mirror of
https://github.com/FreeRTOS/FreeRTOS-Kernel.git
synced 2025-08-01 08:54:14 -04:00
Add event_groups.c and associated functions in other core files.
Added xTimerPendCallbackFromISR() to provide a centralised deferred interrupt handling mechanism. Add xPortGetLowestEverFreeHeapSize() to heap_4.c.
This commit is contained in:
parent
faed443e82
commit
f54f21b8f6
11 changed files with 1511 additions and 80 deletions
|
@ -92,9 +92,10 @@ is included as it is used by the port layer. */
|
|||
conform. */
|
||||
typedef portBASE_TYPE (*pdTASK_HOOK_CODE)( void * );
|
||||
|
||||
|
||||
|
||||
|
||||
/* The type that holds event bits always matches portTickType - therefore the
|
||||
number of bits it holds is set by configUSE_16_BIT_TICKS (16 bits if set to 1,
|
||||
32 bits if set to 0. */
|
||||
typedef portTickType xEventBitsType;
|
||||
|
||||
/*
|
||||
* Check all the required application specific macros have been defined.
|
||||
|
@ -190,6 +191,10 @@ typedef portBASE_TYPE (*pdTASK_HOOK_CODE)( void * );
|
|||
#define configUSE_TIMERS 0
|
||||
#endif
|
||||
|
||||
#ifndef configUSE_EVENT_GROUPS
|
||||
#define configUSE_EVENT_GROUPS 0
|
||||
#endif
|
||||
|
||||
#ifndef configUSE_COUNTING_SEMAPHORES
|
||||
#define configUSE_COUNTING_SEMAPHORES 0
|
||||
#endif
|
||||
|
@ -218,6 +223,14 @@ typedef portBASE_TYPE (*pdTASK_HOOK_CODE)( void * );
|
|||
#define INCLUDE_xTaskResumeFromISR 1
|
||||
#endif
|
||||
|
||||
#ifndef INCLUDE_xEventGroupSetBitFromISR
|
||||
#define INCLUDE_xEventGroupSetBitFromISR 0
|
||||
#endif
|
||||
|
||||
#ifndef INCLUDE_xTimerPendCallbackFromISR
|
||||
#define INCLUDE_xTimerPendCallbackFromISR 0
|
||||
#endif
|
||||
|
||||
#ifndef configASSERT
|
||||
#define configASSERT( x )
|
||||
#define configASSERT_DEFINED 0
|
||||
|
|
625
FreeRTOS/Source/include/event_groups.h
Normal file
625
FreeRTOS/Source/include/event_groups.h
Normal file
|
@ -0,0 +1,625 @@
|
|||
/*
|
||||
FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
|
||||
All rights reserved
|
||||
|
||||
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS provides completely free yet professionally developed, *
|
||||
* robust, strictly quality controlled, supported, and cross *
|
||||
* platform software that has become a de facto standard. *
|
||||
* *
|
||||
* Help yourself get started quickly and support the FreeRTOS *
|
||||
* project by purchasing a FreeRTOS tutorial book, reference *
|
||||
* manual, or both from: http://www.FreeRTOS.org/Documentation *
|
||||
* *
|
||||
* Thank you! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
|
||||
|
||||
>>! NOTE: The modification to the GPL is included to allow you to distribute
|
||||
>>! a combined work that includes FreeRTOS without being obliged to provide
|
||||
>>! the source code for proprietary components outside of the FreeRTOS
|
||||
>>! kernel.
|
||||
|
||||
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
FOR A PARTICULAR PURPOSE. Full license text is available from the following
|
||||
link: http://www.freertos.org/a00114.html
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* Having a problem? Start by reading the FAQ "My application does *
|
||||
* not run, what could be wrong?" *
|
||||
* *
|
||||
* http://www.FreeRTOS.org/FAQHelp.html *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
|
||||
license and Real Time Engineers Ltd. contact details.
|
||||
|
||||
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
||||
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
||||
compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
||||
|
||||
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
|
||||
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
|
||||
licenses offer ticketed support, indemnification and middleware.
|
||||
|
||||
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
||||
engineered and independently SIL3 certified version for use in safety and
|
||||
mission critical applications that require provable dependability.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
*/
|
||||
|
||||
#ifndef EVENT_GROUPS_H
|
||||
#define EVENT_GROUPS_H
|
||||
|
||||
#ifndef INC_FREERTOS_H
|
||||
#error "include FreeRTOS.h" must appear in source files before "include event_groups.h"
|
||||
#endif
|
||||
|
||||
#include "timers.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* An event group is a collection of bits to which an application can assign a
|
||||
* meaning. For example, an application may create an event group to convey
|
||||
* the status of various CAN bus related events in which bit 0 might mean "A CAN
|
||||
* message has been received and is ready for processing", bit 1 might mean "The
|
||||
* application has queued a message that is ready for sending onto the CAN
|
||||
* network", and bit 2 might mean "it is time to send a SYNC message onto the
|
||||
* CAN network" etc. A task can then test the bit values to see which events
|
||||
* are active, and optionally enter the Blocked state to wait for a specified
|
||||
* bit or a group of specified bits to be active. To continue the CAN bus
|
||||
* example, a CAN controlling task can enter the Blocked state (and therefore
|
||||
* not consume any processing time) until either bit 0, bit 1 or bit 2 are
|
||||
* active, at which time the bit that was actually active would inform the task
|
||||
* which action it had to take (process a received message, send a message, or
|
||||
* send a SYNC).
|
||||
*
|
||||
* The event groups implementation contains intelligence to avoid race
|
||||
* conditions that would otherwise occur were an application to use a simple
|
||||
* variable for the same purpose. This is particularly important with respect
|
||||
* to when a bit within an event group is to be cleared, and when bits have to
|
||||
* be set and then tested atomically - as is the case where event groups are
|
||||
* used to create a synchronisation point between multiple tasks (a
|
||||
* 'rendezvous').
