/* FreeRTOS V8.2.0rc1 - Copyright (C) 2014 Real Time Engineers Ltd. All rights reserved VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. This file is part of the FreeRTOS distribution. FreeRTOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception. >>! NOTE: The modification to the GPL is included to allow you to !<< >>! distribute a combined work that includes FreeRTOS without being !<< >>! obliged to provide the source code for proprietary components !<< >>! outside of the FreeRTOS kernel. !<< FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Full license text is available on the following link: http://www.freertos.org/a00114.html 1 tab == 4 spaces! *************************************************************************** * * * Having a problem? Start by reading the FAQ "My application does * * not run, what could be wrong?". Have you defined configASSERT()? * * * * http://www.FreeRTOS.org/FAQHelp.html * * * *************************************************************************** *************************************************************************** * * * FreeRTOS provides completely free yet professionally developed, * * robust, strictly quality controlled, supported, and cross * * platform software that is more than just the market leader, it * * is the industry's de facto standard. * * * * Help yourself get started quickly while simultaneously helping * * to support the FreeRTOS project by purchasing a FreeRTOS * * tutorial book, reference manual, or both: * * http://www.FreeRTOS.org/Documentation * * * *************************************************************************** *************************************************************************** * * * Investing in training allows your team to be as productive as * * possible as early as possible, lowering your overall development * * cost, and enabling you to bring a more robust product to market * * earlier than would otherwise be possible. Richard Barry is both * * the architect and key author of FreeRTOS, and so also the world's * * leading authority on what is the world's most popular real time * * kernel for deeply embedded MCU designs. Obtaining your training * * from Richard ensures your team will gain directly from his in-depth * * product knowledge and years of usage experience. Contact Real Time * * Engineers Ltd to enquire about the FreeRTOS Masterclass, presented * * by Richard Barry: http://www.FreeRTOS.org/contact * * *************************************************************************** *************************************************************************** * * * You are receiving this top quality software for free. Please play * * fair and reciprocate by reporting any suspected issues and * * participating in the community forum: * * http://www.FreeRTOS.org/support * * * * Thank you! * * * *************************************************************************** http://www.FreeRTOS.org - Documentation, books, training, latest versions, license and Real Time Engineers Ltd. contact details. http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, including FreeRTOS+Trace - an indispensable productivity tool, a DOS compatible FAT file system, and our tiny thread aware UDP/IP stack. http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate. Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS. http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS licenses offer ticketed support, indemnification and commercial middleware. http://www.SafeRTOS.com - High Integrity Systems also provide a safety engineered and independently SIL3 certified version for use in safety and mission critical applications that require provable dependability. 1 tab == 4 spaces! */ #ifndef PORTMACRO_H #define PORTMACRO_H #ifdef __cplusplus extern "C" { #endif /*----------------------------------------------------------- * Port specific definitions. * * The settings in this file configure FreeRTOS correctly for the * given hardware and compiler. * * These settings should not be altered. *----------------------------------------------------------- */ /* Type definitions. */ #define portCHAR char #define portFLOAT float #define portDOUBLE double #define portLONG long #define portSHORT short #define portSTACK_TYPE uint8_t #define portBASE_TYPE char typedef portSTACK_TYPE StackType_t; typedef signed char BaseType_t; typedef unsigned char UBaseType_t; #if( configUSE_16_BIT_TICKS == 1 ) typedef uint16_t TickType_t; #define portMAX_DELAY ( TickType_t ) 0xffff #else typedef uint32_t TickType_t; #define portMAX_DELAY ( TickType_t ) 0xffffffffUL #endif /*-----------------------------------------------------------*/ /* Hardware specifics. */ #define portBYTE_ALIGNMENT 1 #define portSTACK_GROWTH ( -1 ) #define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ ) #define portYIELD() __asm( "swi" ); /*-----------------------------------------------------------*/ /* Critical section handling. */ #define portENABLE_INTERRUPTS() __asm( "cli" ) #define portDISABLE_INTERRUPTS() __asm( "sei" ) /* * Disable interrupts before incrementing the count of critical section nesting. * The nesting count is maintained so we know when interrupts should be * re-enabled. Once interrupts are disabled the nesting count can be accessed * directly. Each task maintains its own nesting count. */ #define portENTER_CRITICAL() \ { \ extern volatile UBaseType_t uxCriticalNesting; \ \ portDISABLE_INTERRUPTS(); \ uxCriticalNesting++; \ } /* * Interrupts are disabled so we can access the nesting count directly. If the * nesting is found to be 0 (no nesting) then we are leaving the critical * section and interrupts can be re-enabled. */ #define portEXIT_CRITICAL() \ { \ extern volatile UBaseType_t uxCriticalNesting; \ \ uxCriticalNesting--; \ if( uxCriticalNesting == 0 ) \ { \ portENABLE_INTERRUPTS(); \ } \ } /*-----------------------------------------------------------*/ /* Task utilities. */ /* * These macros are very simple as the processor automatically saves and * restores its registers as interrupts are entered and exited. In * addition to the (automatically stacked) registers we also stack the * critical nesting count. Each task maintains its own critical nesting * count as it is legitimate for a task to yield from within a critical * section. If the banked memory model is being used then the PPAGE * register is also stored as part of the tasks context. */ #ifdef BANKED_MODEL /* * Load the stack pointer for the task, then pull the critical nesting * count and PPAGE register from the stack. The remains of the * context are restored by the RTI instruction. */ #define portRESTORE_CONTEXT() \ { \ __asm( " \n\ .globl pxCurrentTCB ; void * \n\ .globl uxCriticalNesting ; char \n\ \n\ ldx pxCurrentTCB \n\ lds 0,x ; Stack \n\ \n\ movb 1,sp+,uxCriticalNesting \n\ movb 1,sp+,0x30 ; PPAGE \n\ " ); \ } /* * By the time this macro is called the processor has already stacked the * registers. Simply stack the nesting count and PPAGE value, then save * the task stack pointer. */ #define portSAVE_CONTEXT() \ { \ __asm( " \n\ .globl pxCurrentTCB ; void * \n\ .globl uxCriticalNesting ; char \n\ \n\ movb 0x30, 1,-sp ; PPAGE \n\ movb uxCriticalNesting, 1,-sp \n\ \n\ ldx pxCurrentTCB \n\ sts 0,x ; Stack \n\ " ); \ } #else /* * These macros are as per the BANKED versions above, but without saving * and restoring the PPAGE register. */ #define portRESTORE_CONTEXT() \ { \ __asm( " \n\ .globl pxCurrentTCB ; void * \n\ .globl uxCriticalNesting ; char \n\ \n\ ldx pxCurrentTCB \n\ lds 0,x ; Stack \n\ \n\ movb 1,sp+,uxCriticalNesting \n\ " ); \ } #define portSAVE_CONTEXT() \ { \ __asm( " \n\ .globl pxCurrentTCB ; void * \n\ .globl uxCriticalNesting ; char \n\ \n\ movb uxCriticalNesting, 1,-sp \n\ \n\ ldx pxCurrentTCB \n\ sts 0,x ; Stack \n\ " ); \ } #endif /* * Utility macros to save/restore correct software registers for GCC. This is * useful when GCC does not generate appropriate ISR head/tail code. */ #define portISR_HEAD() \ { \ __asm(" \n\ movw _.frame, 2,-sp \n\ movw _.tmp, 2,-sp \n\ movw _.z, 2,-sp \n\ movw _.xy, 2,-sp \n\ ;movw _.d2, 2,-sp \n\ ;movw _.d1, 2,-sp \n\ "); \ } #define portISR_TAIL() \ { \ __asm(" \n\ movw 2,sp+, _.xy \n\ movw 2,sp+, _.z \n\ movw 2,sp+, _.tmp \n\ movw 2,sp+, _.frame \n\ ;movw 2,sp+, _.d1 \n\ ;movw 2,sp+, _.d2 \n\ rti \n\ "); \ } /* * Utility macro to call macros above in correct order in order to perform a * task switch from within a standard ISR. This macro can only be used if * the ISR does not use any local (stack) variables. If the ISR uses stack * variables portYIELD() should be used in it's place. */ #define portTASK_SWITCH_FROM_ISR() \ portSAVE_CONTEXT(); \ vTaskSwitchContext(); \ portRESTORE_CONTEXT(); /* Task function macros as described on the FreeRTOS.org WEB site. */ #define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters ) #define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters ) #ifdef __cplusplus } #endif #endif /* PORTMACRO_H */