

Latest News

NXP tweet showing LPC5500 (ARMv8-M
Cortex-M33) running FreeRTOS.

Meet Richard Barry and learn about
running FreeRTOS on RISC-V at

FOSDEM 2019

Version 10.1.1 of the FreeRTOS kernel is
available for immediate download. MIT

licensed.

View a recording of the "OTA Update
Security and Reliability" webinar,

presented by TI and AWS.

Careers

FreeRTOS and other embedded software
careers at AWS.

FreeRTOS Partners

The FreeRTOS kernel is now an MIT licensed AWS open source project, and these pages are being updated accordingly.

Quality RTOS & Embedded Software
About Contact Support FAQ Download
Menu

Quick Start Supported MCUs PDF Books Trace Tools Ecosystem

Quick Start Guide

Support Forum

⇓ Download Source ⇓

FreeRTOS+ Ecosystem
 FreeRTOS+TCP:
 Thread safe TCP/IP stack
 SafeRTOS:
 TUV certified RTOS
 OpenRTOS:
 Commercial Licensed RTOS
 Fail Safe File System:
 Ensures data integrity
 FreeRTOS BSPs:
 3 party driver packages
 Trace & Visualisation:
 Tracealyzer for FreeRTOS
 CLI:
 Command line interface
 WolfSSL SSL / TLS:
 Networking security protocols
 RTOS Training:
 Delivered online or on-site
 IO:
 read(), write(), ioctl() interface

FreeRTOS+ Lab Projects
 FreeRTOS+POSIX:
 POSIX threading API
 FreeRTOS+FAT:
 Thread aware file system

Hint: Use the tree menu to navigate groups of related pages

Using FreeRTOS on RISC-V
Microcontrollers
Preamble
The FreeRTOS RISC-V port has not been formally released yet, and as such, the port's
details, and therefore the information on this page, are subject to change.

Introduction
The RISC-V instruction set architecture (ISA) is easily extensible and does not specify
everything about physical RISC-V microcontroller or system on chip (SoC)
implementations. Accordingly, the FreeRTOS RISC-V port is also extensible - it provides a
base port that handles the registers common to all RISC-V implementations, and a set of
macros that must be implemented to handle hardware implementation specific features
and extensions, such as additional registers.

Quick start
The main body of this page provide detailed information on building FreeRTOS for RISC-V
cores, but the simplest way to get started is to use one of the pre-configured example
projects. The example RISC-V projects are located in the sub-directories of
FreeRTOS/Demo that start "RISC-V" in the main FreeRTOS zip file download. These
projects can be used directly, or simply as a worked example and reference for the source
files, configuration options, and compiler settings detailed below.

In summary, to build FreeRTOS for a RISC-V core you need to:

1. Include the core FreeRTOS source files and the FreeRTOS RISC-V port layer
source files in your project.

2. Ensure the assembler's include path includes the path to the header file that
describes any chip specific implementation details.

3. Define either a constant in FreeRTOSConfig.h or a linker variable to specify the
memory to use as the interrupt stack.

4. Define configCLINT_BASE_ADDRESS in FreeRTOSConfig.h.
5. For the assembler, #define portasmHANDLE_INTERRUPT to the name of the

function provided by your chip or tools vendor for handling external interrupts.
6. Install the FreeRTOS trap handler.

Other links that may be helpful include:

FreeRTOS kernel quick start guide
Adapting a FreeRTOS demo to different hardware
Creating a new FreeRTOS project

Detailed information
On this page:

Home
MIT License
FreeRTOS Books and Manuals
FreeRTOS
FreeRTOS Interactive!

rd

http://localhost:45000/index.html
https://twitter.com/intent/follow?screen_name=real_FreeRTOS
http://localhost:45000/a00104.html#mailing_list
https://twitter.com/NXP/status/1053375368244224000
https://fosdem.org/2019/schedule/event/riscvfreertos/
http://localhost:45000/History.txt
http://localhost:45000/a00104.html
http://localhost:45000/a00114.html
http://event.on24.com/wcc/r/1793442-1/F772400A7E351E95D222B439CE683297?partnerref=aws
https://www.amazon.jobs/en/search?base_query=Software+Development%E2%80%93+Amazon+FreeRTOS+AWS+IOT&loc_query=
http://www.microchip.com/
https://www.highintegritysystems.com/
http://localhost:45000/a00114.html
https://aws.amazon.com/blogs/opensource/announcing-freertos-kernel-v10/
http://localhost:45000/RTOS.html
http://localhost:45000/RTOS-contact-and-support.html
http://localhost:45000/FreeRTOS_Support_Forum_Archive/freertos_support_forum_archive_index.html
http://localhost:45000/FAQ.html
http://localhost:45000/a00104.html
http://localhost:45000/static_menu.html
http://localhost:45000/FreeRTOS-quick-start-guide.html
http://localhost:45000/RTOS_ports.html
http://localhost:45000/Documentation/RTOS_book.html
http://localhost:45000/FreeRTOS-Plus/FreeRTOS_Plus_Trace/FreeRTOS_Plus_Trace.shtml
http://localhost:45000/FreeRTOS-Plus/index.shtml
http://localhost:45000/FreeRTOS-quick-start-guide.html#page_top
http://localhost:45000/FreeRTOS_Support_Forum_Archive/freertos_support_forum_archive_index.html
http://localhost:45000/a00104.html
http://localhost:45000/FreeRTOS-Plus/index.shtml
http://localhost:45000/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
http://localhost:45000/FreeRTOS-Plus/Safety_Critical_Certified/SafeRTOS.shtml
http://localhost:45000/a00114.html#commercial
http://localhost:45000/FreeRTOS-Plus/Fail_Safe_File_System/Reliance_Edge_Fail_Safe_File_System.shtml
http://localhost:45000/FreeRTOS-Plus/BSP_Solutions/FreeRTOS_BSP.html
http://localhost:45000/FreeRTOS-Plus/FreeRTOS_Plus_Trace/FreeRTOS_Plus_Trace.shtml
http://localhost:45000/FreeRTOS-Plus/FreeRTOS_Plus_CLI/FreeRTOS_Plus_Command_Line_Interface.shtml
http://localhost:45000/FreeRTOS-Plus/WolfSSL/WolfSSL.shtml
http://localhost:45000/FreeRTOS-Plus/Instructor_Led_FreeRTOS_Training/FreeRTOS_Training.shtml
http://localhost:45000/FreeRTOS-Plus/FreeRTOS_Plus_IO/FreeRTOS_Plus_IO.shtml
http://localhost:45000/FreeRTOS-Labs/index.shtml
http://localhost:45000/FreeRTOS-Plus/FreeRTOS_Plus_POSIX/index.html
http://localhost:45000/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html
http://localhost:45000/FreeRTOS-quick-start-guide.html
http://localhost:45000/porting-a-freertos-demo-to-different-hardware.html
http://localhost:45000/Creating-a-new-FreeRTOS-project.html
http://localhost:45000/index.html
http://localhost:45000/a00114.html
http://localhost:45000/Documentation/RTOS_book.html
http://localhost:45000/RTOS.html

Features of the FreeRTOS RISC-V port
Source files
FreeRTOSConfig.h settings
Interrupt (system) stack setup
Required compiler command line options
Installing the FreeRTOS interrupt handler
Handling external interrupts
Extending support to non-standard features
Porting to new 32-bit RISC-V implementations

Features of the FreeRTOS RISC-V port

The FreeRTOS RISC-V port:

Supports machine mode integer execution on 32-bit RISC-V cores only, but is under
active development, and future FreeRTOS releases will add features and
functionality as required by our users.

Implements a separate interrupt stack, and in so doing, greatly reduces RAM usage
on small microcontrollers by removing the need for every task to have a stack large
enough for both interrupt and non-interrupt stack frames.

Provides a base port that can be easily extended to accommodate RISC-V
implementation specific architecture extensions.

Source files

The FreeRTOS kernel source code organization page contains information on adding the
FreeRTOS kernel to your project. In addition to the information on that page, the
FreeRTOS RISC-V port requires one additional header file. The additional header file
describes chip specific details, and is required because RISC-V chips often include chip
specific architecture extensions.

The additional header file is called freertos_risc_v_chip_specific_extensions.h.
There is one implementation of this header file for each supported architecture extension,
with all implementations located in subdirectories of the
/FreeRTOS/Source/Portable/[compiler]/RISC-V-RV32/chip_specific_extensions
directory.

To include the correct freertos_risc_v_chip_specific_extensions.h header file for
your chip simply add the path to that header file to the assembler's include path (note this
is the assembler's include path, not the compiler's include path). For example:

If your chip implements the base RV32I architecture without extensions, and
includes a Core Local Interrupter (CLINT), then add
/FreeRTOS/Source/Portable/[compiler]/RISC-V-
RV32/chip_specific_extensions/RV32I_CLINT_no_extensions to the
assembler's include path.

If your chip uses a PULP RI5KY core as implemented on the RV32M1RM Vega
board, which includes six additional registers and does not include a a Core Local
Interrupter (CLINT), then add /FreeRTOS/Source/Portable/[compiler]/RISC-
V-RV32/chip_specific_extensions/Pulpino_Vega_RV32M1RM to the
assembler's include path.

Also see the compiler and assembler command line options section below for information
on setting assembler command line options, and the porting FreeRTOS to new RISC-V
implementations section for information on creating your own
freertos_risc_v_chip_specific_extensions.h header files.

FreeRTOSConfig.h settings

configCLINT_BASE_ADDRESS must be defined in FreeRTOSConfig.h. If the target RISC-V
chip includes a Core Local Interrupter (CLINT) then set configCLINT_BASE_ADDRESS to

http://localhost:45000/a00017.html

the CLINT's base address. Otherwise set configCLINT_BASE_ADDRESS to 0.

For example, if the CLINT's base address is 0x20040000, then add the following line to
FreeRTOSConfig.h:

#define configCLINT_BASE_ADDRESS (0x20040000)

If there is no CLINT, then add the following line to FreeRTOSConfig.h:

#define configCLINT_BASE_ADDRESS (0)

Interrupt (system) stack setup

The FreeRTOS RISC-V port switches to a dedicated interrupt (or system) stack before any
C functions are called from an interrupt service routine (ISR).

The memory to use as the interrupt stack can either be defined in the linker script or
declared within the FreeRTOS port layer as a statically allocated array. The linker script
method is preferred on memory constrained MCUs as it allows the stack that was used by
main() prior to the scheduler being started (which is no longer used for that purpose after
the scheduler has been started) to be re-purposed as the interrupt stack.

To use a statically allocated array as the interrupt stack:

Define configISR_STACK_SIZE_WORDS in FreeRTOSConfig.h to the size of the
interrupt stack to be allocated. Note the size is defined in words, not bytes.

For example, to use a 500 word (2000 bytes on an RV32, where each word is 4
bytes) statically allocated interrupt stack add the following to FreeRTOSConfig.h:

#define configISR_STACK_SIZE_WORDS (500)

To defined the interrupt stack in the linker script:

1. Declare a linker variable called __freertos_irq_stack_top that holds the
highest address of the interrupt stack, and

2. Ensure configISR_STACK_SIZE_WORDS is not defined.

Using this method requires editing the linker script. If you are not familiar with linker
scripts then it is important to know, when using GCC at least, that '.' is what is
known as the location counter, and holds the value of the memory address at that
point in the linker script. There is no need to understand the fine details of linker
scripts though, just copy the example below.