|
||||
*
|
||||
* \defgroup EventGroup
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*
|
||||
* Type by which event groups are referenced. For example, a call to
|
||||
* xEventGroupCreate() returns an xEventGroupHandle variable that can then
|
||||
* be used as a parameter to other event group functions.
|
||||
*
|
||||
* \defgroup xEventGroupHandle xEventGroupHandle
|
||||
* \ingroup EventGroup
|
||||
*/
|
||||
typedef void * xEventGroupHandle;
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*<pre>
|
||||
xEventGroupHandle xEventGroupCreate( void );
|
||||
</pre>
|
||||
*
|
||||
* Create a new event group. This function cannot be called from an interrupt.
|
||||
*
|
||||
* Although event groups are not related to ticks, for internal implementation
|
||||
* reasons the number of bits available for use in an event group is dependent
|
||||
* on the configUSE_16_BIT_TICKS setting in FreeRTOSConfig.h. If
|
||||
* configUSE_16_BIT_TICKS is 1 then each event group contains 8 usable bits (bit
|
||||
* 0 to bit 7). If configUSE_16_BIT_TICKS is set to 0 then each event group has
|
||||
* 24 usable bits (bit 0 to bit 23). The xEventBitsType type is used to store
|
||||
* event bits within an event group.
|
||||
*
|
||||
* @return If the event group was created then a handle to the event group is
|
||||
* returned. If there was insufficient FreeRTOS heap available to create the
|
||||
* event group then NULL is returned. See http://www.freertos.org/a00111.html
|
||||
*
|
||||
* Example usage:
|
||||
<pre>
|
||||
// Declare a variable to hold the created event group.
|
||||
xEventGroupHandle xCreatedEventGroup;
|
||||
|
||||
// Attempt to create the event group.
|
||||
xCreatedEventGroup = xEventGroupCreate();
|
||||
|
||||
// Was the event group created successfully?
|
||||
if( xCreatedEventGroup == NULL )
|
||||
{
|
||||
// The event group was not created because there was insufficient
|
||||
// FreeRTOS heap available.
|
||||
}
|
||||
else
|
||||
{
|
||||
// The event group was created.
|
||||
}
|
||||
</pre>
|
||||
* \defgroup xEventGroupCreate xEventGroupCreate
|
||||
* \ingroup EventGroup
|
||||
*/
|
||||
xEventGroupHandle xEventGroupCreate( void ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*<pre>
|
||||
xEventBitsType xEventGroupWaitBits( xEventGroupHandle xEventGroup,
|
||||
xEventBitsType uxBitsToWaitFor,
|
||||
portBASE_TYPE xClearOnExit,
|
||||
portBASE_TYPE xWaitForAllBits,
|
||||
portTickType xBlockTime );
|
||||
</pre>
|
||||
*
|
||||
* [Potentially] block to wait for one or more bits to be set within a
|
||||
* previously created event group.
|
||||
*
|
||||
* This function cannot be called from an interrupt.
|
||||
*
|
||||
* @param xEventGroup The event group in which the bits are being tested. The
|
||||
* event group must have previously been created using a call to
|
||||
* xEventGroupCreate().
|
||||
*
|
||||
* @param uxBitsToWaitFor A bitwise value that indicates the bit or bits to test
|
||||
* inside the event group. For example, to wait for bit 0 and/or bit 2 set
|
||||
* uxBitsToWaitFor to 0x05. To wait for bits 0 and/or bit 1 and/or bit 2 set
|
||||
* uxBitsToWaitFor to 0x07. Etc.
|
||||
*
|
||||
* @param xClearOnExit If xClearOnExit is set to pdTRUE then any bits within
|
||||
* uxBitsToWaitFor that are set within the event group will be cleared before
|
||||
* xEventGroupWaitBits() returns. If xClearOnExit is set to pdFALSE then the
|
||||
* bits set in the event group are not altered when the call to
|
||||
* xEventGroupWaitBits() returns.
|
||||
*
|
||||
* @param xWaitForAllBits If xWaitForAllBits is set to pdTRUE then
|
||||
* xEventGroupWaitBits() will return when either all the bits in uxBitsToWaitFor
|
||||
* are set or the specified block time expires. If xWaitForAllBits is set to
|
||||
* pdFALSE then xEventGroupWaitBits() will return when any one of the bits set
|
||||
* in uxBitsToWaitFor is set or the specified block time expires.
|
||||
*
|
||||
* @param xBlockTime The maximum amount of time (specified in 'ticks') to wait
|
||||
* for one/all (depending on the xWaitForAllBits value) of the bits specified by
|
||||
* uxBitsToWaitFor to become set.
|
||||
*
|
||||
* @return The value of the event group at the time either the bits being waited
|
||||
* for became set, or the block time expired. Test the return value to know
|
||||
* which bits were set. If xEventGroupWaitBits() returned because its timeout
|
||||
* expired then not all the bits being waited for will be set. If
|
||||
* xEventGroupWaitBits() returned because the bits it was waiting for were set
|
||||
* then the returned value is the event group value before any bits were
|
||||
* automatically cleared because the xClearOnExit parameter was set to pdTRUE.
|
||||
*
|
||||
* Example usage:
|
||||
<pre>
|
||||
#define BIT_0 ( 1 << 0 )
|
||||
#define BIT_4 ( 1 << 4 )
|
||||
|
||||
void aFunction( xEventGroupHandle xEventGroup )
|
||||
{
|
||||
xEventBitsType uxBits;
|
||||
const portTickType xBlockTime = 100 / portTICK_RATE_MS;
|
||||
|
||||
// Wait a maximum of 100ms for either bit 0 or bit 4 to be set within
|
||||
// the event group. Clear the bits before exiting.
|
||||
uxBits = xEventGroupWaitBits(
|
||||
xEventGroup, // The event group being tested.
|
||||
BIT_0 | BIT_4, // The bits within the event group to wait for.
|
||||
pdTRUE, // BIT_0 and BIT_4 should be cleared before returning.
|
||||
pdFALSE, // Don't wait for both bits, either bit will do.
|
||||
xBlockTime ); // Wait a maximum of 100ms for either bit to be set.
|
||||
|
||||
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
|
||||
{
|
||||
// xEventGroupWaitBits() returned because both bits were set.
|
||||
}
|
||||
else if( ( uxBits & BIT_0 ) != 0 )
|
||||
{
|
||||
// xEventGroupWaitBits() returned because just BIT_0 was set.
|
||||
}
|
||||
else if( ( uxBits & BIT_4 ) != 0 )
|
||||
{
|
||||
// xEventGroupWaitBits() returned because just BIT_4 was set.
|
||||
}
|
||||
else
|
||||
{
|
||||
// xEventGroupWaitBits() returned because xBlockTime ticks passed
|
||||
// without either BIT_0 or BIT_4 becoming set.
|
||||
}
|
||||
}
|
||||
</pre>
|
||||
* \defgroup xEventGroupWaitBits xEventGroupWaitBits
|
||||
* \ingroup EventGroup
|
||||
*/
|
||||
xEventBitsType xEventGroupWaitBits( xEventGroupHandle xEventGroup, xEventBitsType uxBitsToWaitFor, portBASE_TYPE xClearOnExit, portBASE_TYPE xWaitForAllBits, portTickType xBlockTime ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*<pre>
|
||||
xEventBitsType xEventGroupClearBits( xEventGroupHandle xEventGroup, xEventBitsType uxBitsToClear );
|
||||
</pre>
|
||||
*
|
||||
* Clear bits within an event group. This function cannot be called from an
|
||||
* interrupt.
|
||||
*
|
||||
* @param xEventGroup The event group in which the bits are to be cleared.
|
||||
*
|
||||
* @param uxBitsToClear A bitwise value that indicates the bit or bits to clear
|
||||
* in the event group. For example, to clear bit 3 only, set uxBitsToClear to
|
||||
* 0x08. To clear bit 3 and bit 0 set uxBitsToClear to 0x09.
|
||||
*
|
||||
* @return The value of the event group before the specified bits were cleared.
|
||||
*
|
||||
* Example usage:
|
||||
<pre>
|
||||
#define BIT_0 ( 1 << 0 )
|
||||
#define BIT_4 ( 1 << 4 )
|
||||
|
||||
void aFunction( xEventGroupHandle xEventGroup )
|
||||
{
|
||||
xEventBitsType uxBits;
|
||||
|
||||
// Clear bit 0 and bit 4 in xEventGroup.
|
||||
uxBits = xEventGroupClearBits(
|
||||
xEventGroup, // The event group being updated.
|
||||
BIT_0 | BIT_4 );// The bits being cleared.
|
||||
|
||||
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
|
||||
{
|
||||
// Both bit 0 and bit 4 were set before the call to
|
||||
// xEventGroupClearBits() was called. Both will now be clear (not
|
||||
// set).
|
||||
}
|
||||
else if( ( uxBits & BIT_0 ) != 0 )
|
||||
{
|
||||
// Bit 0 was set before xEventGroupClearBits() was called. It will
|
||||
// now be clear.
|
||||
}
|
||||
else if( ( uxBits & BIT_4 ) != 0 )
|
||||
{
|
||||
// Bit 4 was set before xEventGroupClearBits() was called. It will
|
||||
// now be clear.
|
||||
}
|
||||
else
|
||||
{
|
||||
// Neither bit 0 nor bit 4 were set in the first place.
|
||||
}
|
||||
}
|
||||
</pre>
|
||||
* \defgroup xEventGroupClearBits xEventGroupClearBits
|
||||
* \ingroup EventGroup
|
||||
*/
|
||||
xEventBitsType xEventGroupClearBits( xEventGroupHandle xEventGroup, xEventBitsType uxBitsToClear ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*<pre>
|
||||
xEventBitsType xEventGroupSetBits( xEventGroupHandle xEventGroup, xEventBitsType uxBitsToSet );
|
||||
</pre>
|
||||
*
|
||||
* Set bits within an event group.
|
||||
* This function cannot be called from an interrupt. xEventGroupSetBitsFromISR()
|
||||
* is a version that can be called from an interrupt.
|
||||
*
|
||||
* Setting bits in an event group will automatically unblock tasks that are
|
||||
* blocked waiting for the bits.
|
||||
*
|
||||
* @param xEventGroup The event group in which the bits are to be set.
|
||||
*
|
||||
* @param uxBitsToSet A bitwise value that indicates the bit or bits to set.
|
||||
* For example, to set bit 3 only, set uxBitsToSet to 0x08. To set bit 3
|
||||
* and bit 0 set uxBitsToSet to 0x09.
|
||||
*
|
||||
* @return The value of the event group at the time the call to
|
||||
* xEventGroupSetBits() returns. There are two reasons why the returned value
|
||||
* might have the bits specified by the uxBitsToSet parameter cleared. First,
|
||||
* if setting a bit results in a task that was waiting for the bit leaving the
|
||||
* blocked state then it is possible the bit will be cleared automatically
|
||||
* (see the xClearBitOnExit parameter of xEventGroupWaitBits()). Second, any
|
||||
* unblocked (or otherwise Ready state) task that has a priority above that of
|
||||
* the task that called xEventGroupSetBits() will execute and may change the
|
||||
* event group value before the call to xEventGroupSetBits() returns.
