portMPU_REGION_READ_WRITE )
|
|
{
|
|
ulAccessPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION );
|
|
}
|
|
|
|
return ulAccessPermissions;
|
|
}
|
|
|
|
#endif /* configENABLE_MPU == 1 && configUSE_MPU_WRAPPERS_V1 == 0 */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
|
|
static void prvSetupMPU( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
#if defined( __ARMCC_VERSION )
|
|
|
|
/* Declaration when these variable are defined in code instead of being
|
|
* exported from linker scripts. */
|
|
extern uint32_t * __privileged_functions_start__;
|
|
extern uint32_t * __privileged_functions_end__;
|
|
extern uint32_t * __syscalls_flash_start__;
|
|
extern uint32_t * __syscalls_flash_end__;
|
|
extern uint32_t * __unprivileged_flash_start__;
|
|
extern uint32_t * __unprivileged_flash_end__;
|
|
extern uint32_t * __privileged_sram_start__;
|
|
extern uint32_t * __privileged_sram_end__;
|
|
#else /* if defined( __ARMCC_VERSION ) */
|
|
/* Declaration when these variable are exported from linker scripts. */
|
|
extern uint32_t __privileged_functions_start__[];
|
|
extern uint32_t __privileged_functions_end__[];
|
|
extern uint32_t __syscalls_flash_start__[];
|
|
extern uint32_t __syscalls_flash_end__[];
|
|
extern uint32_t __unprivileged_flash_start__[];
|
|
extern uint32_t __unprivileged_flash_end__[];
|
|
extern uint32_t __privileged_sram_start__[];
|
|
extern uint32_t __privileged_sram_end__[];
|
|
#endif /* defined( __ARMCC_VERSION ) */
|
|
|
|
/* The only permitted number of regions are 8 or 16. */
|
|
configASSERT( ( configTOTAL_MPU_REGIONS == 8 ) || ( configTOTAL_MPU_REGIONS == 16 ) );
|
|
|
|
/* Ensure that the configTOTAL_MPU_REGIONS is configured correctly. */
|
|
configASSERT( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE );
|
|
|
|
/* Check that the MPU is present. */
|
|
if( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE )
|
|
{
|
|
/* MAIR0 - Index 0. */
|
|
portMPU_MAIR0_REG |= ( ( portMPU_NORMAL_MEMORY_BUFFERABLE_CACHEABLE << portMPU_MAIR_ATTR0_POS ) & portMPU_MAIR_ATTR0_MASK );
|
|
/* MAIR0 - Index 1. */
|
|
portMPU_MAIR0_REG |= ( ( portMPU_DEVICE_MEMORY_nGnRE << portMPU_MAIR_ATTR1_POS ) & portMPU_MAIR_ATTR1_MASK );
|
|
|
|
/* Setup privileged flash as Read Only so that privileged tasks can
|
|
* read it but not modify. */
|
|
portMPU_RNR_REG = portPRIVILEGED_FLASH_REGION;
|
|
portMPU_RBAR_REG = ( ( ( uint32_t ) __privileged_functions_start__ ) & portMPU_RBAR_ADDRESS_MASK ) |
|
|
( portMPU_REGION_NON_SHAREABLE ) |
|
|
( portMPU_REGION_PRIVILEGED_READ_ONLY );
|
|
portMPU_RLAR_REG = ( ( ( uint32_t ) __privileged_functions_end__ ) & portMPU_RLAR_ADDRESS_MASK ) |
|
|
( portMPU_RLAR_ATTR_INDEX0 ) |
|
|
( portMPU_RLAR_REGION_ENABLE );
|
|
|
|
/* Setup unprivileged flash as Read Only by both privileged and
|
|
* unprivileged tasks. All tasks can read it but no-one can modify. */
|
|
portMPU_RNR_REG = portUNPRIVILEGED_FLASH_REGION;
|
|
portMPU_RBAR_REG = ( ( ( uint32_t ) __unprivileged_flash_start__ ) & portMPU_RBAR_ADDRESS_MASK ) |
|
|
( portMPU_REGION_NON_SHAREABLE ) |
|
|
( portMPU_REGION_READ_ONLY );
|
|
portMPU_RLAR_REG = ( ( ( uint32_t ) __unprivileged_flash_end__ ) & portMPU_RLAR_ADDRESS_MASK ) |
|
|
( portMPU_RLAR_ATTR_INDEX0 ) |
|
|
( portMPU_RLAR_REGION_ENABLE );
|
|
|
|
/* Setup unprivileged syscalls flash as Read Only by both privileged
|
|
* and unprivileged tasks. All tasks can read it but no-one can modify. */
|
|
portMPU_RNR_REG = portUNPRIVILEGED_SYSCALLS_REGION;
|
|
portMPU_RBAR_REG = ( ( ( uint32_t ) __syscalls_flash_start__ ) & portMPU_RBAR_ADDRESS_MASK ) |
|
|
( portMPU_REGION_NON_SHAREABLE ) |
|
|
( portMPU_REGION_READ_ONLY );
|
|
portMPU_RLAR_REG = ( ( ( uint32_t ) __syscalls_flash_end__ ) & portMPU_RLAR_ADDRESS_MASK ) |
|
|
( portMPU_RLAR_ATTR_INDEX0 ) |
|
|
( portMPU_RLAR_REGION_ENABLE );
|
|
|
|
/* Setup RAM containing kernel data for privileged access only. */
|
|
portMPU_RNR_REG = portPRIVILEGED_RAM_REGION;
|
|
portMPU_RBAR_REG = ( ( ( uint32_t ) __privileged_sram_start__ ) & portMPU_RBAR_ADDRESS_MASK ) |
|
|
( portMPU_REGION_NON_SHAREABLE ) |
|
|
( portMPU_REGION_PRIVILEGED_READ_WRITE ) |
|
|
( portMPU_REGION_EXECUTE_NEVER );
|
|
portMPU_RLAR_REG = ( ( ( uint32_t ) __privileged_sram_end__ ) & portMPU_RLAR_ADDRESS_MASK ) |
|
|
( portMPU_RLAR_ATTR_INDEX0 ) |
|
|
( portMPU_RLAR_REGION_ENABLE );
|
|
|
|
/* Enable mem fault. */
|
|
portSCB_SYS_HANDLER_CTRL_STATE_REG |= portSCB_MEM_FAULT_ENABLE_BIT;
|
|
|
|
/* Enable MPU with privileged background access i.e. unmapped
|
|
* regions have privileged access. */
|
|
portMPU_CTRL_REG |= ( portMPU_PRIV_BACKGROUND_ENABLE_BIT | portMPU_ENABLE_BIT );
|
|
}
|
|
}
|
|
|
|
#endif /* configENABLE_MPU */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configENABLE_FPU == 1 )
|
|
|
|
static void prvSetupFPU( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
{
|
|
/* Enable non-secure access to the FPU. */
|
|
SecureInit_EnableNSFPUAccess();
|
|
}
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
|
|
/* CP10 = 11 ==> Full access to FPU i.e. both privileged and
|
|
* unprivileged code should be able to access FPU. CP11 should be
|
|
* programmed to the same value as CP10. */
|
|
*( portCPACR ) |= ( ( portCPACR_CP10_VALUE << portCPACR_CP10_POS ) |
|
|
( portCPACR_CP11_VALUE << portCPACR_CP11_POS )
|
|
);
|
|
|
|
/* ASPEN = 1 ==> Hardware should automatically preserve floating point
|
|
* context on exception entry and restore on exception return.
|
|
* LSPEN = 1 ==> Enable lazy context save of FP state. */
|
|
*( portFPCCR ) |= ( portFPCCR_ASPEN_MASK | portFPCCR_LSPEN_MASK );
|
|
}
|
|
|
|
#endif /* configENABLE_FPU */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vPortYield( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
/* Set a PendSV to request a context switch. */
|
|
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
|
|
|
|
/* Barriers are normally not required but do ensure the code is
|
|
* completely within the specified behaviour for the architecture. */
|
|
__asm volatile ( "dsb" ::: "memory" );
|
|
__asm volatile ( "isb" );
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vPortEnterCritical( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
portDISABLE_INTERRUPTS();
|
|
ulCriticalNesting++;
|
|
|
|
/* Barriers are normally not required but do ensure the code is
|
|
* completely within the specified behaviour for the architecture. */
|
|
__asm volatile ( "dsb" ::: "memory" );
|
|
__asm volatile ( "isb" );
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vPortExitCritical( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
configASSERT( ulCriticalNesting );
|
|
ulCriticalNesting--;
|
|
|
|
if( ulCriticalNesting == 0 )
|
|
{
|
|
portENABLE_INTERRUPTS();
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void SysTick_Handler( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
uint32_t ulPreviousMask;
|
|
|
|
ulPreviousMask = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
traceISR_ENTER();
|
|
{
|
|
/* Increment the RTOS tick. */
|
|
if( xTaskIncrementTick() != pdFALSE )
|
|
{
|
|
traceISR_EXIT_TO_SCHEDULER();
|
|
/* Pend a context switch. */
|
|
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
|
|
}
|
|
else
|
|
{
|
|
traceISR_EXIT();
|
|
}
|
|
}
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR( ulPreviousMask );
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vPortSVCHandler_C( uint32_t * pulCallerStackAddress ) /* PRIVILEGED_FUNCTION portDONT_DISCARD */
|
|
{
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 1 ) )
|
|
#if defined( __ARMCC_VERSION )
|
|
|
|
/* Declaration when these variable are defined in code instead of being
|
|
* exported from linker scripts. */
|
|
extern uint32_t * __syscalls_flash_start__;
|
|
extern uint32_t * __syscalls_flash_end__;
|
|
#else
|
|
/* Declaration when these variable are exported from linker scripts. */
|
|
extern uint32_t __syscalls_flash_start__[];
|
|
extern uint32_t __syscalls_flash_end__[];
|
|
#endif /* defined( __ARMCC_VERSION ) */
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 1 ) */
|
|
|
|
uint32_t ulPC;
|
|
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
uint32_t ulR0, ulR1;
|
|
extern TaskHandle_t pxCurrentTCB;
|
|
#if ( configENABLE_MPU == 1 )
|
|
uint32_t ulControl, ulIsTaskPrivileged;
|
|
#endif /* configENABLE_MPU */
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
uint8_t ucSVCNumber;
|
|
|
|
/* Register are stored on the stack in the following order - R0, R1, R2, R3,
|
|
* R12, LR, PC, xPSR. */
|
|
ulPC = pulCallerStackAddress[ portOFFSET_TO_PC ];
|
|
ucSVCNumber = ( ( uint8_t * ) ulPC )[ -2 ];
|
|
|
|
switch( ucSVCNumber )
|
|
{
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
case portSVC_ALLOCATE_SECURE_CONTEXT:
|
|
|
|
/* R0 contains the stack size passed as parameter to the
|
|
* vPortAllocateSecureContext function. */
|
|
ulR0 = pulCallerStackAddress[ 0 ];
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
{
|
|
/* Read the CONTROL register value. */
|
|
__asm volatile ( "mrs %0, control" : "=r" ( ulControl ) );
|
|
|
|
/* The task that raised the SVC is privileged if Bit[0]
|
|
* in the CONTROL register is 0. */
|
|
ulIsTaskPrivileged = ( ( ulControl & portCONTROL_PRIVILEGED_MASK ) == 0 );
|
|
|
|
/* Allocate and load a context for the secure task. */
|
|
xSecureContext = SecureContext_AllocateContext( ulR0, ulIsTaskPrivileged, pxCurrentTCB );
|
|
}
|
|
#else /* if ( configENABLE_MPU == 1 ) */
|
|
{
|
|
/* Allocate and load a context for the secure task. */
|
|
xSecureContext = SecureContext_AllocateContext( ulR0, pxCurrentTCB );
|
|
}
|
|
#endif /* configENABLE_MPU */
|
|
|
|
configASSERT( xSecureContext != securecontextINVALID_CONTEXT_ID );
|
|
SecureContext_LoadContext( xSecureContext, pxCurrentTCB );
|
|
break;
|
|
|
|
case portSVC_FREE_SECURE_CONTEXT:
|
|
|
|
/* R0 contains TCB being freed and R1 contains the secure
|
|
* context handle to be freed. */
|
|
ulR0 = pulCallerStackAddress[ 0 ];
|
|
ulR1 = pulCallerStackAddress[ 1 ];
|
|
|
|
/* Free the secure context. */
|
|
SecureContext_FreeContext( ( SecureContextHandle_t ) ulR1, ( void * ) ulR0 );
|
|
break;
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
|
|
case portSVC_START_SCHEDULER:
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
{
|
|
/* De-prioritize the non-secure exceptions so that the
|
|
* non-secure pendSV runs at the lowest priority. */
|
|
SecureInit_DePrioritizeNSExceptions();
|
|
|
|
/* Initialize the secure context management system. */
|
|
SecureContext_Init();
|
|
}
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
|
|
#if ( configENABLE_FPU == 1 )
|
|
{
|
|
/* Setup the Floating Point Unit (FPU). */
|
|
prvSetupFPU();
|
|
}
|
|
#endif /* configENABLE_FPU */
|
|
|
|
/* Setup the context of the first task so that the first task starts
|
|
* executing. */
|
|
vRestoreContextOfFirstTask();
|
|
break;
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 1 ) )
|
|
case portSVC_RAISE_PRIVILEGE:
|
|
|
|
/* Only raise the privilege, if the svc was raised from any of
|
|
* the system calls. */
|
|
if( ( ulPC >= ( uint32_t ) __syscalls_flash_start__ ) &&
|
|
( ulPC <= ( uint32_t ) __syscalls_flash_end__ ) )
|
|
{
|
|
vRaisePrivilege();
|
|
}
|
|
break;
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 1 ) */
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
case portSVC_YIELD:
|
|
vPortYield();
|
|
break;
|
|
#endif /* configENABLE_MPU == 1 */
|
|
|
|
default:
|
|
/* Incorrect SVC call. */
|
|
configASSERT( pdFALSE );
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
void vSystemCallEnter( uint32_t * pulTaskStack,
|
|
uint32_t ulLR,
|
|
uint8_t ucSystemCallNumber ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
extern TaskHandle_t pxCurrentTCB;
|
|
extern UBaseType_t uxSystemCallImplementations[ NUM_SYSTEM_CALLS ];
|
|
xMPU_SETTINGS * pxMpuSettings;
|
|
uint32_t * pulSystemCallStack;
|
|
uint32_t ulStackFrameSize, ulSystemCallLocation, i;
|
|
|
|
#if defined( __ARMCC_VERSION )
|
|
|
|
/* Declaration when these variable are defined in code instead of being
|
|
* exported from linker scripts. */
|
|
extern uint32_t * __syscalls_flash_start__;
|
|
extern uint32_t * __syscalls_flash_end__;
|
|
#else
|
|
/* Declaration when these variable are exported from linker scripts. */
|
|
extern uint32_t __syscalls_flash_start__[];
|
|
extern uint32_t __syscalls_flash_end__[];
|
|
#endif /* #if defined( __ARMCC_VERSION ) */
|
|
|
|
ulSystemCallLocation = pulTaskStack[ portOFFSET_TO_PC ];
|
|
pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );
|
|
|
|
/* Checks:
|
|
* 1. SVC is raised from the system call section (i.e. application is
|
|
* not raising SVC directly).
