mirror of
https://github.com/FreeRTOS/FreeRTOS-Kernel.git
synced 2025-08-20 01:58:32 -04:00
Add FreeRTOS-Plus directory.
This commit is contained in:
parent
7bd5f21ad5
commit
f508a5f653
6798 changed files with 134949 additions and 19 deletions
374
FreeRTOS/Source/portable/GCC/MicroBlazeV8/portmacro.h
Normal file
374
FreeRTOS/Source/portable/GCC/MicroBlazeV8/portmacro.h
Normal file
|
@ -0,0 +1,374 @@
|
|||
/*
|
||||
FreeRTOS V7.1.1 - Copyright (C) 2012 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* Having a problem? Start by reading the FAQ "My application does *
|
||||
* not run, what could be wrong? *
|
||||
* *
|
||||
* http://www.FreeRTOS.org/FAQHelp.html *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, training, latest information,
|
||||
license and contact details.
|
||||
|
||||
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
||||
including FreeRTOS+Trace - an indispensable productivity tool.
|
||||
|
||||
Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
|
||||
the code with commercial support, indemnification, and middleware, under
|
||||
the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
|
||||
provide a safety engineered and independently SIL3 certified version under
|
||||
the SafeRTOS brand: http://www.SafeRTOS.com.
|
||||
*/
|
||||
|
||||
#ifndef PORTMACRO_H
|
||||
#define PORTMACRO_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* BSP includes. */
|
||||
#include <mb_interface.h>
|
||||
#include <xparameters.h>
|
||||
|
||||
/*-----------------------------------------------------------
|
||||
* Port specific definitions.
|
||||
*
|
||||
* The settings in this file configure FreeRTOS correctly for the
|
||||
* given hardware and compiler.
|
||||
*
|
||||
* These settings should not be altered.
|
||||
*-----------------------------------------------------------
|
||||
*/
|
||||
|
||||
/* Type definitions. */
|
||||
#define portCHAR char
|
||||
#define portFLOAT float
|
||||
#define portDOUBLE double
|
||||
#define portLONG long
|
||||
#define portSHORT short
|
||||
#define portSTACK_TYPE unsigned long
|
||||
#define portBASE_TYPE long
|
||||
|
||||
#if( configUSE_16_BIT_TICKS == 1 )
|
||||
typedef unsigned portSHORT portTickType;
|
||||
#define portMAX_DELAY ( portTickType ) 0xffff
|
||||
#else
|
||||
typedef unsigned portLONG portTickType;
|
||||
#define portMAX_DELAY ( portTickType ) 0xffffffff
|
||||
#endif
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Interrupt control macros and functions. */
|
||||
void microblaze_disable_interrupts( void );
|
||||
void microblaze_enable_interrupts( void );
|
||||
#define portDISABLE_INTERRUPTS() microblaze_disable_interrupts()
|
||||
#define portENABLE_INTERRUPTS() microblaze_enable_interrupts()
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Critical section macros. */
|
||||
void vPortEnterCritical( void );
|
||||
void vPortExitCritical( void );
|
||||
#define portENTER_CRITICAL() { \
|
||||
extern volatile unsigned portBASE_TYPE uxCriticalNesting; \
|
||||
microblaze_disable_interrupts(); \
|
||||
uxCriticalNesting++; \
|
||||
}
|
||||
|
||||
#define portEXIT_CRITICAL() { \
|
||||
extern volatile unsigned portBASE_TYPE uxCriticalNesting; \
|
||||
/* Interrupts are disabled, so we can */ \
|
||||
/* access the variable directly. */ \
|
||||
uxCriticalNesting--; \
|
||||
if( uxCriticalNesting == 0 ) \
|
||||
{ \
|
||||
/* The nesting has unwound and we \
|
||||
can enable interrupts again. */ \
|
||||
portENABLE_INTERRUPTS(); \
|
||||
} \
|
||||
}
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* The yield macro maps directly to the vPortYield() function. */
|
||||
void vPortYield( void );
|
||||
#define portYIELD() vPortYield()
|
||||
|
||||
/* portYIELD_FROM_ISR() does not directly call vTaskSwitchContext(), but instead
|
||||
sets a flag to say that a yield has been requested. The interrupt exit code
|
||||
then checks this flag, and calls vTaskSwitchContext() before restoring a task
|
||||
context, if the flag is not false. This is done to prevent multiple calls to
|
||||
vTaskSwitchContext() being made from a single interrupt, as a single interrupt
|
||||
can result in multiple peripherals being serviced. */
|
||||
extern volatile unsigned long ulTaskSwitchRequested;
|
||||
#define portYIELD_FROM_ISR( x ) if( x != pdFALSE ) ulTaskSwitchRequested = 1
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Hardware specifics. */
|
||||
#define portBYTE_ALIGNMENT 4
|
||||
#define portSTACK_GROWTH ( -1 )
|
||||
#define portTICK_RATE_MS ( ( portTickType ) 1000 / configTICK_RATE_HZ )
|
||||
#define portNOP() asm volatile ( "NOP" )
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Task function macros as described on the FreeRTOS.org WEB site. */
|
||||
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
|
||||
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* The following structure is used by the FreeRTOS exception handler. It is
|
||||
filled with the MicroBlaze context as it was at the time the exception occurred.