|
||||
*
|
||||
* Example usage:
|
||||
<pre>
|
||||
#define BIT_0 ( 1 << 0 )
|
||||
#define BIT_4 ( 1 << 4 )
|
||||
|
||||
void aFunction( xEventGroupHandle xEventGroup )
|
||||
{
|
||||
xEventBitsType uxBits;
|
||||
|
||||
// Set bit 0 and bit 4 in xEventGroup.
|
||||
uxBits = xEventGroupSetBits(
|
||||
xEventGroup, // The event group being updated.
|
||||
BIT_0 | BIT_4 );// The bits being set.
|
||||
|
||||
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
|
||||
{
|
||||
// Both bit 0 and bit 4 remained set when the function returned.
|
||||
}
|
||||
else if( ( uxBits & BIT_0 ) != 0 )
|
||||
{
|
||||
// Bit 0 remained set when the function returned, but bit 4 was
|
||||
// cleared. It might be that bit 4 was cleared automatically as a
|
||||
// task that was waiting for bit 4 was removed from the Blocked
|
||||
// state.
|
||||
}
|
||||
else if( ( uxBits & BIT_4 ) != 0 )
|
||||
{
|
||||
// Bit 4 remained set when the function returned, but bit 0 was
|
||||
// cleared. It might be that bit 0 was cleared automatically as a
|
||||
// task that was waiting for bit 0 was removed from the Blocked
|
||||
// state.
|
||||
}
|
||||
else
|
||||
{
|
||||
// Neither bit 0 nor bit 4 remained set. It might be that a task
|
||||
// was waiting for either or both of the bits to be set, and the
|
||||
// bits were cleared as the task left the Blocked state.
|
||||
}
|
||||
}
|
||||
</pre>
|
||||
* \defgroup xEventGroupSetBits xEventGroupSetBits
|
||||
* \ingroup EventGroup
|
||||
*/
|
||||
xEventBitsType xEventGroupSetBits( xEventGroupHandle xEventGroup, xEventBitsType uxBitsToSet ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*<pre>
|
||||
xEventBitsType xEventGroupSetBitsFromISR( xEventGroupHandle xEventGroup, xEventBitsType uxBitsToSet, portBASE_TYPE *pxHigherPriorityTaskWoken );
|
||||
</pre>
|
||||
*
|
||||
* A version of xEventGroupSetBits() that can be called from an interrupt.
|
||||
*
|
||||
* Setting bits in an event group is not a deterministic operation because there
|
||||
* are an unknown number of tasks that may be waiting for the bit or bits being
|
||||
* set. FreeRTOS does not allow nondeterministic operations to be performed in
|
||||
* interrupts or from critical sections. Therefore xEventGroupSetBitFromISR()
|
||||
* sends a message to the timer task to have the set operation performed in the
|
||||
* context of the timer task - where a scheduler lock is used in place of a
|
||||
* critical section.
|
||||
*
|
||||
* @param xEventGroup The event group in which the bits are to be set.
|
||||
*
|
||||
* @param uxBitsToSet A bitwise value that indicates the bit or bits to set.
|
||||
* For example, to set bit 3 only, set uxBitsToSet to 0x08. To set bit 3
|
||||
* and bit 0 set uxBitsToSet to 0x09.
|
||||
*
|
||||
* @ pxHigherPriorityTaskWoken As mentioned above, calling this function will
|
||||
* result in a message being sent to the timer daemon task. If the priority of
|
||||
* the timer daemon task is higher than the priority of the currently running
|
||||
* task (the task the interrupt interrupted) then *pxHigherPriorityTaskWoken
|
||||
* will be set to pdTRUE by xEventGroupSetBitsFromISR(), indicating that a
|
||||
* context switch should be requested before the interrupt exits. For that
|
||||
* reason *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See the
|
||||
* example code below.
|
||||
*
|
||||
* @return If the callback request was registered successfully then pdPASS is
|
||||
* returned, otherwise pdFALSE is returned. pdFALSE will be returned if the
|
||||
* timer service queue was full.
|
||||
*
|
||||
* Example usage:
|
||||
<pre>
|
||||
#define BIT_0 ( 1 << 0 )
|
||||
#define BIT_4 ( 1 << 4 )
|
||||
|
||||
// An event group which it is assume has already been created by a call to
|
||||
// xEventGroupCreate().
|
||||
xEventGroupHandle xEventGroup;
|
||||
|
||||
void anInterruptHandler( void )
|
||||
{
|
||||
portBASE_TYPE xHigherPriorityTaskWoken;
|
||||
|
||||
// xHigherPriorityTaskWoken must be initialised to pdFALSE;
|
||||
xHigherPriorityTaskWoken = pdFALSE;
|
||||
|
||||
// Set bit 0 and bit 4 in xEventGroup.
|
||||
uxBits = xEventGroupSetBitsFromISR(
|
||||
xEventGroup, // The event group being updated.
|
||||
BIT_0 | BIT_4 // The bits being set.
|
||||
&xHigherPriorityTaskWoken );
|
||||
|
||||
// If xHigherPriorityTaskWoken is now set to pdTRUE then a context
|
||||
// switch should be requested. The macro used is port specific and will
|
||||
// be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to
|
||||
// the documentation page for the port being used.