|
|
* 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must be NULL as
|
|
* it is non-NULL only during the execution of a system call (i.e.
|
|
* between system call enter and exit).
|
|
* 3. System call is not for a kernel API disabled by the configuration
|
|
* in FreeRTOSConfig.h.
|
|
* 4. We do not need to check that ucSystemCallNumber is within range
|
|
* because the assembly SVC handler checks that before calling
|
|
* this function.
|
|
*/
|
|
if( ( ulSystemCallLocation >= ( uint32_t ) __syscalls_flash_start__ ) &&
|
|
( ulSystemCallLocation <= ( uint32_t ) __syscalls_flash_end__ ) &&
|
|
( pxMpuSettings->xSystemCallStackInfo.pulTaskStack == NULL ) &&
|
|
( uxSystemCallImplementations[ ucSystemCallNumber ] != ( UBaseType_t ) 0 ) )
|
|
{
|
|
pulSystemCallStack = pxMpuSettings->xSystemCallStackInfo.pulSystemCallStack;
|
|
|
|
#if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) )
|
|
{
|
|
if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL )
|
|
{
|
|
/* Extended frame i.e. FPU in use. */
|
|
ulStackFrameSize = 26;
|
|
__asm volatile (
|
|
" vpush {s0} \n" /* Trigger lazy stacking. */
|
|
" vpop {s0} \n" /* Nullify the affect of the above instruction. */
|
|
::: "memory"
|
|
);
|
|
}
|
|
else
|
|
{
|
|
/* Standard frame i.e. FPU not in use. */
|
|
ulStackFrameSize = 8;
|
|
}
|
|
}
|
|
#else /* if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) ) */
|
|
{
|
|
ulStackFrameSize = 8;
|
|
}
|
|
#endif /* configENABLE_FPU || configENABLE_MVE */
|
|
|
|
/* Make space on the system call stack for the stack frame. */
|
|
pulSystemCallStack = pulSystemCallStack - ulStackFrameSize;
|
|
|
|
/* Copy the stack frame. */
|
|
for( i = 0; i < ulStackFrameSize; i++ )
|
|
{
|
|
pulSystemCallStack[ i ] = pulTaskStack[ i ];
|
|
}
|
|
|
|
/* Store the value of the Link Register before the SVC was raised.
|
|
* It contains the address of the caller of the System Call entry
|
|
* point (i.e. the caller of the MPU_<API>). We need to restore it
|
|
* when we exit from the system call. */
|
|
pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry = pulTaskStack[ portOFFSET_TO_LR ];
|
|
|
|
/* Store the value of the PSPLIM register before the SVC was raised.
|
|
* We need to restore it when we exit from the system call. */
|
|
#if ( portUSE_PSPLIM_REGISTER == 1 )
|
|
{
|
|
__asm volatile ( "mrs %0, psplim" : "=r" ( pxMpuSettings->xSystemCallStackInfo.ulStackLimitRegisterAtSystemCallEntry ) );
|
|
}
|
|
#endif
|
|
|
|
/* Use the pulSystemCallStack in thread mode. */
|
|
__asm volatile ( "msr psp, %0" : : "r" ( pulSystemCallStack ) );
|
|
#if ( portUSE_PSPLIM_REGISTER == 1 )
|
|
{
|
|
__asm volatile ( "msr psplim, %0" : : "r" ( pxMpuSettings->xSystemCallStackInfo.pulSystemCallStackLimit ) );
|
|
}
|
|
#endif
|
|
|
|
/* Start executing the system call upon returning from this handler. */
|
|
pulSystemCallStack[ portOFFSET_TO_PC ] = uxSystemCallImplementations[ ucSystemCallNumber ];
|
|
|
|
/* Raise a request to exit from the system call upon finishing the
|
|
* system call. */
|
|
pulSystemCallStack[ portOFFSET_TO_LR ] = ( uint32_t ) vRequestSystemCallExit;
|
|
|
|
/* Remember the location where we should copy the stack frame when we exit from
|
|
* the system call. */
|
|
pxMpuSettings->xSystemCallStackInfo.pulTaskStack = pulTaskStack + ulStackFrameSize;
|
|
|
|
/* Record if the hardware used padding to force the stack pointer
|
|
* to be double word aligned. */
|
|
if( ( pulTaskStack[ portOFFSET_TO_PSR ] & portPSR_STACK_PADDING_MASK ) == portPSR_STACK_PADDING_MASK )
|
|
{
|
|
pxMpuSettings->ulTaskFlags |= portSTACK_FRAME_HAS_PADDING_FLAG;
|
|
}
|
|
else
|
|
{
|
|
pxMpuSettings->ulTaskFlags &= ( ~portSTACK_FRAME_HAS_PADDING_FLAG );
|
|
}
|
|
|
|
/* We ensure in pxPortInitialiseStack that the system call stack is
|
|
* double word aligned and therefore, there is no need of padding.
|
|
* Clear the bit[9] of stacked xPSR. */
|
|
pulSystemCallStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
|
|
|
|
/* Raise the privilege for the duration of the system call. */
|
|
__asm volatile (
|
|
" mrs r0, control \n" /* Obtain current control value. */
|
|
" movs r1, #1 \n" /* r1 = 1. */
|
|
" bics r0, r1 \n" /* Clear nPRIV bit. */
|
|
" msr control, r0 \n" /* Write back new control value. */
|
|
::: "r0", "r1", "memory"
|
|
);
|
|
}
|
|
}
|
|
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
void vRequestSystemCallExit( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */
|
|
{
|
|
__asm volatile ( "svc %0 \n" ::"i" ( portSVC_SYSTEM_CALL_EXIT ) : "memory" );
|
|
}
|
|
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
void vSystemCallExit( uint32_t * pulSystemCallStack,
|
|
uint32_t ulLR ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
extern TaskHandle_t pxCurrentTCB;
|
|
xMPU_SETTINGS * pxMpuSettings;
|
|
uint32_t * pulTaskStack;
|
|
uint32_t ulStackFrameSize, ulSystemCallLocation, i;
|
|
|
|
#if defined( __ARMCC_VERSION )
|
|
|
|
/* Declaration when these variable are defined in code instead of being
|
|
* exported from linker scripts. */
|
|
extern uint32_t * __privileged_functions_start__;
|
|
extern uint32_t * __privileged_functions_end__;
|
|
#else
|
|
/* Declaration when these variable are exported from linker scripts. */
|
|
extern uint32_t __privileged_functions_start__[];
|
|
extern uint32_t __privileged_functions_end__[];
|
|
#endif /* #if defined( __ARMCC_VERSION ) */
|
|
|
|
ulSystemCallLocation = pulSystemCallStack[ portOFFSET_TO_PC ];
|
|
pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB );
|
|
|
|
/* Checks:
|
|
* 1. SVC is raised from the privileged code (i.e. application is not
|
|
* raising SVC directly). This SVC is only raised from
|
|
* vRequestSystemCallExit which is in the privileged code section.
