/* * FreeRTOS V202212.00 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /* * Creates all the demo application tasks, then starts the scheduler. The WEB * documentation provides more details of the standard demo application tasks. * In addition to the standard demo tasks, the following tasks and tests are * defined and/or created within this file: * * "Fast Interrupt Test" - A high frequency periodic interrupt is generated * using a free running timer to demonstrate the use of the * configKERNEL_INTERRUPT_PRIORITY configuration constant. The interrupt * service routine measures the number of processor clocks that occur between * each interrupt - and in so doing measures the jitter in the interrupt timing. * The maximum measured jitter time is latched in the ulMaxJitter variable, and * displayed on the LCD by the 'Check' task as described below. The * fast interrupt is configured and handled in the timertest.c source file. * * "LCD" task - the LCD task is a 'gatekeeper' task. It is the only task that * is permitted to access the display directly. Other tasks wishing to write a * message to the LCD send the message on a queue to the LCD task instead of * accessing the LCD themselves. The LCD task just blocks on the queue waiting * for messages - waking and displaying the messages as they arrive. Messages * can either be a text string to display, or an instruction to update MEMS * input. The MEMS input is used to display a ball that can be moved around * LCD by tilting the STM32 Primer. 45% is taken as the neutral position. * * "Check" task - This only executes every five seconds but has the highest * priority so is guaranteed to get processor time. Its main function is to * check that all the standard demo tasks are still operational. Should any * unexpected behaviour within a demo task be discovered the 'check' task will * write an error to the LCD (via the LCD task). If all the demo tasks are * executing with their expected behaviour then the check task writes PASS * along with the max jitter time to the LCD (again via the LCD task), as * described above. * * Tick Hook - A tick hook is provided just for demonstration purposes. In * this case it is used to periodically send an instruction to updated the * MEMS input to the LCD task. * */ /* CircleOS includes. Some of the CircleOS peripheral functionality is * utilised, although CircleOS itself is not used. */ #include "circle.h" /* Standard includes. */ #include /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" #include "queue.h" /* Demo app includes. */ #include "BlockQ.h" #include "blocktim.h" #include "GenQTest.h" #include "partest.h" #include "QPeek.h" /* The bitmap used to display the FreeRTOS.org logo is stored in 16bit format * and therefore takes up a large proportion of the Flash space. Setting this * parameter to 0 excludes the bitmap from the build, freeing up Flash space for * extra code. */ #define mainINCLUDE_BITMAP 0 #if mainINCLUDE_BITMAP == 1 #include "bitmap.h" #endif /* Task priorities. */ #define mainQUEUE_POLL_PRIORITY ( tskIDLE_PRIORITY + 2 ) #define mainCHECK_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 ) #define mainBLOCK_Q_PRIORITY ( tskIDLE_PRIORITY + 2 ) #define mainGEN_Q_PRIORITY ( tskIDLE_PRIORITY + 0 ) #define mainFLASH_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 ) /* Splash screen related constants. */ #define mainBITMAP_Y ( 38 ) #define mainBITMAP_X ( 18 ) #define mainURL_Y ( 8 ) #define mainURL_X ( 78 ) #define mainSPLASH_SCREEN_DELAY ( 2000 / portTICK_PERIOD_MS ) /* Text drawing related constants. */ #define mainLCD_CHAR_HEIGHT ( 13 ) #define mainLCD_MAX_Y ( 110 ) /* The maximum number of message that can be waiting for display at any one * time. */ #define mainLCD_QUEUE_SIZE ( 3 ) /* The check task uses the sprintf function so requires a little more stack. */ #define mainCHECK_TASK_STACK_SIZE ( configMINIMAL_STACK_SIZE + 50 ) /* The LCD task calls some of the CircleOS functions (for MEMS and LCD access), * these can require a larger stack. */ #define configLCD_TASK_STACK_SIZE ( configMINIMAL_STACK_SIZE + 50 ) /* Dimensions the buffer into which the jitter time is written. */ #define mainMAX_MSG_LEN 25 /* The time between cycles of the 'check' task. */ #define mainCHECK_DELAY ( ( TickType_t ) 5000 / portTICK_PERIOD_MS ) /* The period at which the MEMS input should be updated. */ #define mainMEMS_DELAY ( ( TickType_t ) 100 / portTICK_PERIOD_MS ) /* The rate at which the flash task toggles the LED. */ #define mainFLASH_DELAY ( ( TickType_t ) 1000 / portTICK_PERIOD_MS ) /* The number of nano seconds between each processor clock. */ #define mainNS_PER_CLOCK ( ( unsigned long ) ( ( 1.0 / ( double ) configCPU_CLOCK_HZ ) * 1000000000.0 ) ) /* The two types of message that can be sent to the LCD task. */ #define mainUPDATE_BALL_MESSAGE ( 0 ) #define mainWRITE_STRING_MESSAGE ( 1 ) /* Type of the message sent to the LCD task. */ typedef struct { portBASE_TYPE xMessageType; signed char * pcMessage; } xLCDMessage; /*-----------------------------------------------------------*/ /* * Configure the clocks, GPIO and other peripherals as required by the demo. */ static void prvSetupHardware( void ); /* * The LCD is written two by more than one task so is controlled by a * 'gatekeeper' task. This is the only task that is actually permitted to * access the LCD directly. Other tasks wanting to display a message send * the message to the gatekeeper. */ static void prvLCDTask( void * pvParameters ); /* * Checks the status of all the demo tasks then prints a message to the * display. The message will be either PASS - and include in brackets the * maximum measured jitter time (as described at the to of the file), or a * message that describes which of the standard demo tasks an error has been * discovered in. * * Messages are not written directly to the terminal, but passed to prvLCDTask * via a queue. * * The check task also receives instructions to update the MEMS input, which * in turn can also lead to the LCD being updated. */ static void prvCheckTask( void * pvParameters ); /* * Configures the timers and interrupts for the fast interrupt test as * described at the top of this file. */ extern void vSetupTimerTest( void ); /* * A cut down version of sprintf() used to percent the HUGE GCC library * equivalent from being included in the binary image. */ extern int sprintf( char * out, const char * format, ... ); /* * Simple toggle the LED periodically for timing verification. */ static void prvFlashTask( void * pvParameters ); /*-----------------------------------------------------------*/ /* The queue used to send messages to the LCD task. */ QueueHandle_t xLCDQueue; /*-----------------------------------------------------------*/ int main( void ) { #ifdef DEBUG debug(); #endif prvSetupHardware(); /* Create the queue used by the LCD task. Messages for display on the LCD * are received via this queue. */ xLCDQueue = xQueueCreate( mainLCD_QUEUE_SIZE, sizeof( xLCDMessage ) ); /* Start the standard demo tasks. */ vStartBlockingQueueTasks( mainBLOCK_Q_PRIORITY ); vCreateBlockTimeTasks(); vStartGenericQueueTasks( mainGEN_Q_PRIORITY ); vStartQueuePeekTasks(); vStartPolledQueueTasks( mainQUEUE_POLL_PRIORITY ); /* Start the tasks defined within this file/specific to this demo. */ xTaskCreate( prvCheckTask, "Check", mainCHECK_TASK_STACK_SIZE, NULL, mainCHECK_TASK_PRIORITY, NULL ); xTaskCreate( prvLCDTask, "LCD", configLCD_TASK_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL ); xTaskCreate( prvFlashTask, "Flash", configMINIMAL_STACK_SIZE, NULL, mainFLASH_TASK_PRIORITY, NULL ); /* Configure the timers used by the fast interrupt timer test. */ vSetupTimerTest(); /* Start the scheduler. */ vTaskStartScheduler(); /* Will only get here if there was not enough heap space to create the * idle task. */ return 0; } /*-----------------------------------------------------------*/ void prvLCDTask( void * pvParameters ) { xLCDMessage xMessage; char cY = mainLCD_CHAR_HEIGHT; const char * const pcString = "www.FreeRTOS.org"; const char * const pcBlankLine = " "; DRAW_Init(); #if mainINCLUDE_BITMAP == 1 DRAW_SetImage( pucImage, mainBITMAP_Y, mainBITMAP_X, bmpBITMAP_HEIGHT, bmpBITMAP_WIDTH ); #endif LCD_SetScreenOrientation( V9 ); DRAW_DisplayString( mainURL_Y, mainURL_X, pcString, strlen( pcString ) ); vTaskDelay( mainSPLASH_SCREEN_DELAY ); LCD_FillRect( 0, 0, CHIP_SCREEN_WIDTH, CHIP_SCREEN_HEIGHT, RGB_WHITE ); for( ; ; ) { /* Wait for a message to arrive that requires displaying. */ while( xQueueReceive( xLCDQueue, &xMessage, portMAX_DELAY ) != pdPASS ) { } /* Check the message type. */ if( xMessage.xMessageType == mainUPDATE_BALL_MESSAGE ) { /* Read the MEMS and update the ball display on the LCD if required. */ MEMS_Handler(); POINTER_Handler(); } else { /* A text string was sent. First blank off the old text string, then * draw the new text on the next line down. */ DRAW_DisplayString( 0, cY, pcBlankLine, strlen( pcBlankLine ) ); cY -= mainLCD_CHAR_HEIGHT; if( cY <= ( mainLCD_CHAR_HEIGHT - 1 ) ) { /* Wrap the line onto which we are going to write the text. */ cY = mainLCD_MAX_Y; } /* Display the message. */ DRAW_DisplayString( 0, cY, xMessage.pcMessage, strlen( xMessage.pcMessage ) ); } } } /*-----------------------------------------------------------*/ static void prvCheckTask( void * pvParameters ) { TickType_t xLastExecutionTime; xLCDMessage xMessage; static signed char cPassMessage[ mainMAX_MSG_LEN ]; extern unsigned short usMaxJitter; /* Initialise the xLastExecutionTime variable on task entry. */ xLastExecutionTime = xTaskGetTickCount(); /* Setup the message we are going to send to the LCD task. */ xMessage.xMessageType = mainWRITE_STRING_MESSAGE; xMessage.pcMessage = cPassMessage; for( ; ; ) { /* Perform this check every mainCHECK_DELAY milliseconds. */ vTaskDelayUntil( &xLastExecutionTime, mainCHECK_DELAY ); /* Has an error been found in any task? If so then point the text * we are going to send to the LCD task to an error message instead of * the PASS message. */ if( xAreGenericQueueTasksStillRunning() != pdTRUE ) { xMessage.pcMessage = "ERROR IN GEN Q"; } if( xAreBlockingQueuesStillRunning() != pdTRUE ) { xMessage.pcMessage = "ERROR IN BLOCK Q"; } else if( xAreBlockTimeTestTasksStillRunning() != pdTRUE ) { xMessage.pcMessage = "ERROR IN BLOCK TIME"; } else if( xArePollingQueuesStillRunning() != pdTRUE ) { xMessage.pcMessage = "ERROR IN POLL Q"; } else if( xAreQueuePeekTasksStillRunning() != pdTRUE ) { xMessage.pcMessage = "ERROR IN PEEK Q"; } else { /* No errors were found in any task, so send a pass message * with the max measured jitter time also included (as per the * fast interrupt test described at the top of this file and on * the online documentation page for this demo application). */ sprintf( ( char * ) cPassMessage, "PASS [%uns]", ( ( unsigned long ) usMaxJitter ) * mainNS_PER_CLOCK ); } /* Send the message to the LCD gatekeeper for display. */ xQueueSend( xLCDQueue, &xMessage, portMAX_DELAY ); } } /*-----------------------------------------------------------*/ void vApplicationTickHook( void ) { static unsigned long ulCallCount; static const xLCDMessage xMemsMessage = { mainUPDATE_BALL_MESSAGE, NULL }; static portBASE_TYPE xHigherPriorityTaskWoken; /* Periodically send a message to the LCD task telling it to update * the MEMS input, and then if necessary the LCD. */ ulCallCount++; if( ulCallCount >= mainMEMS_DELAY ) { ulCallCount = 0; xHigherPriorityTaskWoken = pdFALSE; xQueueSendFromISR( xLCDQueue, &xMemsMessage, &xHigherPriorityTaskWoken ); } } /*-----------------------------------------------------------*/ static void prvSetupHardware( void ) { /* Start with the clocks in their expected state. */ RCC_DeInit(); /* Enable HSE (high speed external clock). */ RCC_HSEConfig( RCC_HSE_ON ); /* Wait till HSE is ready. */ while( RCC_GetFlagStatus( RCC_FLAG_HSERDY ) == RESET ) { } /* 2 wait states required on the flash. */ *( ( unsigned long * ) 0x40022000 ) = 0x02; /* HCLK = SYSCLK */ RCC_HCLKConfig( RCC_SYSCLK_Div1 ); /* PCLK2 = HCLK */ RCC_PCLK2Config( RCC_HCLK_Div1 ); /* PCLK1 = HCLK/2 */ RCC_PCLK1Config( RCC_HCLK_Div2 ); /* PLLCLK = 12MHz * 6 = 72 MHz. */ RCC_PLLConfig( RCC_PLLSource_HSE_Div1, RCC_PLLMul_6 ); /* Enable PLL. */ RCC_PLLCmd( ENABLE ); /* Wait till PLL is ready. */ while( RCC_GetFlagStatus( RCC_FLAG_PLLRDY ) == RESET ) { } /* Select PLL as system clock source. */ RCC_SYSCLKConfig( RCC_SYSCLKSource_PLLCLK ); /* Wait till PLL is used as system clock source. */ while( RCC_GetSYSCLKSource() != 0x08 ) { } /* Enable GPIOA, GPIOB, GPIOC, GPIOD, GPIOE and AFIO clocks */ RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE | RCC_APB2Periph_AFIO, ENABLE ); /* SPI2 Periph clock enable */ RCC_APB1PeriphClockCmd( RCC_APB1Periph_SPI2, ENABLE ); /* Set the Vector Table base address at 0x08000000 */ NVIC_SetVectorTable( NVIC_VectTab_FLASH, 0x0 ); NVIC_PriorityGroupConfig( NVIC_PriorityGroup_4 ); /* Configure HCLK clock as SysTick clock source. */ SysTick_CLKSourceConfig( SysTick_CLKSource_HCLK ); /* Misc initialisation, including some of the CircleOS features. Note * that CircleOS itself is not used. */ vParTestInitialise(); MEMS_Init(); POINTER_Init(); POINTER_SetMode( POINTER_RESTORE_LESS ); } /*-----------------------------------------------------------*/ static void prvFlashTask( void * pvParameters ) { TickType_t xLastExecutionTime; /* Initialise the xLastExecutionTime variable on task entry. */ xLastExecutionTime = xTaskGetTickCount(); for( ; ; ) { /* Simple toggle the LED periodically. This just provides some timing * verification. */ vTaskDelayUntil( &xLastExecutionTime, mainFLASH_DELAY ); vParTestToggleLED( 0 ); } } /*-----------------------------------------------------------*/ void starting_delay( unsigned long ul ) { vTaskDelay( ( TickType_t ) ul ); }