The stack that was used by main() before the scheduler is started is no longer
required after the scheduler is started, so ideally reuse that stack by setting
__freertos_irq_stack_top to equal the value of the highest address of the stack
allocated for use by main(). For example, if your linker script contains something like
the below (the actual linker scripts in use will vary):

 .stack : ALIGN(0x10)
 {
 __stack_bottom = .;
 . += STACK_SIZE;
 __stack_top = .;
 } > ram

Then __stack_top (example name only) is a linker variable, the value of which
equals the highest address of the stack used by main() (recall '.' holds the value of
the memory address at any given place in the linker script). In this case, to give
__freertos_irq_stack_top the same value as __stack_top, just define
__freertos_irq_stack_top immediately after __stack_top. See the example
below:

 .stack : ALIGN(0x10)
 {
 __stack_bottom = .;
 . += STACK_SIZE;
 __stack_top = .;
 __freertos_irq_stack_top= .; /* ADDED THIS LINE. */
 } > ram

Note: at the time of writing, unlike with task stacks, the kernel does not check for overflows
in the interrupt stack.

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_chapter/ld_3.html#SEC10

Required compiler and assembler command line options

Different RISC-V implementations provide different handlers for external interrupts, so it is
necessary to tell the FreeRTOS kernel which external interrupt handler to call. To set the
name of the external interrupt handler:

1. Locate the name of the external interrupt handler provided by your RISC-V run-time
software distribution - this is normally the software provided by the chip vendor. The
interrupt handler must have one parameter, which is the value of the RISC-V cause
register at the time the interrupt was entered. For example, the prototype of the
interrupt handler is expected to be (sample name only, use the correct name for
your software):

void external_interrupt_handler(uint32_t cause);

2. Define an assembler macro (note this is an assembler macro, not a compiler
macro) called portasmHANDLE_INTERRUPT to equal the name of the interrupt
handler.

If using GCC then this can be achieved by adding the following to the assembler's
command line, assuming the interrupt handler is called
external_interrupt_handler:

-DportasmHANDLE_INTERRUPT=external_interrupt_handler

It is also necessary to add the path to the correct
freertos_risc_v_chip_specific_extensions.h header file for the RISC-V chip in use
to the assembler's include path (note this is the assembler's include path, not the
compiler's include path). See the source files section above.

Installing the FreeRTOS trap handler

The FreeRTOS trap handler is called freertos_risc_v_trap_handler() and is the
central entry point for all interrupts and exceptions. The FreeRTOS trap handler calls the
external interrupt handler when the source of a trap is an external interrupt.

To install the trap handler:

1. If the RISC-V core in use includes a Core Local Interrupter (CLINT) then
freertos_risc_v_trap_handler() is installed automatically, and no specific actions are
required.

2. If the RISC-V core in use does not include a CLINT then it is necessary to install
freertos_risc_v_trap_handler() manually. That can be done by editing the startup
code provided by your chip provider.

Note: If the RISC-V chip uses a vectored interrupt controller then install
freertos_risc_v_trap_handler() as the handler for each vector.

Porting to new 32-bit RISC-V implementations

Read the FreeRTOS RISC-V source files section above before reading this section.

The freertos_risc_v_chip_specific_extensions.h file contains the following macros
that must be defined:

portasmHAS_CLINT

If the target RISC-V chip includes a Core Local Interrupter (CLINT) then set #define
portasmHAS_CLINT to 1, otherwise #define portasmHAS_CLINT to 0.

portasmADDITIONAL_CONTEXT_SIZE

The RISC-V Instruction Set Architecture (ISA) is extensible, so RISC-V chips may
include additional registers over and above those required by the base architecture
specification.

#define portasmADDITIONAL_CONTEXT_SIZE to the number of additional registers
that exist on the target chip - which might be zero. For example, the RI5CY core on
the Vega board includes six additional registers, so the
freertos_risc_v_chip_specific_extensions.h provided for use with that chip
includes the following line:

#define portasmADDITIONAL_CONTEXT_SIZE 6

portasmSAVE_ADDITIONAL_REGISTERS

portasmSAVE_ADDITIONAL_REGISTERS is an assembly macro (not a #define) that
must be implemented to save any chip specific additional registers.

If there are no chip specific extension registers
(portasmADDITIONAL_CONTEXT_SIZE is set to zero) then
portasmSAVE_ADDITIONAL_REGISTERS must be an empty assembly macro as
follows:

.macro portasmSAVE_ADDITIONAL_REGISTERS
 /* No additional registers to save, so this macro does nothing. */
 .endm

If there are chip specific extension registers (portasmADDITIONAL_CONTEXT_SIZE
is greater than zero) then portasmSAVE_ADDITIONAL_REGISTERS must:

1. Decrement the stack pointer to create enough stack space for the additional
registers, then...

2. Save the additional registers into the created stack space.

For example, if the chip has three additional registers then
portasmSAVE_ADDITIONAL_REGISTERS must be implemented as follows (where the
names of the registers will be dependent on the chip, and not as shown here):

.macro portasmSAVE_ADDITIONAL_REGISTERS
 /* Use the portasmADDITIONAL_CONTEXT_SIZE and portWORD_SIZE
 macros to calculate how much additional stack space is needed,
 and subtract that from the stack pointer. This line can just
 be copied from here provided portasmADDITIONAL_CONTEXT_SIZE
 is set correctly. Note the minus sign ('-'). portWORD_SIZE
 is already defined elsewhere. */
 addi sp, sp, -(portasmADDITIONAL_CONTEXT_SIZE * portWORD_SIZE)

 /* Next save the additional registers, which here are assumed
 to be called xx0 to xx2, but will be called something different
 on your chip, to the stack. Assumes portasmADDITIONAL_CONTEXT_SIZE
 is 3. */
 sw xx0, 1 * portWORD_SIZE(sp)
 sw xx1, 2 * portWORD_SIZE(sp)
 sw xx2, 3 * portWORD_SIZE(sp)
 .endm

portasmRESTORE_ADDITIONAL_REGISTERS

portasmRESTORE_ADDITIONAL_REGISTERS is the reverse of
portasmSAVE_ADDITIONAL_REGISTERS.

If there are no chip specific extension registers
(portasmADDITIONAL_CONTEXT_SIZE is set to zero) then
portasmRESTORE_ADDITIONAL_REGISTERS must be an empty assembly macro as
follows:

.macro portasmRESTORE_ADDITIONAL_REGISTERS
 /* No additional registers to restore, so this macro does nothing. */
 .endm

If there are chip specific extension registers (portasmADDITIONAL_CONTEXT_SIZE
is greater than zero) then portasmRESTORE_ADDITIONAL_REGISTERS must:

1. Read the additional registers from the stack locations used by
portasmSAVE_ADDITIONAL_REGISTERS, then...

2. Remove the stack space used to hold the additional registers by incrementing
the stack pointer by the correct amount.

For example, if the chip has three additional registers then
portasmRESTORE_ADDITIONAL_REGISTERS must be implemented as follows (where
the names of the registers will be dependent on the chip, not as shown here):

.macro portasmRESTORE_ADDITIONAL_REGISTERS
 /* Restore the additional registers, which here are assumed

 to be called xx0 to xx2, but will be called something different
 on your chip from the stack. Assumes
 portasmADDITIONAL_CONTEXT_SIZE is 3. */
 lw xx0, 1 * portWORD_SIZE(sp)
 lw xx1, 2 * portWORD_SIZE(sp)
 lw xx2, 3 * portWORD_SIZE(sp)

 /* Use the portasmADDITIONAL_CONTEXT_SIZE and portWORD_SIZE
 macros to calculate how much space to remove from the stack.
 This line can just be copied from here provided
 portasmADDITIONAL_CONTEXT_SIZE is set correctly. portWORD_SIZE
 is already defined elsewhere. */
 addi sp, sp, (portasmADDITIONAL_CONTEXT_SIZE * portWORD_SIZE)
 .endm

[Back to the top] [About FreeRTOS] [Privacy] [Sitemap] [Report an error on this page]

Copyright (C) Amazon Web Services, Inc. or its affiliates. All rights reserved.

http://localhost:45000/RTOS.html
http://localhost:45000/privacy.html
http://localhost:45000/static_menu.html
javascript:void(0)