|
||||
This is done as an aid to debugging exception occurrences. */
|
||||
typedef struct PORT_REGISTER_DUMP
|
||||
{
|
||||
/* The following structure members hold the values of the MicroBlaze
|
||||
registers at the time the exception was raised. */
|
||||
unsigned long ulR1_SP;
|
||||
unsigned long ulR2_small_data_area;
|
||||
unsigned long ulR3;
|
||||
unsigned long ulR4;
|
||||
unsigned long ulR5;
|
||||
unsigned long ulR6;
|
||||
unsigned long ulR7;
|
||||
unsigned long ulR8;
|
||||
unsigned long ulR9;
|
||||
unsigned long ulR10;
|
||||
unsigned long ulR11;
|
||||
unsigned long ulR12;
|
||||
unsigned long ulR13_read_write_small_data_area;
|
||||
unsigned long ulR14_return_address_from_interrupt;
|
||||
unsigned long ulR15_return_address_from_subroutine;
|
||||
unsigned long ulR16_return_address_from_trap;
|
||||
unsigned long ulR17_return_address_from_exceptions; /* The exception entry code will copy the BTR into R17 if the exception occurred in the delay slot of a branch instruction. */
|
||||
unsigned long ulR18;
|
||||
unsigned long ulR19;
|
||||
unsigned long ulR20;
|
||||
unsigned long ulR21;
|
||||
unsigned long ulR22;
|
||||
unsigned long ulR23;
|
||||
unsigned long ulR24;
|
||||
unsigned long ulR25;
|
||||
unsigned long ulR26;
|
||||
unsigned long ulR27;
|
||||
unsigned long ulR28;
|
||||
unsigned long ulR29;
|
||||
unsigned long ulR30;
|
||||
unsigned long ulR31;
|
||||
unsigned long ulPC;
|
||||
unsigned long ulESR;
|
||||
unsigned long ulMSR;
|
||||
unsigned long ulEAR;
|
||||
unsigned long ulFSR;
|
||||
unsigned long ulEDR;
|
||||
|
||||
/* A human readable description of the exception cause. The strings used
|
||||
are the same as the #define constant names found in the
|
||||
microblaze_exceptions_i.h header file */
|
||||
signed char *pcExceptionCause;
|
||||
|
||||
/* The human readable name of the task that was running at the time the
|
||||
exception occurred. This is the name that was given to the task when the
|
||||
task was created using the FreeRTOS xTaskCreate() API function. */
|
||||
signed char *pcCurrentTaskName;
|
||||
|
||||
/* The handle of the task that was running a the time the exception
|
||||
occurred. */
|
||||
void * xCurrentTaskHandle;
|
||||
|
||||
} xPortRegisterDump;
|
||||
|
||||
|
||||
/*
|
||||
* Installs pxHandler as the interrupt handler for the peripheral specified by
|
||||
* the ucInterruptID parameter.
|
||||
*
|
||||
* ucInterruptID:
|
||||
*
|
||||
* The ID of the peripheral that will have pxHandler assigned as its interrupt
|
||||
* handler. Peripheral IDs are defined in the xparameters.h header file, which
|
||||
* is itself part of the BSP project. For example, in the official demo
|
||||
* application for this port, xparameters.h defines the following IDs for the
|
||||
* four possible interrupt sources:
|
||||
*
|
||||
* XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral.
|
||||
* XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral.
|
||||
* XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral.
|
||||
* XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs.
|
||||
*
|
||||
*
|
||||
* pxHandler:
|
||||
*
|
||||
* A pointer to the interrupt handler function itself. This must be a void
|
||||
* function that takes a (void *) parameter.
|
||||
*
|
||||
*
|
||||
* pvCallBackRef:
|
||||
*
|
||||
* The parameter passed into the handler function. In many cases this will not
|
||||
* be used and can be NULL. Some times it is used to pass in a reference to
|
||||
* the peripheral instance variable, so it can be accessed from inside the
|
||||
* handler function.
|
||||
*
|
||||
*
|
||||
* pdPASS is returned if the function executes successfully. Any other value
|
||||
* being returned indicates that the function did not execute correctly.
|
||||
*/
|
||||
portBASE_TYPE xPortInstallInterruptHandler( unsigned char ucInterruptID, XInterruptHandler pxHandler, void *pvCallBackRef );
|
||||
|
||||
|
||||
/*
|
||||
* Enables the interrupt, within the interrupt controller, for the peripheral
|
||||
* specified by the ucInterruptID parameter.