|
||||
portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
|
||||
}
|
||||
</pre>
|
||||
* \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
|
||||
* \ingroup EventGroup
|
||||
*/
|
||||
#define xEventGroupSetBitsFromISR( xEventGroup, uxBitsToSet, pxHigherPriorityTaskWoken ) xTimerPendCallbackFromISR( vEventGroupSetBitsCallback, ( void * ) xEventGroup, ( unsigned long ) uxBitsToSet, pxHigherPriorityTaskWoken )
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*<pre>
|
||||
xEventBitsType xEventGroupSync( xEventGroupHandle xEventGroup,
|
||||
xEventBitsType uxBitsToSet,
|
||||
xEventBitsType uxBitsToWaitFor,
|
||||
portTickType xBlockTime );
|
||||
</pre>
|
||||
*
|
||||
* Atomically set bits within an event group, then wait for a combination of
|
||||
* bits to be set within the same event group. This functionality is typically
|
||||
* used to synchronise multiple tasks, where each task has to wait for the other
|
||||
* tasks to reach a synchronisation point before proceeding.
|
||||
*
|
||||
* This function cannot be used from an interrupt.
|
||||
*
|
||||
* The function will return before its block time expires if the bits specified
|
||||
* by the uxBitsToWait parameter are set, or become set within that time. In
|
||||
* this case all the bits specified by uxBitsToWait will be automatically
|
||||
* cleared before the function returns.
|
||||
*
|
||||
* @param xEventGroup The event group in which the bits are being tested. The
|
||||
* event group must have previously been created using a call to
|
||||
* xEventGroupCreate().
|
||||
*
|
||||
* @param uxBitsToSet The bits to set in the event group before determining
|
||||
* if, and possibly waiting for, all the bits specified by the uxBitsToWait
|
||||
* parameter are set.
|
||||
*
|
||||
* @param uxBitsToWaitFor A bitwise value that indicates the bit or bits to test
|
||||
* inside the event group. For example, to wait for bit 0 and bit 2 set
|
||||
* uxBitsToWaitFor to 0x05. To wait for bits 0 and bit 1 and bit 2 set
|
||||
* uxBitsToWaitFor to 0x07. Etc.
|
||||
*
|
||||
* @param xBlockTime The maximum amount of time (specified in 'ticks') to wait
|
||||
* for all of the bits specified by uxBitsToWaitFor to become set.
|
||||
*
|
||||
* @return The value of the event group at the time either the bits being waited
|
||||
* for became set, or the block time expired. Test the return value to know
|
||||
* which bits were set. If xEventGroupSync() returned because its timeout
|
||||
* expired then not all the bits being waited for will be set. If
|
||||
* xEventGroupSync() returned because all the bits it was waiting for were
|
||||
* set then the returned value is the event group value before any bits were
|
||||
* automatically cleared.
|
||||
*
|
||||
* Example usage:
|
||||
<pre>
|
||||
// Bits used by the three tasks.
|
||||
#define TASK_0_BIT ( 1 << 0 )
|
||||
#define TASK_1_BIT ( 1 << 1 )
|
||||
#define TASK_2_BIT ( 1 << 2 )
|
||||
|
||||
#define ALL_SYNC_BITS ( TASK_0_BIT | TASK_1_BIT | TASK_2_BIT )
|
||||
|
||||
// Use an event group to synchronise three tasks. It is assumed this event
|
||||
// group has already been created elsewhere.
|
||||
xEventGroupHandle xEventBits;
|
||||
|
||||
void vTask0( void *pvParameters )
|
||||
{
|
||||
xEventBitsType uxReturn;
|
||||
portTickType xBlockTime = 100 / portTICK_RATE_MS;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
// Perform task functionality here.
|
||||
|
||||
// Set bit 0 in the event flag to note this task has reached the
|
||||
// sync point. The other two tasks will set the other two bits defined
|
||||
// by ALL_SYNC_BITS. All three tasks have reached the synchronisation
|
||||
// point when all the ALL_SYNC_BITS are set. Wait a maximum of 100ms
|
||||
// for this to happen.
|
||||
uxReturn = xEventGroupSync( xEventBits, TASK_0_BIT, ALL_SYNC_BITS, xBlockTime );
|
||||
|
||||
if( ( uxReturn & ALL_SYNC_BITS ) == ALL_SYNC_BITS )
|
||||
{
|
||||
// All three tasks reached the synchronisation point before the call
|
||||
// to xEventGroupSync() timed out.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void vTask1( void *pvParameters )
|
||||
{
|
||||
for( ;; )
|
||||
{
|
||||
// Perform task functionality here.
|
||||
|
||||
// Set bit 1 in the event flag to note this task has reached the
|
||||
// synchronisation point. The other two tasks will set the other two
|
||||
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
|
||||
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
|
||||
// indefinitely for this to happen.
|
||||
xEventGroupSync( xEventBits, TASK_1_BIT, ALL_SYNC_BITS, portMAX_DELAY );
|
||||
|
||||
// xEventGroupSync() was called with an indefinite block time, so
|
||||
// this task will only reach here if the syncrhonisation was made by all
|
||||
// three tasks, so there is no need to test the return value.
|
||||
}
|
||||
}
|
||||
|
||||
void vTask2( void *pvParameters )
|
||||
{
|
||||
for( ;; )
|
||||
{
|
||||
// Perform task functionality here.
|
||||
|
||||
// Set bit 2 in the event flag to note this task has reached the
|
||||
// synchronisation point. The other two tasks will set the other two
|
||||
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
|
||||
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
|
||||
// indefinitely for this to happen.
|
||||
xEventGroupSync( xEventBits, TASK_2_BIT, ALL_SYNC_BITS, portMAX_DELAY );
|
||||
|
||||
// xEventGroupSync() was called with an indefinite block time, so
|
||||
// this task will only reach here if the syncrhonisation was made by all
|
||||
// three tasks, so there is no need to test the return value.