|
|
* 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must not be NULL -
|
|
* this means that we previously entered a system call and the
|
|
* application is not attempting to exit without entering a system
|
|
* call.
|
|
*/
|
|
if( ( ulSystemCallLocation >= ( uint32_t ) __privileged_functions_start__ ) &&
|
|
( ulSystemCallLocation <= ( uint32_t ) __privileged_functions_end__ ) &&
|
|
( pxMpuSettings->xSystemCallStackInfo.pulTaskStack != NULL ) )
|
|
{
|
|
pulTaskStack = pxMpuSettings->xSystemCallStackInfo.pulTaskStack;
|
|
|
|
#if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) )
|
|
{
|
|
if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL )
|
|
{
|
|
/* Extended frame i.e. FPU in use. */
|
|
ulStackFrameSize = 26;
|
|
__asm volatile (
|
|
" vpush {s0} \n" /* Trigger lazy stacking. */
|
|
" vpop {s0} \n" /* Nullify the affect of the above instruction. */
|
|
::: "memory"
|
|
);
|
|
}
|
|
else
|
|
{
|
|
/* Standard frame i.e. FPU not in use. */
|
|
ulStackFrameSize = 8;
|
|
}
|
|
}
|
|
#else /* if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) ) */
|
|
{
|
|
ulStackFrameSize = 8;
|
|
}
|
|
#endif /* configENABLE_FPU || configENABLE_MVE */
|
|
|
|
/* Make space on the task stack for the stack frame. */
|
|
pulTaskStack = pulTaskStack - ulStackFrameSize;
|
|
|
|
/* Copy the stack frame. */
|
|
for( i = 0; i < ulStackFrameSize; i++ )
|
|
{
|
|
pulTaskStack[ i ] = pulSystemCallStack[ i ];
|
|
}
|
|
|
|
/* Use the pulTaskStack in thread mode. */
|
|
__asm volatile ( "msr psp, %0" : : "r" ( pulTaskStack ) );
|
|
|
|
/* Return to the caller of the System Call entry point (i.e. the
|
|
* caller of the MPU_<API>). */
|
|
pulTaskStack[ portOFFSET_TO_PC ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
|
|
/* Ensure that LR has a valid value.*/
|
|
pulTaskStack[ portOFFSET_TO_LR ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry;
|
|
|
|
/* Restore the PSPLIM register to what it was at the time of
|
|
* system call entry. */
|
|
#if ( portUSE_PSPLIM_REGISTER == 1 )
|
|
{
|
|
__asm volatile ( "msr psplim, %0" : : "r" ( pxMpuSettings->xSystemCallStackInfo.ulStackLimitRegisterAtSystemCallEntry ) );
|
|
}
|
|
#endif
|
|
|
|
/* If the hardware used padding to force the stack pointer
|
|
* to be double word aligned, set the stacked xPSR bit[9],
|
|
* otherwise clear it. */
|
|
if( ( pxMpuSettings->ulTaskFlags & portSTACK_FRAME_HAS_PADDING_FLAG ) == portSTACK_FRAME_HAS_PADDING_FLAG )
|
|
{
|
|
pulTaskStack[ portOFFSET_TO_PSR ] |= portPSR_STACK_PADDING_MASK;
|
|
}
|
|
else
|
|
{
|
|
pulTaskStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK );
|
|
}
|
|
|
|
/* This is not NULL only for the duration of the system call. */
|
|
pxMpuSettings->xSystemCallStackInfo.pulTaskStack = NULL;
|
|
|
|
/* Drop the privilege before returning to the thread mode. */
|
|
__asm volatile (
|
|
" mrs r0, control \n" /* Obtain current control value. */
|
|
" movs r1, #1 \n" /* r1 = 1. */
|
|
" orrs r0, r1 \n" /* Set nPRIV bit. */
|
|
" msr control, r0 \n" /* Write back new control value. */
|
|
::: "r0", "r1", "memory"
|
|
);
|
|
}
|
|
}
|
|
|
|
#endif /* ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
|
|
BaseType_t xPortIsTaskPrivileged( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
BaseType_t xTaskIsPrivileged = pdFALSE;
|
|
const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
|
|
|
|
if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
|
|
{
|
|
xTaskIsPrivileged = pdTRUE;
|
|
}
|
|
|
|
return xTaskIsPrivileged;
|
|
}
|
|
|
|
#endif /* configENABLE_MPU == 1 */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
|
|
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
|
|
StackType_t * pxEndOfStack,
|
|
TaskFunction_t pxCode,
|
|
void * pvParameters,
|
|
BaseType_t xRunPrivileged,
|
|
xMPU_SETTINGS * xMPUSettings ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
uint32_t ulIndex = 0;
|
|
uint32_t ulControl = 0x0;
|
|
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x04040404; /* r4. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x05050505; /* r5. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x06060606; /* r6. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x07070707; /* r7. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x08080808; /* r8. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x09090909; /* r9. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x10101010; /* r10. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x11111111; /* r11. */
|
|
ulIndex++;
|
|
|
|
xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) pvParameters; /* r0. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x01010101; /* r1. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x02020202; /* r2. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x03030303; /* r3. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = 0x12121212; /* r12. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) portTASK_RETURN_ADDRESS; /* LR. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) pxCode; /* PC. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = portINITIAL_XPSR; /* xPSR. */
|
|
ulIndex++;
|
|
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
{
|
|
xMPUSettings->ulContext[ ulIndex ] = portNO_SECURE_CONTEXT; /* xSecureContext. */
|
|
ulIndex++;
|
|
}
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) ( pxTopOfStack - 8 ); /* PSP with the hardware saved stack. */
|
|
ulIndex++;
|
|
xMPUSettings->ulContext[ ulIndex ] = ( uint32_t ) pxEndOfStack; /* PSPLIM. */
|
|
ulIndex++;
|
|
|
|
#if ( ( configENABLE_PAC == 1 ) || ( configENABLE_BTI == 1 ) )
|
|
{
|
|
/* Check PACBTI security feature configuration before pushing the
|
|
* CONTROL register's value on task's TCB. */
|
|
ulControl = prvConfigurePACBTI( pdFALSE );
|
|
}
|
|
#endif /* configENABLE_PAC == 1 || configENABLE_BTI == 1 */
|
|
|
|
if( xRunPrivileged == pdTRUE )
|
|
{
|
|
xMPUSettings->ulTaskFlags |= portTASK_IS_PRIVILEGED_FLAG;
|
|
xMPUSettings->ulContext[ ulIndex ] = ( ulControl | ( uint32_t ) portINITIAL_CONTROL_PRIVILEGED ); /* CONTROL. */
|
|
ulIndex++;
|
|
}
|
|
else
|
|
{
|
|
xMPUSettings->ulTaskFlags &= ( ~portTASK_IS_PRIVILEGED_FLAG );
|
|
xMPUSettings->ulContext[ ulIndex ] = ( ulControl | ( uint32_t ) portINITIAL_CONTROL_UNPRIVILEGED ); /* CONTROL. */
|
|
ulIndex++;
|
|
}
|
|
|
|
xMPUSettings->ulContext[ ulIndex ] = portINITIAL_EXC_RETURN; /* LR (EXC_RETURN). */
|
|
ulIndex++;
|
|
|
|
#if ( configUSE_MPU_WRAPPERS_V1 == 0 )
|
|
{
|
|
/* Ensure that the system call stack is double word aligned. */
|
|
xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ configSYSTEM_CALL_STACK_SIZE - 1 ] );
|
|
xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = ( uint32_t * ) ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStack ) &
|
|
( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) );
|
|
|
|
xMPUSettings->xSystemCallStackInfo.pulSystemCallStackLimit = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ 0 ] );
|
|
xMPUSettings->xSystemCallStackInfo.pulSystemCallStackLimit = ( uint32_t * ) ( ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStackLimit ) +
|
|
( uint32_t ) ( portBYTE_ALIGNMENT - 1 ) ) &
|
|
( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) );
|
|
|
|
/* This is not NULL only for the duration of a system call. */
|
|
xMPUSettings->xSystemCallStackInfo.pulTaskStack = NULL;
|
|
}
|
|
#endif /* configUSE_MPU_WRAPPERS_V1 == 0 */
|
|
|
|
#if ( configENABLE_PAC == 1 )
|
|
{
|
|
uint32_t ulTaskPacKey[ 4 ], i;
|
|
|
|
vApplicationGenerateTaskRandomPacKey( &( ulTaskPacKey[ 0 ] ) );
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
{
|
|
xMPUSettings->ulContext[ ulIndex ] = ulTaskPacKey[ i ];
|
|
ulIndex++;
|
|
}
|
|
}
|
|
#endif /* configENABLE_PAC */
|
|
|
|
return &( xMPUSettings->ulContext[ ulIndex ] );
|
|
}
|
|
|
|
#else /* configENABLE_MPU */
|
|
|
|
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
|
|
StackType_t * pxEndOfStack,
|
|
TaskFunction_t pxCode,
|
|
void * pvParameters ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
/* Simulate the stack frame as it would be created by a context switch
|
|
* interrupt. */
|
|
#if ( portPRELOAD_REGISTERS == 0 )
|
|
{
|
|
pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */
|
|
*pxTopOfStack = portINITIAL_XPSR; /* xPSR. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) pxCode; /* PC. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* LR. */
|
|
pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
|
|
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0. */
|
|
pxTopOfStack -= 9; /* R11..R4, EXC_RETURN. */
|
|
*pxTopOfStack = portINITIAL_EXC_RETURN;
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) pxEndOfStack; /* Slot used to hold this task's PSPLIM value. */
|
|
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
{
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = portNO_SECURE_CONTEXT; /* Slot used to hold this task's xSecureContext value. */
|
|
}
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
}
|
|
#else /* portPRELOAD_REGISTERS */
|
|
{
|
|
pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */
|
|
*pxTopOfStack = portINITIAL_XPSR; /* xPSR. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) pxCode; /* PC. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* LR. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x12121212UL; /* R12. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x03030303UL; /* R3. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x02020202UL; /* R2. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x01010101UL; /* R1. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x11111111UL; /* R11. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x10101010UL; /* R10. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x09090909UL; /* R09. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x08080808UL; /* R08. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x07070707UL; /* R07. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x06060606UL; /* R06. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x05050505UL; /* R05. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) 0x04040404UL; /* R04. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = portINITIAL_EXC_RETURN; /* EXC_RETURN. */
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ( StackType_t ) pxEndOfStack; /* Slot used to hold this task's PSPLIM value. */
|
|
|
|
#if ( configENABLE_TRUSTZONE == 1 )
|
|
{
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = portNO_SECURE_CONTEXT; /* Slot used to hold this task's xSecureContext value. */
|
|
}
|
|
#endif /* configENABLE_TRUSTZONE */
|
|
}
|
|
#endif /* portPRELOAD_REGISTERS */
|
|
|
|
#if ( configENABLE_PAC == 1 )
|
|
{
|
|
uint32_t ulTaskPacKey[ 4 ], i;
|
|
|
|
vApplicationGenerateTaskRandomPacKey( &( ulTaskPacKey[ 0 ] ) );
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
{
|
|
pxTopOfStack--;
|
|
*pxTopOfStack = ulTaskPacKey[ i ];
|
|
}
|
|
}
|
|
#endif /* configENABLE_PAC */
|
|
|
|
return pxTopOfStack;
|
|
}
|
|
|
|
#endif /* configENABLE_MPU */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xPortStartScheduler( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
/* An application can install FreeRTOS interrupt handlers in one of the
|
|
* following ways:
|
|
* 1. Direct Routing - Install the functions SVC_Handler and PendSV_Handler
|
|
* for SVCall and PendSV interrupts respectively.
|
|
* 2. Indirect Routing - Install separate handlers for SVCall and PendSV
|
|
* interrupts and route program control from those handlers to
|
|
* SVC_Handler and PendSV_Handler functions.
|
|
*
|
|
* Applications that use Indirect Routing must set
|
|
* configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct
|
|
* routing, which is validated here when configCHECK_HANDLER_INSTALLATION
|
|
* is 1, should be preferred when possible. */
|
|
#if ( configCHECK_HANDLER_INSTALLATION == 1 )
|
|
{
|
|
const portISR_t * const pxVectorTable = portSCB_VTOR_REG;
|
|
|
|
/* Validate that the application has correctly installed the FreeRTOS
|
|
* handlers for SVCall and PendSV interrupts. We do not check the
|
|
* installation of the SysTick handler because the application may
|
|
* choose to drive the RTOS tick using a timer other than the SysTick
|
|
* timer by overriding the weak function vPortSetupTimerInterrupt().
|
|
*
|
|
* Assertion failures here indicate incorrect installation of the
|
|
* FreeRTOS handlers. For help installing the FreeRTOS handlers, see
|
|
* https://www.freertos.org/Why-FreeRTOS/FAQs.
|
|
*
|
|
* Systems with a configurable address for the interrupt vector table
|
|
* can also encounter assertion failures or even system faults here if
|
|
* VTOR is not set correctly to point to the application's vector table. */
|
|
configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == SVC_Handler );
|
|
configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == PendSV_Handler );
|
|
}
|
|
#endif /* configCHECK_HANDLER_INSTALLATION */
|
|
|
|
#if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) )
|
|
{
|
|
volatile uint32_t ulImplementedPrioBits = 0;
|
|
volatile uint8_t ucMaxPriorityValue;
|
|
|
|
/* Determine the maximum priority from which ISR safe FreeRTOS API
|
|
* functions can be called. ISR safe functions are those that end in
|
|
* "FromISR". FreeRTOS maintains separate thread and ISR API functions to
|
|
* ensure interrupt entry is as fast and simple as possible.
|
|
*
|
|
* First, determine the number of priority bits available. Write to all
|
|
* possible bits in the priority setting for SVCall. */
|
|
portNVIC_SHPR2_REG = 0xFF000000;
|
|
|
|
/* Read the value back to see how many bits stuck. */
|
|
ucMaxPriorityValue = ( uint8_t ) ( ( portNVIC_SHPR2_REG & 0xFF000000 ) >> 24 );
|
|
|
|
/* Use the same mask on the maximum system call priority. */
|
|
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
|
|
|
|
/* Check that the maximum system call priority is nonzero after
|
|
* accounting for the number of priority bits supported by the
|
|
* hardware. A priority of 0 is invalid because setting the BASEPRI
|
|
* register to 0 unmasks all interrupts, and interrupts with priority 0
|
|
* cannot be masked using BASEPRI.
|
|
* See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
configASSERT( ucMaxSysCallPriority );
|
|
|
|
/* Check that the bits not implemented in hardware are zero in
|
|
* configMAX_SYSCALL_INTERRUPT_PRIORITY. */
|
|
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( uint8_t ) ( ~( uint32_t ) ucMaxPriorityValue ) ) == 0U );
|
|
|
|
/* Calculate the maximum acceptable priority group value for the number
|
|
* of bits read back. */
|
|
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
|
|
{
|
|
ulImplementedPrioBits++;
|
|
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
|
|
}
|
|
|
|
if( ulImplementedPrioBits == 8 )
|
|
{
|
|
/* When the hardware implements 8 priority bits, there is no way for
|
|
* the software to configure PRIGROUP to not have sub-priorities. As
|
|
* a result, the least significant bit is always used for sub-priority
|
|
* and there are 128 preemption priorities and 2 sub-priorities.
|
|
*
|
|
* This may cause some confusion in some cases - for example, if
|
|
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
|
|
* priority interrupts will be masked in Critical Sections as those
|
|
* are at the same preemption priority. This may appear confusing as
|
|
* 4 is higher (numerically lower) priority than
|
|
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
|
|
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
|
|
* to 4, this confusion does not happen and the behaviour remains the same.
|
|
*
|
|
* The following assert ensures that the sub-priority bit in the
|
|
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
|
|
* confusion. */
|
|
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
|
|
ulMaxPRIGROUPValue = 0;
|
|
}
|
|
else
|
|
{
|
|
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
|
|
}
|
|
|
|
/* Shift the priority group value back to its position within the AIRCR
|
|
* register. */
|
|
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
|
|
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
|
|
}
|
|
#endif /* #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) ) */
|
|
|
|
/* Make PendSV and SysTick the lowest priority interrupts, and make SVCall
|
|
* the highest priority. */
|
|
portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;
|
|
portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;
|
|
portNVIC_SHPR2_REG = 0;
|
|
|
|
#if ( ( configENABLE_PAC == 1 ) || ( configENABLE_BTI == 1 ) )
|
|
{
|
|
/* Set the CONTROL register value based on PACBTI security feature
|
|
* configuration before starting the first task. */
|
|
( void ) prvConfigurePACBTI( pdTRUE );
|
|
}
|
|
#endif /* configENABLE_PAC == 1 || configENABLE_BTI == 1 */
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
{
|
|
/* Setup the Memory Protection Unit (MPU). */
|
|
prvSetupMPU();
|
|
}
|
|
#endif /* configENABLE_MPU */
|
|
|
|
/* Start the timer that generates the tick ISR. Interrupts are disabled
|
|
* here already. */
|
|
vPortSetupTimerInterrupt();
|
|
|
|
/* Initialize the critical nesting count ready for the first task. */
|
|
ulCriticalNesting = 0;
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
{
|
|
xSchedulerRunning = pdTRUE;
|
|
}
|
|
#endif /* ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) ) */
|
|
|
|
/* Start the first task. */
|
|
vStartFirstTask();
|
|
|
|
/* Should never get here as the tasks will now be executing. Call the task
|
|
* exit error function to prevent compiler warnings about a static function
|
|
* not being called in the case that the application writer overrides this
|
|
* functionality by defining configTASK_RETURN_ADDRESS. Call
|
|
* vTaskSwitchContext() so link time optimization does not remove the
|
|
* symbol. */
|
|
vTaskSwitchContext();
|
|
prvTaskExitError();
|
|
|
|
/* Should not get here. */
|
|
return 0;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vPortEndScheduler( void ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
/* Not implemented in ports where there is nothing to return to.
|
|
* Artificially force an assert. */
|
|
configASSERT( ulCriticalNesting == 1000UL );
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configENABLE_MPU == 1 )
|
|
|
|
void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
|
|
const struct xMEMORY_REGION * const xRegions,
|
|
StackType_t * pxBottomOfStack,
|
|
configSTACK_DEPTH_TYPE uxStackDepth )
|
|
{
|
|
uint32_t ulRegionStartAddress, ulRegionEndAddress, ulRegionNumber;
|
|
int32_t lIndex = 0;
|
|
|
|
#if defined( __ARMCC_VERSION )
|
|
|
|
/* Declaration when these variable are defined in code instead of being
|
|
* exported from linker scripts. */
|
|
extern uint32_t * __privileged_sram_start__;
|
|
extern uint32_t * __privileged_sram_end__;
|
|
#else
|
|
/* Declaration when these variable are exported from linker scripts. */
|
|
extern uint32_t __privileged_sram_start__[];
|
|
extern uint32_t __privileged_sram_end__[];
|
|
#endif /* defined( __ARMCC_VERSION ) */
|
|
|
|
/* Setup MAIR0. */
|
|
xMPUSettings->ulMAIR0 = ( ( portMPU_NORMAL_MEMORY_BUFFERABLE_CACHEABLE << portMPU_MAIR_ATTR0_POS ) & portMPU_MAIR_ATTR0_MASK );
|
|
xMPUSettings->ulMAIR0 |= ( ( portMPU_DEVICE_MEMORY_nGnRE << portMPU_MAIR_ATTR1_POS ) & portMPU_MAIR_ATTR1_MASK );
|
|
|
|
/* This function is called automatically when the task is created - in
|
|
* which case the stack region parameters will be valid. At all other
|
|
* times the stack parameters will not be valid and it is assumed that
|
|
* the stack region has already been configured. */
|
|
if( uxStackDepth > 0 )
|
|
{
|
|
ulRegionStartAddress = ( uint32_t ) pxBottomOfStack;
|
|
ulRegionEndAddress = ( uint32_t ) pxBottomOfStack + ( uxStackDepth * ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t ) ) - 1;