|
||||
*
|
||||
* ucInterruptID:
|
||||
*
|
||||
* The ID of the peripheral that will have its interrupt enabled in the
|
||||
* interrupt controller. Peripheral IDs are defined in the xparameters.h header
|
||||
* file, which is itself part of the BSP project. For example, in the official
|
||||
* demo application for this port, xparameters.h defines the following IDs for
|
||||
* the four possible interrupt sources:
|
||||
*
|
||||
* XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral.
|
||||
* XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral.
|
||||
* XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral.
|
||||
* XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs.
|
||||
*
|
||||
*/
|
||||
void vPortEnableInterrupt( unsigned char ucInterruptID );
|
||||
|
||||
/*
|
||||
* Disables the interrupt, within the interrupt controller, for the peripheral
|
||||
* specified by the ucInterruptID parameter.
|
||||
*
|
||||
* ucInterruptID:
|
||||
*
|
||||
* The ID of the peripheral that will have its interrupt disabled in the
|
||||
* interrupt controller. Peripheral IDs are defined in the xparameters.h header
|
||||
* file, which is itself part of the BSP project. For example, in the official
|
||||
* demo application for this port, xparameters.h defines the following IDs for
|
||||
* the four possible interrupt sources:
|
||||
*
|
||||
* XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral.
|
||||
* XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral.
|
||||
* XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral.
|
||||
* XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs.
|
||||
*
|
||||
*/
|
||||
void vPortDisableInterrupt( unsigned char ucInterruptID );
|
||||
|
||||
/*
|
||||
* This is an application defined callback function used to install the tick
|
||||
* interrupt handler. It is provided as an application callback because the
|
||||
* kernel will run on lots of different MicroBlaze and FPGA configurations - not
|
||||
* all of which will have the same timer peripherals defined or available. This
|
||||
* example uses the AXI Timer 0. If that is available on your hardware platform
|
||||
* then this example callback implementation should not require modification.
|
||||
* The name of the interrupt handler that should be installed is vPortTickISR(),
|
||||
* which the function below declares as an extern.
|
||||
*/
|
||||
void vApplicationSetupTimerInterrupt( void );
|
||||
|
||||
/*
|
||||
* This is an application defined callback function used to clear whichever
|
||||
* interrupt was installed by the the vApplicationSetupTimerInterrupt() callback
|
||||
* function - in this case the interrupt generated by the AXI timer. It is
|
||||
* provided as an application callback because the kernel will run on lots of
|
||||
* different MicroBlaze and FPGA configurations - not all of which will have the
|
||||
* same timer peripherals defined or available. This example uses the AXI Timer 0.
|
||||
* If that is available on your hardware platform then this example callback
|
||||
* implementation should not require modification provided the example definition
|
||||
* of vApplicationSetupTimerInterrupt() is also not modified.
|
||||
*/
|
||||
void vApplicationClearTimerInterrupt( void );
|
||||
|
||||
/*
|
||||
* vPortExceptionsInstallHandlers() is only available when the MicroBlaze
|
||||
* is configured to include exception functionality, and
|
||||
* configINSTALL_EXCEPTION_HANDLERS is set to 1 in FreeRTOSConfig.h.
|
||||
*
|
||||
* vPortExceptionsInstallHandlers() installs the FreeRTOS exception handler
|
||||
* for every possible exception cause.
|
||||
*
|
||||
* vPortExceptionsInstallHandlers() can be called explicitly from application
|
||||
* code. After that is done, the default FreeRTOS exception handler that will
|
||||
* have been installed can be replaced for any specific exception cause by using
|
||||
* the standard Xilinx library function microblaze_register_exception_handler().
|
||||
*
|
||||
* If vPortExceptionsInstallHandlers() is not called explicitly by the
|
||||
* application, it will be called automatically by the kernel the first time
|
||||
* xPortInstallInterruptHandler() is called. At that time, any exception
|
||||
* handlers that may have already been installed will be replaced.
|
||||
*
|
||||
* See the description of vApplicationExceptionRegisterDump() for information
|
||||
* on the processing performed by the FreeRTOS exception handler.
|
||||
*/
|
||||
void vPortExceptionsInstallHandlers( void );
|
||||
|
||||
/*
|
||||
* The FreeRTOS exception handler fills an xPortRegisterDump structure (defined
|
||||
* in portmacro.h) with the MicroBlaze context, as it was at the time the
|
||||
* exception occurred. The exception handler then calls
|
||||
* vApplicationExceptionRegisterDump(), passing in the completed
|
||||
* xPortRegisterDump structure as its parameter.
|
||||
*
|
||||
* The FreeRTOS kernel provides its own implementation of
|
||||
* vApplicationExceptionRegisterDump(), but the kernel provided implementation
|
||||
* is declared as being 'weak'. The weak definition allows the application
|
||||
* writer to provide their own implementation, should they wish to use the
|
||||
* register dump information. For example, an implementation could be provided
|
||||
* that wrote the register dump data to a display, or a UART port.
|
||||
*/
|
||||
void vApplicationExceptionRegisterDump( xPortRegisterDump *xRegisterDump );
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* PORTMACRO_H */
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue