/* * FreeRTOS Kernel * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * Copyright 2025 Arm Limited and/or its affiliates * * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /* Standard includes. */ #include #include /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" #ifndef configINTERRUPT_CONTROLLER_BASE_ADDRESS #error configINTERRUPT_CONTROLLER_BASE_ADDRESS must be defined. Refer to Cortex-A equivalent: /* https://www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors */ #endif #ifndef configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET #error configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET must be defined. Refer to Cortex-A equivalent: /* https://www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors */ #endif #ifndef configUNIQUE_INTERRUPT_PRIORITIES #error configUNIQUE_INTERRUPT_PRIORITIES must be defined. Refer to Cortex-A equivalent: /* https://www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors */ #endif #ifndef configSETUP_TICK_INTERRUPT #error configSETUP_TICK_INTERRUPT() must be defined. Refer to Cortex-A equivalent: /* https://www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors */ #endif /* configSETUP_TICK_INTERRUPT */ #ifndef configMAX_API_CALL_INTERRUPT_PRIORITY #error configMAX_API_CALL_INTERRUPT_PRIORITY must be defined. Refer to Cortex-A equivalent: /* https://www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors */ #endif #if configMAX_API_CALL_INTERRUPT_PRIORITY == 0 #error "configMAX_API_CALL_INTERRUPT_PRIORITY must not be set to 0" #endif #if configMAX_API_CALL_INTERRUPT_PRIORITY > configUNIQUE_INTERRUPT_PRIORITIES #error "configMAX_API_CALL_INTERRUPT_PRIORITY must be less than or equal to configUNIQUE_INTERRUPT_PRIORITIES as the lower the numeric priority value the higher the logical interrupt priority" #endif #if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1 /* Check the configuration. */ #if ( configMAX_PRIORITIES > 32 ) #error "configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 different priorities as tasks that share a priority will time slice." #endif #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ /* In case security extensions are implemented. */ #if configMAX_API_CALL_INTERRUPT_PRIORITY <= ( configUNIQUE_INTERRUPT_PRIORITIES / 2 ) #error "configMAX_API_CALL_INTERRUPT_PRIORITY must be greater than ( configUNIQUE_INTERRUPT_PRIORITIES / 2 )" #endif #ifndef configCLEAR_TICK_INTERRUPT #error configCLEAR_TICK_INTERRUPT must be defined in FreeRTOSConfig.h to clear which ever interrupt was used to generate the tick interrupt. #endif #if configNUMBER_OF_CORES < 1 #error configNUMBER_OF_CORES must be set to 1 or greater. If the application is not using multiple cores then set configNUMBER_OF_CORES to 1. #endif /* configNUMBER_OF_CORES < 1 */ /* A critical section is exited when the critical section nesting count reaches * this value. */ #define portNO_CRITICAL_NESTING ( ( size_t ) 0 ) /* In all GICs 255 can be written to the priority mask register to unmask all * (but the lowest) interrupt priority. */ #define portUNMASK_VALUE ( 0xFFUL ) /* Macro to unmask all interrupt priorities. */ #define portCLEAR_INTERRUPT_PRIORITIES_MASK() \ { \ __asm volatile ( \ "MSR DAIFSET, #2 \n" \ "DSB SY \n" \ "ISB SY \n" \ "MSR ICC_PMR_EL1, %0 \n" \ "DSB SY \n" \ "ISB SY \n" \ "MSR DAIFCLR, #2 \n" \ "DSB SY \n" \ "ISB SY \n" \ : \ : "r" ( portUNMASK_VALUE ) \ ); \ } /* Tasks are not created with a floating point context, but can be given a * floating point context after they have been created. A variable is stored as * part of the tasks context that holds portNO_FLOATING_POINT_CONTEXT if the task * does not have an FPU context, or any other value if the task does have an FPU * context. */ #define portNO_FLOATING_POINT_CONTEXT ( ( StackType_t ) 0 ) /* Constants required to setup the initial task context. */ #define portSP_ELx ( ( StackType_t ) 0x01 ) #define portSP_EL0 ( ( StackType_t ) 0x00 ) #define portEL1 ( ( StackType_t ) 0x04 ) #define portINITIAL_PSTATE ( portEL1 | portSP_EL0 ) /* Used by portASSERT_IF_INTERRUPT_PRIORITY_INVALID() when ensuring the binary * point is zero. */ #define portBINARY_POINT_BITS ( ( uint8_t ) 0x03 ) /* Masks all bits in the APSR other than the mode bits. */ #define portAPSR_MODE_BITS_MASK ( 0x0C ) /* The I bit in the DAIF bits. */ #define portDAIF_I ( 0x80 ) #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff ) #define portBIT_0_SET ( ( uint8_t ) 0x01 ) /* The space on the stack required to hold the FPU registers. * There are 32 128-bit plus 2 64-bit status registers.*/ #define portFPU_REGISTER_WORDS ( ( 32 * 2 ) + 2 ) /*-----------------------------------------------------------*/ /* * Starts the first task executing. This function is necessarily written in * assembly code so is implemented in portASM.s. */ extern void vPortRestoreTaskContext( void ); extern void vGIC_EnableIRQ( uint32_t ulInterruptID ); extern void vGIC_SetPriority( uint32_t ulInterruptID, uint32_t ulPriority ); extern void vGIC_PowerUpRedistributor( void ); extern void vGIC_EnableCPUInterface( void ); /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES == 1 ) volatile uint64_t ullCriticalNesting = 0ULL; /* Saved as part of the task context. If ullPortTaskHasFPUContext is non-zero * then floating point context must be saved and restored for the task. */ uint64_t ullPortTaskHasFPUContext = pdFALSE; /* Set to 1 to pend a context switch from an ISR. */ uint64_t ullPortYieldRequired = pdFALSE; /* Counts the interrupt nesting depth. A context switch is only performed if * if the nesting depth is 0. */ uint64_t ullPortInterruptNesting = 0; #else /* #if ( configNUMBER_OF_CORES == 1 ) */ volatile uint64_t ullCriticalNestings[ configNUMBER_OF_CORES ] = { 0 }; /* Saved as part of the task context. If ullPortTaskHasFPUContext is non-zero * then floating point context must be saved and restored for the task. */ uint64_t ullPortTaskHasFPUContext[ configNUMBER_OF_CORES ] = { pdFALSE }; uint64_t ullPortYieldRequired[ configNUMBER_OF_CORES ] = { pdFALSE }; uint64_t ullPortInterruptNestings[ configNUMBER_OF_CORES ] = { 0 }; /* flag to control tick ISR handling, this is made true just before schedular start */ __attribute__((section(".shared_ram"))) uint8_t ucPortSchedulerRunning = pdFALSE; #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ /* Used in the ASM code. */ __attribute__( ( used ) ) const uint64_t ullMaxAPIPriorityMask = ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ); /*-----------------------------------------------------------*/ /* * See header file for description. */ StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, TaskFunction_t pxCode, void * pvParameters ) { /* Setup the initial stack of the task. The stack is set exactly as * expected by the portRESTORE_CONTEXT() macro. */ /* First all the general purpose registers. */ pxTopOfStack--; *pxTopOfStack = 0x0101010101010101ULL; /* R1 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */ pxTopOfStack--; *pxTopOfStack = 0x0303030303030303ULL; /* R3 */ pxTopOfStack--; *pxTopOfStack = 0x0202020202020202ULL; /* R2 */ pxTopOfStack--; *pxTopOfStack = 0x0505050505050505ULL; /* R5 */ pxTopOfStack--; *pxTopOfStack = 0x0404040404040404ULL; /* R4 */ pxTopOfStack--; *pxTopOfStack = 0x0707070707070707ULL; /* R7 */ pxTopOfStack--; *pxTopOfStack = 0x0606060606060606ULL; /* R6 */ pxTopOfStack--; *pxTopOfStack = 0x0909090909090909ULL; /* R9 */ pxTopOfStack--; *pxTopOfStack = 0x0808080808080808ULL; /* R8 */ pxTopOfStack--; *pxTopOfStack = 0x1111111111111111ULL; /* R11 */ pxTopOfStack--; *pxTopOfStack = 0x1010101010101010ULL; /* R10 */ pxTopOfStack--; *pxTopOfStack = 0x1313131313131313ULL; /* R13 */ pxTopOfStack--; *pxTopOfStack = 0x1212121212121212ULL; /* R12 */ pxTopOfStack--; *pxTopOfStack = 0x1515151515151515ULL; /* R15 */ pxTopOfStack--; *pxTopOfStack = 0x1414141414141414ULL; /* R14 */ pxTopOfStack--; *pxTopOfStack = 0x1717171717171717ULL; /* R17 */ pxTopOfStack--; *pxTopOfStack = 0x1616161616161616ULL; /* R16 */ pxTopOfStack--; *pxTopOfStack = 0x1919191919191919ULL; /* R19 */ pxTopOfStack--; *pxTopOfStack = 0x1818181818181818ULL; /* R18 */ pxTopOfStack--; *pxTopOfStack = 0x2121212121212121ULL; /* R21 */ pxTopOfStack--; *pxTopOfStack = 0x2020202020202020ULL; /* R20 */ pxTopOfStack--; *pxTopOfStack = 0x2323232323232323ULL; /* R23 */ pxTopOfStack--; *pxTopOfStack = 0x2222222222222222ULL; /* R22 */ pxTopOfStack--; *pxTopOfStack = 0x2525252525252525ULL; /* R25 */ pxTopOfStack--; *pxTopOfStack = 0x2424242424242424ULL; /* R24 */ pxTopOfStack--; *pxTopOfStack = 0x2727272727272727ULL; /* R27 */ pxTopOfStack--; *pxTopOfStack = 0x2626262626262626ULL; /* R26 */ pxTopOfStack--; *pxTopOfStack = 0x2929292929292929ULL; /* R29 */ pxTopOfStack--; *pxTopOfStack = 0x2828282828282828ULL; /* R28 */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x00; /* XZR - has no effect, used so there are an even number of registers. */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) 0x00; /* R30 - procedure call link register. */ pxTopOfStack--; *pxTopOfStack = portINITIAL_PSTATE; pxTopOfStack--; *pxTopOfStack = ( StackType_t ) pxCode; /* Exception return address. */ #if ( configUSE_TASK_FPU_SUPPORT == portTASK_NO_FPU_CONTEXT_BY_DEFAULT ) { /* The task will start with a critical nesting count of 0 as interrupts are * enabled. */ pxTopOfStack--; *pxTopOfStack = portNO_CRITICAL_NESTING; /* The task will start without a floating point context. A task that * uses the floating point hardware must call vPortTaskUsesFPU() before * executing any floating point instructions. */ pxTopOfStack--; *pxTopOfStack = portNO_FLOATING_POINT_CONTEXT; } #elif ( configUSE_TASK_FPU_SUPPORT == portTASK_HAVE_FPU_CONTEXT_BY_DEFAULT ) { /* The task will start with a floating point context. Leave enough * space for the registers - and ensure they are initialised to 0. */ pxTopOfStack -= portFPU_REGISTER_WORDS; memset( pxTopOfStack, 0x00, portFPU_REGISTER_WORDS * sizeof( StackType_t ) ); /* The task will start with a critical nesting count of 0 as interrupts are * enabled. */ pxTopOfStack--; *pxTopOfStack = portNO_CRITICAL_NESTING; pxTopOfStack--; *pxTopOfStack = pdTRUE; #if ( configNUMBER_OF_CORES == 1 ) ullPortTaskHasFPUContext = pdTRUE; #else ullPortTaskHasFPUContext[ portGET_CORE_ID() ] = pdTRUE; #endif } #else /* if ( configUSE_TASK_FPU_SUPPORT == portTASK_NO_FPU_CONTEXT_BY_DEFAULT ) */ { #error "Invalid configUSE_TASK_FPU_SUPPORT setting - configUSE_TASK_FPU_SUPPORT must be set to 1, 2, or left undefined." } #endif /* if ( configUSE_TASK_FPU_SUPPORT == portTASK_NO_FPU_CONTEXT_BY_DEFAULT ) */ return pxTopOfStack; } /*-----------------------------------------------------------*/ BaseType_t xPortStartScheduler( void ) { uint64_t ullAPSR; #if ( configASSERT_DEFINED == 1 ) { if ( portGET_CORE_ID() == 0 ) { volatile uint8_t ucOriginalPriority; volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( configINTERRUPT_CONTROLLER_BASE_ADDRESS + portINTERRUPT_PRIORITY_REGISTER_OFFSET ); volatile uint8_t ucMaxPriorityValue; /* Determine how many priority bits are implemented in the GIC. * * Save the interrupt priority value that is about to be clobbered. */ ucOriginalPriority = *pucFirstUserPriorityRegister; /* Determine the number of priority bits available. First write to * all possible bits. */ *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE; /* Read the value back to see how many bits stuck. */ ucMaxPriorityValue = *pucFirstUserPriorityRegister; /* Shift to the least significant bits. */ while( ( ucMaxPriorityValue & portBIT_0_SET ) != portBIT_0_SET ) { ucMaxPriorityValue >>= ( uint8_t ) 0x01; } /* Sanity check configUNIQUE_INTERRUPT_PRIORITIES matches the read * value. */ configASSERT( ucMaxPriorityValue >= portLOWEST_INTERRUPT_PRIORITY ); /* Restore the clobbered interrupt priority register to its original * value. */ *pucFirstUserPriorityRegister = ucOriginalPriority; } } #endif /* configASSERT_DEFINED */ __asm volatile ( "MRS %0, CurrentEL" : "=r" ( ullAPSR ) ); ullAPSR &= portAPSR_MODE_BITS_MASK; configASSERT( ullAPSR == portEL1 ); /* Interrupts are turned off in the CPU itself to ensure a tick does * not execute while the scheduler is being started. Interrupts are * automatically turned back on in the CPU when the first task starts * executing. */ portDISABLE_INTERRUPTS(); #if ( configNUMBER_OF_CORES > 1 ) if (0 == portGET_CORE_ID()) { /* Start the timer that generates the tick ISR. */ configSETUP_TICK_INTERRUPT(); ucPortSchedulerRunning = pdTRUE; __asm__ volatile ("dsb sy"); /* Start all other Cores and let them execute vPortRestoreTaskContext()*/ __asm__ volatile ("sev"); } else { portSETUP_SGI_INTERRUPT(); } #else /* if ( configNUMBER_OF_CORES > 1 ) */ /* Start the timer that generates the tick ISR. */ configSETUP_TICK_INTERRUPT(); #endif /* if ( configNUMBER_OF_CORES > 1 ) */ /* Start the first task executing. */ vPortRestoreTaskContext(); return 0; } /*-----------------------------------------------------------*/ void vPortEndScheduler( void ) { /* Stub implementation for ports where there is nothing to return to * Artificially force an assert. */ configASSERT( NULL ); } /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES == 1 ) void vPortEnterCritical( void ) { /* Mask interrupts up to the max syscall interrupt priority. */ uxPortSetInterruptMask(); /* Now interrupts are disabled ullCriticalNesting can be accessed * directly. Increment ullCriticalNesting to keep a count of how many times * portENTER_CRITICAL() has been called. */ ullCriticalNesting++; /* This is not the interrupt safe version of the enter critical function so * assert() if it is being called from an interrupt context. Only API * functions that end in "FromISR" can be used in an interrupt. Only assert if * the critical nesting count is 1 to protect against recursive calls if the * assert function also uses a critical section. */ if( ullCriticalNesting == 1ULL ) { configASSERT( ullPortInterruptNesting == 0 ); } } /*-----------------------------------------------------------*/ void vPortExitCritical( void ) { if( ullCriticalNesting > portNO_CRITICAL_NESTING ) { /* Decrement the nesting count as the critical section is being * exited. */ ullCriticalNesting--; /* If the nesting level has reached zero then all interrupt * priorities must be re-enabled. */ if( ullCriticalNesting == portNO_CRITICAL_NESTING ) { /* Critical nesting has reached zero so all interrupt priorities * should be unmasked. */ portCLEAR_INTERRUPT_PRIORITIES_MASK(); } } } #endif /* if ( configNUMBER_OF_CORES == 1 ) */ /*-----------------------------------------------------------*/ void FreeRTOS_Tick_Handler( void ) { /* Must be the lowest possible priority. */ uint64_t ullRunningInterruptPriority; __asm volatile ( "MRS %0, ICC_RPR_EL1" : "=r" ( ullRunningInterruptPriority ) ); configASSERT( ullRunningInterruptPriority == ( portLOWEST_USABLE_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) ); /* Interrupts should not be enabled before this point. */ #if ( configASSERT_DEFINED == 1 ) { uint64_t ullMaskBits; __asm volatile ( "mrs %0, DAIF" : "=r" ( ullMaskBits )::"memory" ); configASSERT( ( ullMaskBits & portDAIF_I ) != 0 ); } #endif /* configASSERT_DEFINED */ /* Set interrupt mask before altering scheduler structures. The tick * handler runs at the lowest priority, so interrupts cannot already be masked, * so there is no need to save and restore the current mask value. It is * necessary to turn off interrupts in the CPU itself while the ICCPMR is being * updated. */ __asm volatile ( "MSR ICC_PMR_EL1, %0 \n" "DSB SY \n" "ISB SY \n" ::"r" ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) : "memory" ); /* Ok to enable interrupts after the interrupt source has been cleared. */ configCLEAR_TICK_INTERRUPT(); portENABLE_INTERRUPTS(); #if ( configNUMBER_OF_CORES > 1 ) UBaseType_t x = portENTER_CRITICAL_FROM_ISR(); #endif /* if ( configNUMBER_OF_CORES > 1 ) */ /* Increment the RTOS tick. */ if( xTaskIncrementTick() != pdFALSE ) { #if ( configNUMBER_OF_CORES == 1 ) ullPortYieldRequired = pdTRUE; #else ullPortYieldRequired[ portGET_CORE_ID() ] = pdTRUE; #endif } #if ( configNUMBER_OF_CORES > 1 ) portEXIT_CRITICAL_FROM_ISR(x); #endif /* if ( configNUMBER_OF_CORES > 1 ) */ /* Ensure all interrupt priorities are active again. */ portCLEAR_INTERRUPT_PRIORITIES_MASK(); } /*-----------------------------------------------------------*/ #if ( configUSE_TASK_FPU_SUPPORT == portTASK_NO_FPU_CONTEXT_BY_DEFAULT ) void vPortTaskUsesFPU( void ) { /* A task is registering the fact that it needs an FPU context. Set the * FPU flag (which is saved as part of the task context). */ #if ( configNUMBER_OF_CORES == 1 ) ullPortTaskHasFPUContext = pdTRUE; #else ullPortTaskHasFPUContext[ portGET_CORE_ID() ] = pdTRUE; #endif /* Consider initialising the FPSR here - but probably not necessary in * AArch64. */ } #endif /* configUSE_TASK_FPU_SUPPORT */ /*-----------------------------------------------------------*/ void vPortClearInterruptMask( UBaseType_t uxNewMaskValue ) { if( uxNewMaskValue == pdFALSE ) { portCLEAR_INTERRUPT_PRIORITIES_MASK(); } } /*-----------------------------------------------------------*/ UBaseType_t uxPortSetInterruptMask( void ) { uint32_t ulReturn; uint64_t ullPMRValue; /* Interrupt in the CPU must be turned off while the ICCPMR is being * updated. */ portDISABLE_INTERRUPTS(); __asm volatile ( "MRS %0, ICC_PMR_EL1" : "=r" ( ullPMRValue ) ); if( ullPMRValue == ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) ) { /* Interrupts were already masked. */ ulReturn = pdTRUE; } else { ulReturn = pdFALSE; __asm volatile ( "MSR ICC_PMR_EL1, %0 \n" "DSB SY \n" "ISB SY \n" ::"r" ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) : "memory" ); } portENABLE_INTERRUPTS(); return ulReturn; } /*-----------------------------------------------------------*/ #if ( configASSERT_DEFINED == 1 ) void vPortValidateInterruptPriority( void ) { /* The following assertion will fail if a service routine (ISR) for * an interrupt that has been assigned a priority above * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API * function. ISR safe FreeRTOS API functions must *only* be called * from interrupts that have been assigned a priority at or below * configMAX_SYSCALL_INTERRUPT_PRIORITY. * * Numerically low interrupt priority numbers represent logically high * interrupt priorities, therefore the priority of the interrupt must * be set to a value equal to or numerically *higher* than * configMAX_SYSCALL_INTERRUPT_PRIORITY. * * FreeRTOS maintains separate thread and ISR API functions to ensure * interrupt entry is as fast and simple as possible. */ uint64_t ullRunningInterruptPriority; __asm volatile ( "MRS %0, ICC_RPR_EL1" : "=r" ( ullRunningInterruptPriority ) ); configASSERT( ullRunningInterruptPriority >= ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) ); } #endif /* configASSERT_DEFINED */ /*-----------------------------------------------------------*/ /* * If the application provides an implementation of vApplicationIRQHandler(), * then it will get called directly without saving the FPU registers on * interrupt entry, and this weak implementation of * vApplicationFPUSafeIRQHandler() is just provided to remove linkage errors - * it should never actually get called so its implementation contains a * call to configASSERT() that will always fail. * * If the application provides its own implementation of * vApplicationFPUSafeIRQHandler() then the implementation of * vApplicationIRQHandler() provided in portASM.S will save the FPU registers * before calling it. * * Therefore, if the application writer wants FPU registers to be saved on * interrupt entry their IRQ handler must be called * vApplicationFPUSafeIRQHandler(), and if the application writer does not want * FPU registers to be saved on interrupt entry their IRQ handler must be * called vApplicationIRQHandler(). */ __attribute__( ( weak ) ) void vApplicationFPUSafeIRQHandler( uint32_t ulICCIAR ) { ( void ) ulICCIAR; configASSERT( ( volatile void * ) NULL ); } #if ( configNUMBER_OF_CORES > 1 ) /* Which core owns the lock */ volatile uint64_t ucOwnedByCore[ portMAX_CORE_COUNT ]; /* Lock count a core owns */ volatile uint64_t ucRecursionCountByLock[ eLockCount ]; /* Index 0 is used for ISR lock and Index 1 is used for task lock */ uint32_t ulGateWord[ eLockCount ]; void vInterruptCore(uint32_t ulInterruptID, uint32_t ulCoreID) { uint64_t ulRegVal = 0; uint32_t ulCoreMask = (1UL << ulCoreID); ulRegVal |= ( (ulCoreMask & 0xFFFF) | ( ( ulInterruptID & 0xF ) << 24U ) ); __asm__ volatile ( "msr ICC_SGI1R_EL1, %0" : : "r" ( ulRegVal ) ); __asm__ volatile ( "dsb sy"); __asm__ volatile ( "isb sy"); } static inline void prvSpinUnlock( uint32_t * ulLock ) { __asm volatile ( "dmb sy\n" "mov w1, #0\n" "str w1, [%x0]\n" "dsb sy\n" "sev\n" : : "r" ( ulLock ) : "memory", "w1" ); } static inline uint32_t prvSpinTrylock( uint32_t * ulLock ) { register uint32_t ulRet; /* Try to acquire spinlock; caller is responsible for further barriers. */ __asm volatile ( "1:\n" "ldxr w1, [%x1]\n" "cmp w1, #1\n" "beq 2f\n" "mov w2, #1\n" "stxr w1, w2, [%x1]\n" "cmp w1, #0\n" "bne 1b\n" "2:\n" "mov %w0, w1\n" : "=r" ( ulRet ) : "r" ( ulLock ) : "memory", "w1", "w2" ); return ulRet; } /* Read 64b value shared between cores */ static inline uint64_t prvGet64( volatile uint64_t * x ) { __asm( "dsb sy" ); return *x; } /* Write 64b value shared between cores */ static inline void prvSet64( volatile uint64_t * x, uint64_t value ) { *x = value; __asm( "dsb sy" ); } void vPortRecursiveLock( BaseType_t xCoreID, ePortRTOSLock eLockNum, BaseType_t uxAcquire ) { /* Validate the core ID and lock number */ configASSERT( xCoreID < portMAX_CORE_COUNT ); configASSERT( eLockNum < eLockCount ); uint32_t ulLockBit = 1u << eLockNum; /* Lock acquire */ if( uxAcquire ) { /* Check if spinlock is available */ /* If spinlock is not available check if the core owns the lock */ /* If the core owns the lock wait increment the lock count by the core */ /* If core does not own the lock wait for the spinlock */ if( prvSpinTrylock( &ulGateWord[ eLockNum ] ) != 0 ) { /* Check if the core owns the spinlock */ if( prvGet64( &ucOwnedByCore[ xCoreID ] ) & ulLockBit ) { configASSERT( prvGet64( &ucRecursionCountByLock[ eLockNum ] ) != 255u ); prvSet64( &ucRecursionCountByLock[ eLockNum ], ( prvGet64( &ucRecursionCountByLock[ eLockNum ] ) + 1 ) ); return; } /* Preload the gate word into the cache */ uint32_t dummy = ulGateWord[ eLockNum ]; dummy++; while( prvSpinTrylock( &ulGateWord[ eLockNum ] ) != 0 ) { __asm volatile ( "wfe" ); } } /* Add barrier to ensure lock is taken before we proceed */ __asm__ __volatile__ ( "dmb sy" ::: "memory" ); /* Assert the lock count is 0 when the spinlock is free and is acquired */ configASSERT( prvGet64( &ucRecursionCountByLock[ eLockNum ] ) == 0 ); /* Set lock count as 1 */ prvSet64( &ucRecursionCountByLock[ eLockNum ], 1 ); /* Set ucOwnedByCore */ prvSet64( &ucOwnedByCore[ xCoreID ], ( prvGet64( &ucOwnedByCore[ xCoreID ] ) | ulLockBit ) ); } /* Lock release */ else { /* Assert the lock is not free already */ configASSERT( ( prvGet64( &ucOwnedByCore[ xCoreID ] ) & ulLockBit ) != 0 ); configASSERT( prvGet64( &ucRecursionCountByLock[ eLockNum ] ) != 0 ); /* Reduce ucRecursionCountByLock by 1 */ prvSet64( &ucRecursionCountByLock[ eLockNum ], ( prvGet64( &ucRecursionCountByLock[ eLockNum ] ) - 1 ) ); if( !prvGet64( &ucRecursionCountByLock[ eLockNum ] ) ) { prvSet64( &ucOwnedByCore[ xCoreID ], ( prvGet64( &ucOwnedByCore[ xCoreID ] ) & ~ulLockBit ) ); prvSpinUnlock( &ulGateWord[ eLockNum ] ); /* Add barrier to ensure lock status is reflected before we proceed */ __asm__ __volatile__ ( "dmb sy" ::: "memory" ); } } } BaseType_t xPortGetCoreID( void ) { register BaseType_t xCoreID; __asm volatile ( "mrs x0, MPIDR_EL1\n" "and %0, x0, #0xFF\n" : "=r" ( xCoreID ) : : "memory", "x0" ); return xCoreID; } void FreeRTOS_SGI_Handler( void ) { /* Must be the lowest possible priority. */ uint64_t ullRunningInterruptPriority; __asm volatile ( "MRS %0, ICC_RPR_EL1" : "=r" ( ullRunningInterruptPriority ) ); configASSERT( ullRunningInterruptPriority == ( portLOWEST_USABLE_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) ); /* Interrupts should not be enabled before this point. */ #if ( configASSERT_DEFINED == 1 ) { uint64_t ullMaskBits; __asm volatile ( "mrs %0, DAIF" : "=r" ( ullMaskBits )::"memory" ); configASSERT( ( ullMaskBits & portDAIF_I ) != 0 ); } #endif /* configASSERT_DEFINED */ /* Set interrupt mask before altering scheduler structures. The SGI * handler runs at the lowest priority, so interrupts cannot already be masked, * so there is no need to save and restore the current mask value. It is * necessary to turn off interrupts in the CPU itself while the ICCPMR is being * updated. */ __asm volatile ( "MSR ICC_PMR_EL1, %0 \n" "DSB SY \n" "ISB SY \n" ::"r" ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) : "memory" ); /* Ok to enable interrupts after the interrupt source has been cleared. */ portENABLE_INTERRUPTS(); #if ( configNUMBER_OF_CORES == 1 ) ullPortYieldRequired = pdTRUE; #else ullPortYieldRequired[ portGET_CORE_ID() ] = pdTRUE; #endif /* Ensure all interrupt priorities are active again. */ portCLEAR_INTERRUPT_PRIORITIES_MASK(); } #endif /* if( configNUMBER_OF_CORES > 1 ) */