|
||||
}
|
||||
}
|
||||
|
||||
</pre>
|
||||
* \defgroup xEventGroupSync xEventGroupSync
|
||||
* \ingroup EventGroup
|
||||
*/
|
||||
xEventBitsType xEventGroupSync( xEventGroupHandle xEventGroup, xEventBitsType uxBitsToSet, xEventBitsType uxBitsToWaitFor, portTickType xBlockTime ) PRIVILEGED_FUNCTION;
|
||||
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*<pre>
|
||||
xEventBitsType xEventGroupGetBits( xEventGroupHandle xEventGroup );
|
||||
</pre>
|
||||
*
|
||||
* Returns the current value of the bits in an event group. This function
|
||||
* cannot be used from an interrupt.
|
||||
*
|
||||
* @param xEventGroup The event group being queried.
|
||||
*
|
||||
* @return The event group bits at the time xEventGroupGetBits() was called.
|
||||
*
|
||||
* \defgroup xEventGroupGetBits xEventGroupGetBits
|
||||
* \ingroup EventGroup
|
||||
*/
|
||||
#define xEventGroupGetBits( xEventGroup ) xEventGroupClearBits( xEventGroup, 0 )
|
||||
|
||||
/**
|
||||
* event_groups.h
|
||||
*<pre>
|
||||
void xEventGroupDelete( xEventGroupHandle xEventGroup );
|
||||
</pre>
|
||||
*
|
||||
* Delete an event group that was previously created by a call to
|
||||
* xEventGroupCreate(). Tasks that are blocked on the event group will be
|
||||
* unblocked and obtain 0 as the event group's value.
|
||||
*
|
||||
* @param xEventGroup The event group being deleted.
|
||||
*/
|
||||
void vEventGroupDelete( xEventGroupHandle xEventGroup );
|
||||
|
||||
/* For internal use only. */
|
||||
void vEventGroupSetBitsCallback( void *pvEventGroup, unsigned long ulBitsToSet );
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* EVENT_GROUPS_H */
|
||||
|
||||
|
|
@ -205,7 +205,31 @@ typedef struct xLIST
|
|||
* \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
|
||||
* \ingroup LinkedList
|
||||
*/
|
||||
#define listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxList ) ( (&( ( pxList )->xListEnd ))->pxNext->xItemValue )
|
||||
#define listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext->xItemValue )
|
||||
|
||||
/*
|
||||
* Return the list item at the head of the list.
|
||||
*
|
||||
* \page listGET_HEAD_ENTRY listGET_HEAD_ENTRY
|
||||
* \ingroup LinkedList
|
||||
*/
|
||||
#define listGET_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext )
|
||||
|
||||
/*
|
||||
* Return the list item at the head of the list.
|
||||
*
|
||||
* \page listGET_HEAD_ENTRY listGET_HEAD_ENTRY
|
||||
* \ingroup LinkedList
|
||||
*/
|
||||
#define listGET_NEXT( pxListItem ) ( ( pxListItem )->pxNext )
|
||||
|
||||
/*
|
||||
* Return the list item that marks the end of the list
|
||||
*
|
||||
* \page listGET_END_MARKER listGET_END_MARKER
|
||||
* \ingroup LinkedList
|
||||
*/
|
||||
#define listGET_END_MARKER( pxList ) ( ( xListItem const * ) ( &( ( pxList )->xListEnd ) ) )
|
||||
|
||||
/*
|
||||
* Access macro to determine if a list contains any items. The macro will
|
||||
|
|
|
@ -368,6 +368,7 @@ void *pvPortMalloc( size_t xSize ) PRIVILEGED_FUNCTION;
|
|||
void vPortFree( void *pv ) PRIVILEGED_FUNCTION;
|
||||
void vPortInitialiseBlocks( void ) PRIVILEGED_FUNCTION;
|
||||
size_t xPortGetFreeHeapSize( void ) PRIVILEGED_FUNCTION;
|
||||
size_t xPortGetMinimumEverFreeHeapSize( void ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/*
|
||||
* Setup the hardware ready for the scheduler to take control. This generally
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
|
||||
FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
|
||||
All rights reserved
|
||||
|
||||
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
||||
|
@ -69,6 +69,10 @@
|
|||
/* Defines the prototype to which task functions must conform. */
|
||||
typedef void (*pdTASK_CODE)( void * );
|
||||
|
||||
/* Defines the prototype to which callback functions called from the RTOS/timer
|
||||
daemon task must conform. */
|
||||
typedef void (*pdAPPLICATION_CALLBACK_CODE)( void *, unsigned long );
|
||||
|
||||
#define pdFALSE ( ( portBASE_TYPE ) 0 )
|
||||
#define pdTRUE ( ( portBASE_TYPE ) 1 )
|
||||
|
||||
|
|
|
@ -1378,15 +1378,26 @@ portBASE_TYPE xTaskIncrementTick( void ) PRIVILEGED_FUNCTION;
|
|||
* there be no higher priority tasks waiting on the same event) or
|
||||
* the delay period expires.
|
||||
*
|
||||
* The 'unordered' version replaces the event list item value with the
|
||||
* xItemValue value, and inserts the list item at the end of the list.
|
||||
*
|
||||
* The 'ordered' version uses the existing event list item value (which is the
|
||||
* owning tasks priority) to insert the list item into the event list is task
|
||||
* priority order.
|
||||
*
|
||||
* @param pxEventList The list containing tasks that are blocked waiting
|
||||
* for the event to occur.
|
||||
*
|
||||
* @param xItemValue The item value to use for the event list item when the
|
||||
* event list is not ordered by task priority.
|
||||
*
|
||||
* @param xTicksToWait The maximum amount of time that the task should wait
|
||||
* for the event to occur. This is specified in kernel ticks,the constant
|
||||
* portTICK_RATE_MS can be used to convert kernel ticks into a real time
|
||||
* period.