|
|
|
|
/* If the stack is within the privileged SRAM, do not protect it
|
|
* using a separate MPU region. This is needed because privileged
|
|
* SRAM is already protected using an MPU region and ARMv8-M does
|
|
* not allow overlapping MPU regions. */
|
|
if( ( ulRegionStartAddress >= ( uint32_t ) __privileged_sram_start__ ) &&
|
|
( ulRegionEndAddress <= ( uint32_t ) __privileged_sram_end__ ) )
|
|
{
|
|
xMPUSettings->xRegionsSettings[ 0 ].ulRBAR = 0;
|
|
xMPUSettings->xRegionsSettings[ 0 ].ulRLAR = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Define the region that allows access to the stack. */
|
|
ulRegionStartAddress &= portMPU_RBAR_ADDRESS_MASK;
|
|
ulRegionEndAddress &= portMPU_RLAR_ADDRESS_MASK;
|
|
|
|
xMPUSettings->xRegionsSettings[ 0 ].ulRBAR = ( ulRegionStartAddress ) |
|
|
( portMPU_REGION_NON_SHAREABLE ) |
|
|
( portMPU_REGION_READ_WRITE ) |
|
|
( portMPU_REGION_EXECUTE_NEVER );
|
|
|
|
xMPUSettings->xRegionsSettings[ 0 ].ulRLAR = ( ulRegionEndAddress ) |
|
|
( portMPU_RLAR_ATTR_INDEX0 ) |
|
|
( portMPU_RLAR_REGION_ENABLE );
|
|
}
|
|
}
|
|
|
|
/* User supplied configurable regions. */
|
|
for( ulRegionNumber = 1; ulRegionNumber <= portNUM_CONFIGURABLE_REGIONS; ulRegionNumber++ )
|
|
{
|
|
/* If xRegions is NULL i.e. the task has not specified any MPU
|
|
* region, the else part ensures that all the configurable MPU
|
|
* regions are invalidated. */
|
|
if( ( xRegions != NULL ) && ( xRegions[ lIndex ].ulLengthInBytes > 0UL ) )
|
|
{
|
|
/* Translate the generic region definition contained in xRegions
|
|
* into the ARMv8 specific MPU settings that are then stored in
|
|
* xMPUSettings. */
|
|
ulRegionStartAddress = ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress ) & portMPU_RBAR_ADDRESS_MASK;
|
|
ulRegionEndAddress = ( uint32_t ) xRegions[ lIndex ].pvBaseAddress + xRegions[ lIndex ].ulLengthInBytes - 1;
|
|
ulRegionEndAddress &= portMPU_RLAR_ADDRESS_MASK;
|
|
|
|
/* Start address. */
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR = ( ulRegionStartAddress ) |
|
|
( portMPU_REGION_NON_SHAREABLE );
|
|
|
|
/* RO/RW. */
|
|
if( ( xRegions[ lIndex ].ulParameters & tskMPU_REGION_READ_ONLY ) != 0 )
|
|
{
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR |= ( portMPU_REGION_READ_ONLY );
|
|
}
|
|
else
|
|
{
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR |= ( portMPU_REGION_READ_WRITE );
|
|
}
|
|
|
|
/* XN. */
|
|
if( ( xRegions[ lIndex ].ulParameters & tskMPU_REGION_EXECUTE_NEVER ) != 0 )
|
|
{
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR |= ( portMPU_REGION_EXECUTE_NEVER );
|
|
}
|
|
|
|
/* End Address. */
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR = ( ulRegionEndAddress ) |
|
|
( portMPU_RLAR_REGION_ENABLE );
|
|
|
|
/* PXN. */
|
|
#if ( portARMV8M_MINOR_VERSION >= 1 )
|
|
{
|
|
if( ( xRegions[ lIndex ].ulParameters & tskMPU_REGION_PRIVILEGED_EXECUTE_NEVER ) != 0 )
|
|
{
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR |= ( portMPU_RLAR_PRIVILEGED_EXECUTE_NEVER );
|
|
}
|
|
}
|
|
#endif /* portARMV8M_MINOR_VERSION >= 1 */
|
|
|
|
/* Normal memory/ Device memory. */
|
|
if( ( xRegions[ lIndex ].ulParameters & tskMPU_REGION_DEVICE_MEMORY ) != 0 )
|
|
{
|
|
/* Attr1 in MAIR0 is configured as device memory. */
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR |= portMPU_RLAR_ATTR_INDEX1;
|
|
}
|
|
else
|
|
{
|
|
/* Attr0 in MAIR0 is configured as normal memory. */
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR |= portMPU_RLAR_ATTR_INDEX0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Invalidate the region. */
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRBAR = 0UL;
|
|
xMPUSettings->xRegionsSettings[ ulRegionNumber ].ulRLAR = 0UL;
|
|
}
|
|
|
|
lIndex++;
|
|
}
|
|
}
|
|
|
|
#endif /* configENABLE_MPU */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
BaseType_t xPortIsAuthorizedToAccessBuffer( const void * pvBuffer,
|
|
uint32_t ulBufferLength,
|
|
uint32_t ulAccessRequested ) /* PRIVILEGED_FUNCTION */
|
|
|
|
{
|
|
uint32_t i, ulBufferStartAddress, ulBufferEndAddress;
|
|
BaseType_t xAccessGranted = pdFALSE;
|
|
const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
|
|
|
|
if( xSchedulerRunning == pdFALSE )
|
|
{
|
|
/* Grant access to all the kernel objects before the scheduler
|
|
* is started. It is necessary because there is no task running
|
|
* yet and therefore, we cannot use the permissions of any
|
|
* task. */
|
|
xAccessGranted = pdTRUE;
|
|
}
|
|
else if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
|
|
{
|
|
xAccessGranted = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
if( portADD_UINT32_WILL_OVERFLOW( ( ( uint32_t ) pvBuffer ), ( ulBufferLength - 1UL ) ) == pdFALSE )
|
|
{
|
|
ulBufferStartAddress = ( uint32_t ) pvBuffer;
|
|
ulBufferEndAddress = ( ( ( uint32_t ) pvBuffer ) + ulBufferLength - 1UL );
|
|
|
|
for( i = 0; i < portTOTAL_NUM_REGIONS; i++ )
|
|
{
|
|
/* Is the MPU region enabled? */
|
|
if( ( xTaskMpuSettings->xRegionsSettings[ i ].ulRLAR & portMPU_RLAR_REGION_ENABLE ) == portMPU_RLAR_REGION_ENABLE )
|
|
{
|
|
if( portIS_ADDRESS_WITHIN_RANGE( ulBufferStartAddress,
|
|
portEXTRACT_FIRST_ADDRESS_FROM_RBAR( xTaskMpuSettings->xRegionsSettings[ i ].ulRBAR ),
|
|
portEXTRACT_LAST_ADDRESS_FROM_RLAR( xTaskMpuSettings->xRegionsSettings[ i ].ulRLAR ) ) &&
|
|
portIS_ADDRESS_WITHIN_RANGE( ulBufferEndAddress,
|
|
portEXTRACT_FIRST_ADDRESS_FROM_RBAR( xTaskMpuSettings->xRegionsSettings[ i ].ulRBAR ),
|
|
portEXTRACT_LAST_ADDRESS_FROM_RLAR( xTaskMpuSettings->xRegionsSettings[ i ].ulRLAR ) ) &&
|
|
portIS_AUTHORIZED( ulAccessRequested,
|
|
prvGetRegionAccessPermissions( xTaskMpuSettings->xRegionsSettings[ i ].ulRBAR ) ) )
|
|
{
|
|
xAccessGranted = pdTRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return xAccessGranted;
|
|
}
|
|
|
|
#endif /* #if ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xPortIsInsideInterrupt( void )
|
|
{
|
|
uint32_t ulCurrentInterrupt;
|
|
BaseType_t xReturn;
|
|
|
|
/* Obtain the number of the currently executing interrupt. Interrupt Program
|
|
* Status Register (IPSR) holds the exception number of the currently-executing
|
|
* exception or zero for Thread mode.*/
|
|
__asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
|
|
|
|
if( ulCurrentInterrupt == 0 )
|
|
{
|
|
xReturn = pdFALSE;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdTRUE;
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) )
|
|
|
|
void vPortValidateInterruptPriority( void )
|
|
{
|
|
uint32_t ulCurrentInterrupt;
|
|
uint8_t ucCurrentPriority;
|
|
|
|
/* Obtain the number of the currently executing interrupt. */
|
|
__asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" );
|
|
|
|
/* Is the interrupt number a user defined interrupt? */
|
|
if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
|
|
{
|
|
/* Look up the interrupt's priority. */
|
|
ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
|
|
|
|
/* The following assertion will fail if a service routine (ISR) for
|
|
* an interrupt that has been assigned a priority above
|
|
* configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
|
|
* function. ISR safe FreeRTOS API functions must *only* be called
|
|
* from interrupts that have been assigned a priority at or below
|
|
* configMAX_SYSCALL_INTERRUPT_PRIORITY.
|
|
*
|
|
* Numerically low interrupt priority numbers represent logically high
|
|
* interrupt priorities, therefore the priority of the interrupt must
|
|
* be set to a value equal to or numerically *higher* than
|
|
* configMAX_SYSCALL_INTERRUPT_PRIORITY.
|
|
*
|
|
* Interrupts that use the FreeRTOS API must not be left at their
|
|
* default priority of zero as that is the highest possible priority,
|
|
* which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
|
|
* and therefore also guaranteed to be invalid.
|
|
*
|
|
* FreeRTOS maintains separate thread and ISR API functions to ensure
|
|
* interrupt entry is as fast and simple as possible.
|
|
*
|
|
* The following links provide detailed information:
|
|
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
|
|
* https://www.freertos.org/Why-FreeRTOS/FAQs */
|
|
configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
|
|
}
|
|
|
|
/* Priority grouping: The interrupt controller (NVIC) allows the bits
|
|
* that define each interrupt's priority to be split between bits that
|
|
* define the interrupt's pre-emption priority bits and bits that define
|
|
* the interrupt's sub-priority. For simplicity all bits must be defined
|
|
* to be pre-emption priority bits. The following assertion will fail if
|
|
* this is not the case (if some bits represent a sub-priority).
|
|
*
|
|
* If the application only uses CMSIS libraries for interrupt
|
|
* configuration then the correct setting can be achieved on all Cortex-M
|
|
* devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
|
|
* scheduler. Note however that some vendor specific peripheral libraries
|
|
* assume a non-zero priority group setting, in which cases using a value
|
|
* of zero will result in unpredictable behaviour. */
|
|
configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
|
|
}
|
|
|
|
#endif /* #if ( ( configASSERT_DEFINED == 1 ) && ( portHAS_ARMV8M_MAIN_EXTENSION == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
|
|
|
|
void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
|
|
int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
|
|
xMPU_SETTINGS * xTaskMpuSettings;
|
|
|
|
ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
|
|
ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
|
|
|
|
xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );
|
|
|
|
xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] |= ( 1U << ulAccessControlListEntryBit );
|
|
}
|
|
|
|
#endif /* #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) )
|
|
|
|
void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle,
|
|
int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
|
|
xMPU_SETTINGS * xTaskMpuSettings;
|
|
|
|
ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
|
|
ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
|
|
|
|
xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle );
|
|
|
|
xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] &= ~( 1U << ulAccessControlListEntryBit );
|
|
}
|
|
|
|
#endif /* #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) )
|
|
|
|
#if ( configENABLE_ACCESS_CONTROL_LIST == 1 )
|
|
|
|
BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit;
|
|
BaseType_t xAccessGranted = pdFALSE;
|
|
const xMPU_SETTINGS * xTaskMpuSettings;
|
|
|
|
if( xSchedulerRunning == pdFALSE )
|
|
{
|
|
/* Grant access to all the kernel objects before the scheduler
|
|
* is started. It is necessary because there is no task running
|
|
* yet and therefore, we cannot use the permissions of any
|
|
* task. */
|
|
xAccessGranted = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */
|
|
|
|
ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS );
|
|
ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS );
|
|
|
|
if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG )
|
|
{
|
|
xAccessGranted = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
if( ( xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] & ( 1U << ulAccessControlListEntryBit ) ) != 0 )
|
|
{
|
|
xAccessGranted = pdTRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return xAccessGranted;
|
|
}
|
|
|
|
#else /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */
|
|
|
|
BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */
|
|
{
|
|
( void ) lInternalIndexOfKernelObject;
|
|
|
|
/* If Access Control List feature is not used, all the tasks have
|
|
* access to all the kernel objects. */
|
|
return pdTRUE;
|
|
}
|
|
|
|
#endif /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */
|
|
|
|
#endif /* #if ( ( configENABLE_MPU == 1 ) && ( configUSE_MPU_WRAPPERS_V1 == 0 ) ) */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configENABLE_PAC == 1 ) || ( configENABLE_BTI == 1 ) )
|
|
|
|
static uint32_t prvConfigurePACBTI( BaseType_t xWriteControlRegister )
|
|
{
|
|
uint32_t ulControl = 0x0;
|
|
|
|
/* Ensure that PACBTI is implemented. */
|
|
configASSERT( portID_ISAR5_REG != 0x0 );
|
|
|
|
/* Enable UsageFault exception. */
|
|
portSCB_SYS_HANDLER_CTRL_STATE_REG |= portSCB_USG_FAULT_ENABLE_BIT;
|
|
|
|
#if ( configENABLE_PAC == 1 )
|
|
{
|
|
ulControl |= ( portCONTROL_UPAC_EN | portCONTROL_PAC_EN );
|
|
}
|
|
#endif
|
|
|
|
#if ( configENABLE_BTI == 1 )
|
|
{
|
|
ulControl |= ( portCONTROL_UBTI_EN | portCONTROL_BTI_EN );
|
|
}
|
|
#endif
|
|
|
|
if( xWriteControlRegister == pdTRUE )
|
|
{
|
|
__asm volatile ( "msr control, %0" : : "r" ( ulControl ) );
|
|
}
|
|
|
|
return ulControl;
|
|
}
|
|
|
|
#endif /* configENABLE_PAC == 1 || configENABLE_BTI == 1 */
|
|
/*-----------------------------------------------------------*/
|