|
||||
*/
|
||||
void vTaskPlaceOnEventList( xList * const pxEventList, portTickType xTicksToWait ) PRIVILEGED_FUNCTION;
|
||||
void vTaskPlaceOnUnorderedEventList( xList * pxEventList, portTickType xItemValue, portTickType xTicksToWait ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/*
|
||||
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
|
||||
|
@ -1412,13 +1423,23 @@ void vTaskPlaceOnEventListRestricted( xList * const pxEventList, portTickType xT
|
|||
* Removes a task from both the specified event list and the list of blocked
|
||||
* tasks, and places it on a ready queue.
|
||||
*
|
||||
* xTaskRemoveFromEventList () will be called if either an event occurs to
|
||||
* unblock a task, or the block timeout period expires.
|
||||
* xTaskRemoveFromEventList()/xTaskRemoveFromUnorderedEventList() will be called
|
||||
* if either an event occurs to unblock a task, or the block timeout period
|
||||
* expires.
|
||||
*
|
||||
* xTaskRemoveFromEventList() is used when the event list is in task priority
|
||||
* order. It removes the list item from the head of the event list as that will
|
||||
* have the highest priority owning task of all the tasks on the event list.
|
||||
* xTaskRemoveFromUnorderedEventList() is used when the event list is not
|
||||
* ordered and the event list items hold something other than the owning tasks
|
||||
* priority. In this case the event list item value is updated to the value
|
||||
* passed in the xItemValue parameter.
|
||||
*
|
||||
* @return pdTRUE if the task being removed has a higher priority than the task
|
||||
* making the call, otherwise pdFALSE.
|
||||
*/
|
||||
signed portBASE_TYPE xTaskRemoveFromEventList( const xList * const pxEventList ) PRIVILEGED_FUNCTION;
|
||||
signed portBASE_TYPE xTaskRemoveFromUnorderedEventList( xListItem * pxEventListItem, portTickType xItemValue ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/*
|
||||
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
|
||||
|
@ -1430,6 +1451,12 @@ signed portBASE_TYPE xTaskRemoveFromEventList( const xList * const pxEventList )
|
|||
*/
|
||||
void vTaskSwitchContext( void ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/*
|
||||
* THESE FUNCTIONS MUST NOT BE USED FROM APPLICATION CODE. THEY ARE USED BY
|
||||
* THE EVENT BITS MODULE.
|
||||
*/
|
||||
portTickType uxTaskResetEventItemValue( void ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/*
|
||||
* Return the handle of the calling task.
|
||||
*/
|
||||
|
@ -1479,13 +1506,13 @@ signed portBASE_TYPE xTaskGenericCreate( pdTASK_CODE pxTaskCode, const signed ch
|
|||
/*
|
||||
* Get the uxTCBNumber assigned to the task referenced by the xTask parameter.
|
||||
*/
|
||||
unsigned portBASE_TYPE uxTaskGetTaskNumber( xTaskHandle xTask );
|
||||
unsigned portBASE_TYPE uxTaskGetTaskNumber( xTaskHandle xTask ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/*
|
||||
* Set the uxTCBNumber of the task referenced by the xTask parameter to
|
||||
* ucHandle.
|
||||
*/
|
||||
void vTaskSetTaskNumber( xTaskHandle xTask, unsigned portBASE_TYPE uxHandle );
|
||||
void vTaskSetTaskNumber( xTaskHandle xTask, unsigned portBASE_TYPE uxHandle ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/*
|
||||
* If tickless mode is being used, or a low power mode is implemented, then
|
||||
|
@ -1494,7 +1521,7 @@ void vTaskSetTaskNumber( xTaskHandle xTask, unsigned portBASE_TYPE uxHandle );
|
|||
* to date with the actual execution time by being skipped forward by the by
|
||||
* a time equal to the idle period.
|
||||
*/
|
||||
void vTaskStepTick( portTickType xTicksToJump );
|
||||
void vTaskStepTick( portTickType xTicksToJump ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/*
|
||||
* Provided for use within portSUPPRESS_TICKS_AND_SLEEP() to allow the port
|
||||
|
@ -1509,7 +1536,7 @@ void vTaskStepTick( portTickType xTicksToJump );
|
|||
* critical section between the timer being stopped and the sleep mode being
|
||||
* entered to ensure it is ok to proceed into the sleep mode.
|
||||
*/
|
||||
eSleepModeStatus eTaskConfirmSleepModeStatus( void );
|
||||
eSleepModeStatus eTaskConfirmSleepModeStatus( void ) PRIVILEGED_FUNCTION;
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
|
||||
FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
|
||||
All rights reserved
|
||||
|
||||
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
||||
|
@ -83,6 +83,7 @@ extern "C" {
|
|||
/* IDs for commands that can be sent/received on the timer queue. These are to
|
||||
be used solely through the macros that make up the public software timer API,
|
||||
as defined below. */
|
||||
#define tmrCOMMAND_EXECUTE_CALLBACK ( ( portBASE_TYPE ) -1 )
|
||||
#define tmrCOMMAND_START ( ( portBASE_TYPE ) 0 )
|
||||
#define tmrCOMMAND_STOP ( ( portBASE_TYPE ) 1 )
|
||||
#define tmrCOMMAND_CHANGE_PERIOD ( ( portBASE_TYPE ) 2 )
|
||||
|
@ -170,7 +171,7 @@ typedef void (*tmrTIMER_CALLBACK)( xTimerHandle xTimer );
|
|||
*
|
||||
* // Optionally do something if the pxTimer parameter is NULL.
|
||||
* configASSERT( pxTimer );
|
||||
*
|
||||
*
|
||||
* // Which timer expired?
|
||||
* lArrayIndex = ( long ) pvTimerGetTimerID( pxTimer );
|
||||
*
|
||||
|
@ -293,7 +294,7 @@ void *pvTimerGetTimerID( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
|
|||
portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
|
||||
|
||||
/**
|
||||
* xTimerGetTimerDaemonTaskHandle() is only available if
|
||||
* xTimerGetTimerDaemonTaskHandle() is only available if
|
||||
* INCLUDE_xTimerGetTimerDaemonTaskHandle is set to 1 in FreeRTOSConfig.h.
|
||||
*
|
||||
* Simply returns the handle of the timer service/daemon task. It it not valid
|
||||
|
@ -944,6 +945,95 @@ xTaskHandle xTimerGetTimerDaemonTaskHandle( void );
|
|||
*/
|
||||
#define xTimerResetFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
|
||||
|
||||
|
||||
/**
|
||||
* portBASE_TYPE xTimerPendCallbackFromISR( pdAPPLICATION_CALLBACK_CODE pvCallbackFunction,
|
||||
* void *pvParameter1,
|
||||
* unsigned long ulParameter2,
|
||||
* portBASE_TYPE *pxHigherPriorityTaskWoken );
|
||||
*
|
||||
*
|
||||
* Can be used by interrupt service routines to request that a function (the
|
||||
* callback function) is executed from a task context.
|
||||
*
|
||||
* Ideally an interrupt service routine (ISR) is kept as short as possible, but
|
||||
* sometimes an ISR either has a lot of processing to do, or needs to perform
|
||||
* processing that is not deterministic. In these cases the processing can be
|
||||
* deferred to be performed in a task - allowing the ISR to exit. The timer
|
||||
* daemon service/daemon task is already responsible for executing software
|
||||
* timer callback functions, so is also used to executed callback functions that
|
||||
* are pended from interrupts.
|
||||
*
|
||||
* A mechanism is provided that allows the interrupt to return directly to the
|
||||
* task that will subsequently execute the pended callback function. This
|
||||
* allows the callback function to execute contiguously in time with the
|
||||
* interrupt - just as if the callback had executed in the interrupt itself.
|
||||
*
|
||||
* @param pvCallbackFunction The function to execute from the timer service/
|
||||
* daemon task. The function must conform to the pdAPPLICATION_CALLBACK_CODE
|
||||
* prototype.
|
||||
*
|
||||
* @param pvParameter1 The value of the callback function's first parameter.
|
||||
* The parameter has a void * type to allow it to be used to pass any type.
|
||||
* For example, unsigned longs can be cast to a void *, or the void * can be
|
||||
* used to point to a structure.
|
||||
*
|
||||
* @param ulParameter2 The value of the callback function's second parameter.
|
||||
*
|
||||
* @param pxHigherPriorityTaskWoken As mentioned above, calling this function
|
||||
* will result in a message being sent to the timer daemon task. If the
|
||||
* priority of the timer daemon task (which is set using
|
||||
* configTIMER_TASK_PRIORITY in FreeRTOSConfig.h) is higher than the priority of
|
||||
* the currently running task (the task the interrupt interrupted) then
|
||||
* *pxHigherPriorityTaskWoken will be set to pdTRUE within
|
||||
* xTimerPendCallbackFromISR(), indicating that a context switch should be
|
||||
* requested before the interrupt exits. For that reason
|
||||
* *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See the
|
||||
* example code below.
|
||||
*
|
||||
* Example usage:
|
||||
* @verbatim
|
||||
*
|
||||
* // The callback function that will execute in the context of the daemon task.
|
||||
* // Note callback functions must all use this same prototype.
|
||||
* void vProcessInterface( void *pvParameter1, unsigned long ulParameter2 )
|
||||
* {
|
||||
* portBASE_TYPE xInterfaceToService;
|
||||
*
|
||||
* // The interface that requires servicing is passed in the second
|
||||
* // parameter. The first parameter is not used in this case.
|
||||
* xInterfaceToService = ( portBASE_TYPE ) ulParameter2;
|
||||
*
|
||||
* // ...Perform the processing here...
|
||||
* }
|
||||
*
|
||||
* // An ISR that receives data packets from multiple interfaces
|
||||
* void vAnISR( void )
|
||||
* {
|
||||
* portBASE_TYPE xInterfaceToService, xHigherPriorityTaskWoken;
|
||||
*
|
||||
* // Query the hardware to determine which interface needs processing.
|
||||
* xInterfaceToService = prvCheckInterfaces();
|
||||
*
|
||||
* // The actual processing is to be deferred to a task. Request the
|
||||
* // vProcessInterface() callback function is executed, passing in the
|
||||
* // number of the interface that needs processing. The interface to
|
||||
* // service is passed in the second parameter. The first parameter is
|
||||
* // not used in this case.
|
||||
* xHigherPriorityTaskWoken = pdFALSE;
|
||||
* xTimerPendCallbackFromISR( vProcessInterface, NULL, ( unsigned long ) xInterfaceToService, &xHigherPriorityTaskWoken );
|
||||
*
|
||||
* // If xHigherPriorityTaskWoken is now set to pdTRUE then a context
|
||||
* // switch should be requested. The macro used is port specific and will
|
||||
* // be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to
|
||||
* // the documentation page for the port being used.
|
||||
* portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
|
||||
*
|
||||
* }
|
||||
* @endverbatim
|
||||
*/
|
||||
portBASE_TYPE xTimerPendCallbackFromISR( pdAPPLICATION_CALLBACK_CODE pvCallbackFunction, void *pvParameter1, unsigned long ulParameter2, portBASE_TYPE *pxHigherPriorityTaskWoken );
|
||||
|
||||
/*
|
||||
* Functions beyond this part are not part of the public API and are intended
|
||||
* for use by the kernel only.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue