Add FreeRTOS-Plus directory.

This commit is contained in:
Richard Barry 2012-08-11 21:34:11 +00:00
parent 7bd5f21ad5
commit f508a5f653
6798 changed files with 134949 additions and 19 deletions

View file

@ -0,0 +1,278 @@
;******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
;* File Name : cortexm3_macro.s
;* Author : MCD Application Team
;* Date First Issued : 02/19/2007
;* Description : Instruction wrappers for special Cortex-M3 instructions.
;*******************************************************************************
; History:
; 04/02/2007: V0.2
; 02/19/2007: V0.1
;*******************************************************************************
; THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
SECTION .text:CODE(2)
; Exported functions
EXPORT __WFI
EXPORT __WFE
EXPORT __SEV
EXPORT __ISB
EXPORT __DSB
EXPORT __DMB
EXPORT __SVC
EXPORT __MRS_CONTROL
EXPORT __MSR_CONTROL
EXPORT __MRS_PSP
EXPORT __MSR_PSP
EXPORT __MRS_MSP
EXPORT __MSR_MSP
EXPORT __SETPRIMASK
EXPORT __RESETPRIMASK
EXPORT __SETFAULTMASK
EXPORT __RESETFAULTMASK
EXPORT __BASEPRICONFIG
EXPORT __GetBASEPRI
EXPORT __REV_HalfWord
EXPORT __REV_Word
;*******************************************************************************
; Function Name : __WFI
; Description : Assembler function for the WFI instruction.
; Input : None
; Return : None
;*******************************************************************************
__WFI
WFI
BX r14
;*******************************************************************************
; Function Name : __WFE
; Description : Assembler function for the WFE instruction.
; Input : None
; Return : None
;*******************************************************************************
__WFE
WFE
BX r14
;*******************************************************************************
; Function Name : __SEV
; Description : Assembler function for the SEV instruction.
; Input : None
; Return : None
;*******************************************************************************
__SEV
SEV
BX r14
;*******************************************************************************
; Function Name : __ISB
; Description : Assembler function for the ISB instruction.
; Input : None
; Return : None
;*******************************************************************************
__ISB
ISB
BX r14
;*******************************************************************************
; Function Name : __DSB
; Description : Assembler function for the DSB instruction.
; Input : None
; Return : None
;*******************************************************************************
__DSB
DSB
BX r14
;*******************************************************************************
; Function Name : __DMB
; Description : Assembler function for the DMB instruction.
; Input : None
; Return : None
;*******************************************************************************
__DMB
DMB
BX r14
;*******************************************************************************
; Function Name : __SVC
; Description : Assembler function for the SVC instruction.
; Input : None
; Return : None
;*******************************************************************************
__SVC
SVC 0x01
BX r14
;*******************************************************************************
; Function Name : __MRS_CONTROL
; Description : Assembler function for the MRS instruction.
; Input : None
; Return : - r0 : Cortex-M3 CONTROL register value.
;*******************************************************************************
__MRS_CONTROL
MRS r0, CONTROL
BX r14
;*******************************************************************************
; Function Name : __MSR_CONTROL
; Description : Assembler function for the MSR instruction.
; Input : - r0 : Cortex-M3 CONTROL register new value.
; Return : None
;*******************************************************************************
__MSR_CONTROL
MSR CONTROL, r0
ISB
BX r14
;*******************************************************************************
; Function Name : __MRS_PSP
; Description : Assembler function for the MRS instruction.
; Input : None
; Return : - r0 : Process Stack value.
;*******************************************************************************
__MRS_PSP
MRS r0, PSP
BX r14
;*******************************************************************************
; Function Name : __MSR_PSP
; Description : Assembler function for the MSR instruction.
; Input : - r0 : Process Stack new value.
; Return : None
;*******************************************************************************
__MSR_PSP
MSR PSP, r0 ; set Process Stack value
BX r14
;*******************************************************************************
; Function Name : __MRS_MSP
; Description : Assembler function for the MRS instruction.
; Input : None
; Return : - r0 : Main Stack value.
;*******************************************************************************
__MRS_MSP
MRS r0, MSP
BX r14
;*******************************************************************************
; Function Name : __MSR_MSP
; Description : Assembler function for the MSR instruction.
; Input : - r0 : Main Stack new value.
; Return : None
;*******************************************************************************
__MSR_MSP
MSR MSP, r0 ; set Main Stack value
BX r14
;*******************************************************************************
; Function Name : __SETPRIMASK
; Description : Assembler function to set the PRIMASK.
; Input : None
; Return : None
;*******************************************************************************
__SETPRIMASK
CPSID i
BX r14
;*******************************************************************************
; Function Name : __RESETPRIMASK
; Description : Assembler function to reset the PRIMASK.
; Input : None
; Return : None
;*******************************************************************************
__RESETPRIMASK
CPSIE i
BX r14
;*******************************************************************************
; Function Name : __SETFAULTMASK
; Description : Assembler function to set the FAULTMASK.
; Input : None
; Return : None
;*******************************************************************************
__SETFAULTMASK
CPSID f
BX r14
;*******************************************************************************
; Function Name : __RESETFAULTMASK
; Description : Assembler function to reset the FAULTMASK.
; Input : None
; Return : None
;*******************************************************************************
__RESETFAULTMASK
CPSIE f
BX r14
;*******************************************************************************
; Function Name : __BASEPRICONFIG
; Description : Assembler function to set the Base Priority.
; Input : - r0 : Base Priority new value
; Return : None
;*******************************************************************************
__BASEPRICONFIG
MSR BASEPRI, r0
BX r14
;*******************************************************************************
; Function Name : __GetBASEPRI
; Description : Assembler function to get the Base Priority value.
; Input : None
; Return : - r0 : Base Priority value
;*******************************************************************************
__GetBASEPRI
MRS r0, BASEPRI_MAX
BX r14
;*******************************************************************************
; Function Name : __REV_HalfWord
; Description : Reverses the byte order in HalfWord(16-bit) input variable.
; Input : - r0 : specifies the input variable
; Return : - r0 : holds tve variable value after byte reversing.
;*******************************************************************************
__REV_HalfWord
REV16 r0, r0
BX r14
;*******************************************************************************
; Function Name : __REV_Word
; Description : Reverses the byte order in Word(32-bit) input variable.
; Input : - r0 : specifies the input variable
; Return : - r0 : holds tve variable value after byte reversing.
;*******************************************************************************
__REV_Word
REV r0, r0
BX r14
END
;******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE*****

View file

@ -0,0 +1,284 @@
;******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
;* File Name : cortexm3_macro.s
;* Author : MCD Application Team
;* Date First Issued : 09/29/2006
;* Description : Instruction wrappers for special Cortex-M3 instructions.
;*******************************************************************************
; History:
; 05/21/2007: V0.3
; 04/02/2007: V0.2
; 02/05/2007: V0.1
; 09/29/2006: V0.01
;*******************************************************************************
; THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
THUMB
REQUIRE8
PRESERVE8
AREA |.text|, CODE, READONLY, ALIGN=2
; Exported functions
EXPORT __WFI
EXPORT __WFE
EXPORT __SEV
EXPORT __ISB
EXPORT __DSB
EXPORT __DMB
EXPORT __SVC
EXPORT __MRS_CONTROL
EXPORT __MSR_CONTROL
EXPORT __MRS_PSP
EXPORT __MSR_PSP
EXPORT __MRS_MSP
EXPORT __MSR_MSP
EXPORT __SETPRIMASK
EXPORT __RESETPRIMASK
EXPORT __SETFAULTMASK
EXPORT __RESETFAULTMASK
EXPORT __BASEPRICONFIG
EXPORT __GetBASEPRI
EXPORT __REV_HalfWord
EXPORT __REV_Word
;*******************************************************************************
; Function Name : __WFI
; Description : Assembler function for the WFI instruction.
; Input : None
; Return : None
;*******************************************************************************
__WFI
WFI
BX r14
;*******************************************************************************
; Function Name : __WFE
; Description : Assembler function for the WFE instruction.
; Input : None
; Return : None
;*******************************************************************************
__WFE
WFE
BX r14
;*******************************************************************************
; Function Name : __SEV
; Description : Assembler function for the SEV instruction.
; Input : None
; Return : None
;*******************************************************************************
__SEV
SEV
BX r14
;*******************************************************************************
; Function Name : __ISB
; Description : Assembler function for the ISB instruction.
; Input : None
; Return : None
;*******************************************************************************
__ISB
ISB
BX r14
;*******************************************************************************
; Function Name : __DSB
; Description : Assembler function for the DSB instruction.
; Input : None
; Return : None
;*******************************************************************************
__DSB
DSB
BX r14
;*******************************************************************************
; Function Name : __DMB
; Description : Assembler function for the DMB instruction.
; Input : None
; Return : None
;*******************************************************************************
__DMB
DMB
BX r14
;*******************************************************************************
; Function Name : __SVC
; Description : Assembler function for the SVC instruction.
; Input : None
; Return : None
;*******************************************************************************
__SVC
SVC 0x01
BX r14
;*******************************************************************************
; Function Name : __MRS_CONTROL
; Description : Assembler function for the MRS instruction.
; Input : None
; Return : - r0 : Cortex-M3 CONTROL register value.
;*******************************************************************************
__MRS_CONTROL
MRS r0, CONTROL
BX r14
;*******************************************************************************
; Function Name : __MSR_CONTROL
; Description : Assembler function for the MSR instruction.
; Input : - r0 : Cortex-M3 CONTROL register new value.
; Return : None
;*******************************************************************************
__MSR_CONTROL
MSR CONTROL, r0
ISB
BX r14
;*******************************************************************************
; Function Name : __MRS_PSP
; Description : Assembler function for the MRS instruction.
; Input : None
; Return : - r0 : Process Stack value.
;*******************************************************************************
__MRS_PSP
MRS r0, PSP
BX r14
;*******************************************************************************
; Function Name : __MSR_PSP
; Description : Assembler function for the MSR instruction.
; Input : - r0 : Process Stack new value.
; Return : None
;*******************************************************************************
__MSR_PSP
MSR PSP, r0 ; set Process Stack value
BX r14
;*******************************************************************************
; Function Name : __MRS_MSP
; Description : Assembler function for the MRS instruction.
; Input : None
; Return : - r0 : Main Stack value.
;*******************************************************************************
__MRS_MSP
MRS r0, MSP
BX r14
;*******************************************************************************
; Function Name : __MSR_MSP
; Description : Assembler function for the MSR instruction.
; Input : - r0 : Main Stack new value.
; Return : None
;*******************************************************************************
__MSR_MSP
MSR MSP, r0 ; set Main Stack value
BX r14
;*******************************************************************************
; Function Name : __SETPRIMASK
; Description : Assembler function to set the PRIMASK.
; Input : None
; Return : None
;*******************************************************************************
__SETPRIMASK
CPSID i
BX r14
;*******************************************************************************
; Function Name : __RESETPRIMASK
; Description : Assembler function to reset the PRIMASK.
; Input : None
; Return : None
;*******************************************************************************
__RESETPRIMASK
CPSIE i
BX r14
;*******************************************************************************
; Function Name : __SETFAULTMASK
; Description : Assembler function to set the FAULTMASK.
; Input : None
; Return : None
;*******************************************************************************
__SETFAULTMASK
CPSID f
BX r14
;*******************************************************************************
; Function Name : __RESETFAULTMASK
; Description : Assembler function to reset the FAULTMASK.
; Input : None
; Return : None
;*******************************************************************************
__RESETFAULTMASK
CPSIE f
BX r14
;*******************************************************************************
; Function Name : __BASEPRICONFIG
; Description : Assembler function to set the Base Priority.
; Input : - r0 : Base Priority new value
; Return : None
;*******************************************************************************
__BASEPRICONFIG
MSR BASEPRI, r0
BX r14
;*******************************************************************************
; Function Name : __GetBASEPRI
; Description : Assembler function to get the Base Priority value.
; Input : None
; Return : - r0 : Base Priority value
;*******************************************************************************
__GetBASEPRI
MRS r0, BASEPRI_MAX
BX r14
;*******************************************************************************
; Function Name : __REV_HalfWord
; Description : Reverses the byte order in HalfWord(16-bit) input variable.
; Input : - r0 : specifies the input variable
; Return : - r0 : holds tve variable value after byte reversing.
;*******************************************************************************
__REV_HalfWord
REV16 r0, r0
BX r14
;*******************************************************************************
; Function Name : __REV_Word
; Description : Reverses the byte order in Word(32-bit) input variable.
; Input : - r0 : specifies the input variable
; Return : - r0 : holds tve variable value after byte reversing.
;*******************************************************************************
__REV_Word
REV r0, r0
BX r14
END
;******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE*****

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,230 @@
/**
******************************************************************************
* @file misc.c
* @author MCD Application Team
* @version V3.0.0
* @date 04/06/2009
* @brief This file provides all the miscellaneous firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "misc.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup MISC
* @brief MISC driver modules
* @{
*/
/** @defgroup MISC_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup MISC_Private_Defines
* @{
*/
#define AIRCR_VECTKEY_MASK ((uint32_t)0x05FA0000)
/**
* @}
*/
/** @defgroup MISC_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup MISC_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup MISC_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup MISC_Private_Functions
* @{
*/
/**
* @brief Configures the priority grouping: pre-emption priority and
* subpriority.
* @param NVIC_PriorityGroup: specifies the priority grouping bits length.
* This parameter can be one of the following values:
* @arg NVIC_PriorityGroup_0: 0 bits for pre-emption priority
* 4 bits for subpriority
* @arg NVIC_PriorityGroup_1: 1 bits for pre-emption priority
* 3 bits for subpriority
* @arg NVIC_PriorityGroup_2: 2 bits for pre-emption priority
* 2 bits for subpriority
* @arg NVIC_PriorityGroup_3: 3 bits for pre-emption priority
* 1 bits for subpriority
* @arg NVIC_PriorityGroup_4: 4 bits for pre-emption priority
* 0 bits for subpriority
* @retval : None
*/
void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup)
{
/* Check the parameters */
assert_param(IS_NVIC_PRIORITY_GROUP(NVIC_PriorityGroup));
/* Set the PRIGROUP[10:8] bits according to NVIC_PriorityGroup value */
SCB->AIRCR = AIRCR_VECTKEY_MASK | NVIC_PriorityGroup;
}
/**
* @brief Initializes the NVIC peripheral according to the specified
* parameters in the NVIC_InitStruct.
* @param NVIC_InitStruct: pointer to a NVIC_InitTypeDef structure
* that contains the configuration information for the
* specified NVIC peripheral.
* @retval : None
*/
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct)
{
uint32_t tmppriority = 0x00, tmppre = 0x00, tmpsub = 0x0F;
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NVIC_InitStruct->NVIC_IRQChannelCmd));
assert_param(IS_NVIC_PREEMPTION_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority));
assert_param(IS_NVIC_SUB_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelSubPriority));
if (NVIC_InitStruct->NVIC_IRQChannelCmd != DISABLE)
{
/* Compute the Corresponding IRQ Priority --------------------------------*/
tmppriority = (0x700 - ((SCB->AIRCR) & (uint32_t)0x700))>> 0x08;
tmppre = (0x4 - tmppriority);
tmpsub = tmpsub >> tmppriority;
tmppriority = (uint32_t)NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority << tmppre;
tmppriority |= NVIC_InitStruct->NVIC_IRQChannelSubPriority & tmpsub;
tmppriority = tmppriority << 0x04;
NVIC->IP[NVIC_InitStruct->NVIC_IRQChannel] = tmppriority;
/* Enable the Selected IRQ Channels --------------------------------------*/
NVIC->ISER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
(uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
}
else
{
/* Disable the Selected IRQ Channels -------------------------------------*/
NVIC->ICER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
(uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
}
}
/**
* @brief Sets the vector table location and Offset.
* @param NVIC_VectTab: specifies if the vector table is in RAM or
* FLASH memory.
* This parameter can be one of the following values:
* @arg NVIC_VectTab_RAM
* @arg NVIC_VectTab_FLASH
* @param Offset: Vector Table base offset field.
* This value must be a multiple of 0x100.
* @retval : None
*/
void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset)
{
/* Check the parameters */
assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));
assert_param(IS_NVIC_OFFSET(Offset));
SCB->VTOR = NVIC_VectTab | (Offset & (uint32_t)0x1FFFFF80);
}
/**
* @brief Selects the condition for the system to enter low power mode.
* @param LowPowerMode: Specifies the new mode for the system to enter
* low power mode.
* This parameter can be one of the following values:
* @arg NVIC_LP_SEVONPEND
* @arg NVIC_LP_SLEEPDEEP
* @arg NVIC_LP_SLEEPONEXIT
* @param NewState: new state of LP condition.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_NVIC_LP(LowPowerMode));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
SCB->SCR |= LowPowerMode;
}
else
{
SCB->SCR &= (uint32_t)(~(uint32_t)LowPowerMode);
}
}
/**
* @brief Configures the SysTick clock source.
* @param SysTick_CLKSource: specifies the SysTick clock source.
* This parameter can be one of the following values:
* @arg SysTick_CLKSource_HCLK_Div8: AHB clock divided by 8
* selected as SysTick clock source.
* @arg SysTick_CLKSource_HCLK: AHB clock selected as
* SysTick clock source.
* @retval : None
*/
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
{
/* Check the parameters */
assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));
if (SysTick_CLKSource == SysTick_CLKSource_HCLK)
{
SysTick->CTRL |= SysTick_CLKSource_HCLK;
}
else
{
SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,263 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_bkp.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the BKP firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_bkp.h"
#include "stm32f10x_rcc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ------------ BKP registers bit address in the alias region ----------- */
#define BKP_OFFSET (BKP_BASE - PERIPH_BASE)
/* --- RTCCR Register ---*/
/* Alias word address of CCO bit */
#define RTCCR_OFFSET (BKP_OFFSET + 0x2C)
#define CCO_BitNumber 0x07
#define RTCCR_CCO_BB (PERIPH_BB_BASE + (RTCCR_OFFSET * 32) + (CCO_BitNumber * 4))
/* --- CR Register ---*/
/* Alias word address of TPAL bit */
#define CR_OFFSET (BKP_OFFSET + 0x30)
#define TPAL_BitNumber 0x01
#define CR_TPAL_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (TPAL_BitNumber * 4))
/* Alias word address of TPE bit */
#define TPE_BitNumber 0x00
#define CR_TPE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (TPE_BitNumber * 4))
/* --- CSR Register ---*/
/* Alias word address of TPIE bit */
#define CSR_OFFSET (BKP_OFFSET + 0x34)
#define TPIE_BitNumber 0x02
#define CSR_TPIE_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (TPIE_BitNumber * 4))
/* Alias word address of TIF bit */
#define TIF_BitNumber 0x09
#define CSR_TIF_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (TIF_BitNumber * 4))
/* Alias word address of TEF bit */
#define TEF_BitNumber 0x08
#define CSR_TEF_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (TEF_BitNumber * 4))
/* ---------------------- BKP registers bit mask ------------------------ */
/* RTCCR register bit mask */
#define RTCCR_CAL_Mask ((u16)0xFF80)
/* CSR register bit mask */
#define CSR_CTE_Set ((u16)0x0001)
#define CSR_CTI_Set ((u16)0x0002)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : BKP_DeInit
* Description : Deinitializes the BKP peripheral registers to their default
* reset values.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void BKP_DeInit(void)
{
RCC_BackupResetCmd(ENABLE);
RCC_BackupResetCmd(DISABLE);
}
/*******************************************************************************
* Function Name : BKP_TamperPinLevelConfig
* Description : Configures the Tamper Pin active level.
* Input : - BKP_TamperPinLevel: specifies the Tamper Pin active level.
* This parameter can be one of the following values:
* - BKP_TamperPinLevel_High: Tamper pin active on high level
* - BKP_TamperPinLevel_Low: Tamper pin active on low level
* Output : None
* Return : None
*******************************************************************************/
void BKP_TamperPinLevelConfig(u16 BKP_TamperPinLevel)
{
/* Check the parameters */
assert(IS_BKP_TAMPER_PIN_LEVEL(BKP_TamperPinLevel));
*(vu32 *) CR_TPAL_BB = BKP_TamperPinLevel;
}
/*******************************************************************************
* Function Name : BKP_TamperPinCmd
* Description : Enables or disables the Tamper Pin activation.
* Input : - NewState: new state of the Tamper Pin activation.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void BKP_TamperPinCmd(FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
*(vu32 *) CR_TPE_BB = (u32)NewState;
}
/*******************************************************************************
* Function Name : BKP_ITConfig
* Description : Enables or disables the Tamper Pin Interrupt.
* Input : - NewState: new state of the Tamper Pin Interrupt.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void BKP_ITConfig(FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
*(vu32 *) CSR_TPIE_BB = (u32)NewState;
}
/*******************************************************************************
* Function Name : BKP_RTCCalibrationClockOutputCmd
* Description : Enables or disables the output of the Calibration Clock.
* Input : - NewState: new state of the Calibration Clock output.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void BKP_RTCCalibrationClockOutputCmd(FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
*(vu32 *) RTCCR_CCO_BB = (u32)NewState;
}
/*******************************************************************************
* Function Name : BKP_SetRTCCalibrationValue
* Description : Sets RTC Clock Calibration value.
* Input : - CalibrationValue: specifies the RTC Clock Calibration value.
* This parameter must be a number between 0 and 0x7F.
* Output : None
* Return : None
*******************************************************************************/
void BKP_SetRTCCalibrationValue(u8 CalibrationValue)
{
u16 tmpreg = 0;
/* Check the parameters */
assert(IS_BKP_CALIBRATION_VALUE(CalibrationValue));
tmpreg = BKP->RTCCR;
/* Clear CAL[6:0] bits */
tmpreg &= RTCCR_CAL_Mask;
/* Set CAL[6:0] bits according to CalibrationValue value */
tmpreg |= CalibrationValue;
/* Store the new value */
BKP->RTCCR = tmpreg;
}
/*******************************************************************************
* Function Name : BKP_WriteBackupRegister
* Description : Writes user data to the specified Data Backup Register.
* Input : - BKP_DR: specifies the Data Backup Register.
* This parameter can be BKP_DRx where x:[1, 10]
* - Data: data to write
* Output : None
* Return : None
*******************************************************************************/
void BKP_WriteBackupRegister(u16 BKP_DR, u16 Data)
{
/* Check the parameters */
assert(IS_BKP_DR(BKP_DR));
*(vu16 *) (BKP_BASE + BKP_DR) = Data;
}
/*******************************************************************************
* Function Name : BKP_ReadBackupRegister
* Description : Reads data from the specified Data Backup Register.
* Input : - BKP_DR: specifies the Data Backup Register.
* This parameter can be BKP_DRx where x:[1, 10]
* Output : None
* Return : The content of the specified Data Backup Register
*******************************************************************************/
u16 BKP_ReadBackupRegister(u16 BKP_DR)
{
/* Check the parameters */
assert(IS_BKP_DR(BKP_DR));
return (*(vu16 *) (BKP_BASE + BKP_DR));
}
/*******************************************************************************
* Function Name : BKP_GetFlagStatus
* Description : Checks whether the Tamper Pin Event flag is set or not.
* Input : None
* Output : None
* Return : The new state of the Tamper Pin Event flag (SET or RESET).
*******************************************************************************/
FlagStatus BKP_GetFlagStatus(void)
{
return (FlagStatus)(*(vu32 *) CSR_TEF_BB);
}
/*******************************************************************************
* Function Name : BKP_ClearFlag
* Description : Clears Tamper Pin Event pending flag.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void BKP_ClearFlag(void)
{
/* Set CTE bit to clear Tamper Pin Event flag */
BKP->CSR |= CSR_CTE_Set;
}
/*******************************************************************************
* Function Name : BKP_GetITStatus
* Description : Checks whether the Tamper Pin Interrupt has occurred or not.
* Input : None
* Output : None
* Return : The new state of the Tamper Pin Interrupt (SET or RESET).
*******************************************************************************/
ITStatus BKP_GetITStatus(void)
{
return (ITStatus)(*(vu32 *) CSR_TIF_BB);
}
/*******************************************************************************
* Function Name : BKP_ClearITPendingBit
* Description : Clears Tamper Pin Interrupt pending bit.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void BKP_ClearITPendingBit(void)
{
/* Set CTI bit to clear Tamper Pin Interrupt pending bit */
BKP->CSR |= CSR_CTI_Set;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,873 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_can.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the CAN firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_can.h"
#include "stm32f10x_rcc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* CAN Master Control Register bits */
#define CAN_MCR_INRQ ((u32)0x00000001) /* Initialization request */
#define CAN_MCR_SLEEP ((u32)0x00000002) /* Sleep mode request */
#define CAN_MCR_TXFP ((u32)0x00000004) /* Transmit FIFO priority */
#define CAN_MCR_RFLM ((u32)0x00000008) /* Receive FIFO locked mode */
#define CAN_MCR_NART ((u32)0x00000010) /* No automatic retransmission */
#define CAN_MCR_AWUM ((u32)0x00000020) /* Automatic wake up mode */
#define CAN_MCR_ABOM ((u32)0x00000040) /* Automatic bus-off management */
#define CAN_MCR_TTCM ((u32)0x00000080) /* time triggered communication */
/* CAN Master Status Register bits */
#define CAN_MSR_INAK ((u32)0x00000001) /* Initialization acknowledge */
#define CAN_MSR_WKUI ((u32)0x00000008) /* Wake-up interrupt */
#define CAN_MSR_SLAKI ((u32)0x00000010) /* Sleep acknowledge interrupt */
/* CAN Transmit Status Register bits */
#define CAN_TSR_RQCP0 ((u32)0x00000001) /* Request completed mailbox0 */
#define CAN_TSR_TXOK0 ((u32)0x00000002) /* Transmission OK of mailbox0 */
#define CAN_TSR_ABRQ0 ((u32)0x00000080) /* Abort request for mailbox0 */
#define CAN_TSR_RQCP1 ((u32)0x00000100) /* Request completed mailbox1 */
#define CAN_TSR_TXOK1 ((u32)0x00000200) /* Transmission OK of mailbox1 */
#define CAN_TSR_ABRQ1 ((u32)0x00008000) /* Abort request for mailbox1 */
#define CAN_TSR_RQCP2 ((u32)0x00010000) /* Request completed mailbox2 */
#define CAN_TSR_TXOK2 ((u32)0x00020000) /* Transmission OK of mailbox2 */
#define CAN_TSR_ABRQ2 ((u32)0x00800000) /* Abort request for mailbox2 */
#define CAN_TSR_TME0 ((u32)0x04000000) /* Transmit mailbox 0 empty */
#define CAN_TSR_TME1 ((u32)0x08000000) /* Transmit mailbox 1 empty */
#define CAN_TSR_TME2 ((u32)0x10000000) /* Transmit mailbox 2 empty */
/* CAN Receive FIFO 0 Register bits */
#define CAN_RF0R_FULL0 ((u32)0x00000008) /* FIFO 0 full */
#define CAN_RF0R_FOVR0 ((u32)0x00000010) /* FIFO 0 overrun */
#define CAN_RF0R_RFOM0 ((u32)0x00000020) /* Release FIFO 0 output mailbox */
/* CAN Receive FIFO 1 Register bits */
#define CAN_RF1R_FULL1 ((u32)0x00000008) /* FIFO 1 full */
#define CAN_RF1R_FOVR1 ((u32)0x00000010) /* FIFO 1 overrun */
#define CAN_RF1R_RFOM1 ((u32)0x00000020) /* Release FIFO 1 output mailbox */
/* CAN Error Status Register bits */
#define CAN_ESR_EWGF ((u32)0x00000001) /* Error warning flag */
#define CAN_ESR_EPVF ((u32)0x00000002) /* Error passive flag */
#define CAN_ESR_BOFF ((u32)0x00000004) /* Bus-off flag */
/* CAN Mailbox Transmit Request */
#define CAN_TMIDxR_TXRQ ((u32)0x00000001) /* Transmit mailbox request */
/* CAN Filter Master Register bits */
#define CAN_FMR_FINIT ((u32)0x00000001) /* Filter init mode */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static ITStatus CheckITStatus(u32 CAN_Reg, u32 It_Bit);
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : CAN_DeInit
* Description : Deinitializes the CAN peripheral registers to their default
* reset values.
* Input : None.
* Output : None.
* Return : None.
*******************************************************************************/
void CAN_DeInit(void)
{
/* Enable CAN reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN, ENABLE);
/* Release CAN from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN, DISABLE);
}
/*******************************************************************************
* Function Name : CAN_Init
* Description : Initializes the CAN peripheral according to the specified
* parameters in the CAN_InitStruct.
* Input : CAN_InitStruct: pointer to a CAN_InitTypeDef structure that
contains the configuration information for the CAN peripheral.
* Output : None.
* Return : Constant indicates initialization succeed which will be
* CANINITFAILED or CANINITOK.
*******************************************************************************/
u8 CAN_Init(CAN_InitTypeDef* CAN_InitStruct)
{
u8 InitStatus = 0;
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
assert(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
assert(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
assert(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
assert(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
assert(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
assert(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
assert(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
assert(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
assert(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
assert(IS_CAN_CLOCK(CAN_InitStruct->CAN_Clock));
assert(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));
/* Request initialisation */
CAN->MCR = CAN_MCR_INRQ;
/* ...and check acknowledged */
if ((CAN->MSR & CAN_MSR_INAK) == 0)
{
InitStatus = CANINITFAILED;
}
else
{
/* Set the time triggered communication mode */
if (CAN_InitStruct->CAN_TTCM == ENABLE)
{
CAN->MCR |= CAN_MCR_TTCM;
}
else
{
CAN->MCR &= ~CAN_MCR_TTCM;
}
/* Set the automatic bus-off management */
if (CAN_InitStruct->CAN_ABOM == ENABLE)
{
CAN->MCR |= CAN_MCR_ABOM;
}
else
{
CAN->MCR &= ~CAN_MCR_ABOM;
}
/* Set the automatic wake-up mode */
if (CAN_InitStruct->CAN_AWUM == ENABLE)
{
CAN->MCR |= CAN_MCR_AWUM;
}
else
{
CAN->MCR &= ~CAN_MCR_AWUM;
}
/* Set the no automatic retransmission */
if (CAN_InitStruct->CAN_NART == ENABLE)
{
CAN->MCR |= CAN_MCR_NART;
}
else
{
CAN->MCR &= ~CAN_MCR_NART;
}
/* Set the receive FIFO locked mode */
if (CAN_InitStruct->CAN_RFLM == ENABLE)
{
CAN->MCR |= CAN_MCR_RFLM;
}
else
{
CAN->MCR &= ~CAN_MCR_RFLM;
}
/* Set the transmit FIFO priority */
if (CAN_InitStruct->CAN_TXFP == ENABLE)
{
CAN->MCR |= CAN_MCR_TXFP;
}
else
{
CAN->MCR &= ~CAN_MCR_TXFP;
}
/* Set the bit timing register */
CAN->BTR = (u32)((u32)CAN_InitStruct->CAN_Mode << 30) | ((u32)CAN_InitStruct->CAN_SJW << 24) |
((u32)CAN_InitStruct->CAN_BS1 << 16) | ((u32)CAN_InitStruct->CAN_BS2 << 20) |
((u32)CAN_InitStruct->CAN_Clock << 15) | ((u32)CAN_InitStruct->CAN_Prescaler - 1);
InitStatus = CANINITOK;
/* Request leave initialisation */
CAN->MCR &= ~CAN_MCR_INRQ;
/* ...and check acknowledged */
if ((CAN->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
{
InitStatus = CANINITFAILED;
}
}
/* At this step, return the status of initialization */
return InitStatus;
}
/*******************************************************************************
* Function Name : CAN_FilterInit
* Description : Initializes the CAN peripheral according to the specified
* parameters in the CAN_FilterInitStruct.
* Input : CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef
* structure that contains the configuration information.
* Output : None.
* Return : None.
*******************************************************************************/
void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
{
u16 FilterNumber_BitPos = 0;
/* Check the parameters */
assert(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
assert(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
assert(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
assert(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
assert(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));
FilterNumber_BitPos = (u16)((u16)0x0001 << ((u16)CAN_FilterInitStruct->CAN_FilterNumber));
/* Initialisation mode for the filter */
CAN->FMR |= CAN_FMR_FINIT;
/* Filter Deactivation */
CAN->FA0R &= ~(u32)FilterNumber_BitPos;
/* Filter Scale */
if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
{
/* 16-bit scale for the filter */
CAN->FS0R &= ~(u32)FilterNumber_BitPos;
/* First 16-bit identifier and First 16-bit mask */
/* Or First 16-bit identifier and Second 16-bit identifier */
CAN->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR0 = ((u32)((u32)0x0000FFFF & CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
((u32)0x0000FFFF & CAN_FilterInitStruct->CAN_FilterIdLow);
/* Second 16-bit identifier and Second 16-bit mask */
/* Or Third 16-bit identifier and Fourth 16-bit identifier */
CAN->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 = ((u32)((u32)0x0000FFFF & CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
((u32)0x0000FFFF & CAN_FilterInitStruct->CAN_FilterIdHigh);
}
if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
{
/* 32-bit scale for the filter */
CAN->FS0R |= FilterNumber_BitPos;
/* 32-bit identifier or First 32-bit identifier */
CAN->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR0 = ((u32)((u32)0x0000FFFF & CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
((u32)0x0000FFFF & CAN_FilterInitStruct->CAN_FilterIdLow);
/* 32-bit mask or Second 32-bit identifier */
CAN->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 = ((u32)((u32)0x0000FFFF & CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
((u32)0x0000FFFF & CAN_FilterInitStruct->CAN_FilterMaskIdLow);
}
/* Filter Mode */
if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
{
/*Id/Mask mode for the filter*/
CAN->FM0R &= ~(u32)FilterNumber_BitPos;
}
else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
{
/*Identifier list mode for the filter*/
CAN->FM0R |= (u32)FilterNumber_BitPos;
}
/* Filter FIFO assignment */
if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_FilterFIFO0)
{
/* FIFO 0 assignation for the filter */
CAN->FFA0R &= ~(u32)FilterNumber_BitPos;
}
if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_FilterFIFO1)
{
/* FIFO 1 assignation for the filter */
CAN->FFA0R |= (u32)FilterNumber_BitPos;
}
/* Filter activation */
if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
{
CAN->FA0R |= FilterNumber_BitPos;
}
/* Leave the initialisation mode for the filter */
CAN->FMR &= ~CAN_FMR_FINIT;
}
/*******************************************************************************
* Function Name : CAN_StructInit
* Description : Fills each CAN_InitStruct member with its default value.
* Input : CAN_InitStruct: pointer to a CAN_InitTypeDef structure which
* will be initialized.
* Output : None.
* Return : None.
*******************************************************************************/
void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
{
/* Reset CAN init structure parameters values */
/* Initialize the time triggered communication mode */
CAN_InitStruct->CAN_TTCM = DISABLE;
/* Initialize the automatic bus-off management */
CAN_InitStruct->CAN_ABOM = DISABLE;
/* Initialize the automatic wake-up mode */
CAN_InitStruct->CAN_AWUM = DISABLE;
/* Initialize the no automatic retransmission */
CAN_InitStruct->CAN_NART = DISABLE;
/* Initialize the receive FIFO locked mode */
CAN_InitStruct->CAN_RFLM = DISABLE;
/* Initialize the transmit FIFO priority */
CAN_InitStruct->CAN_TXFP = DISABLE;
/* Initialize the CAN_Mode member */
CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
/* Initialize the CAN_SJW member */
CAN_InitStruct->CAN_SJW = CAN_SJW_0tq;
/* Initialize the CAN_BS1 member */
CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
/* Initialize the CAN_BS2 member */
CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
/* Initialize the CAN_Clock member */
CAN_InitStruct->CAN_Clock = CAN_Clock_APB;
/* Initialize the CAN_Prescaler member */
CAN_InitStruct->CAN_Prescaler = 1;
}
/*******************************************************************************
* Function Name : CAN_ITConfig
* Description : Enables or disables the CAN interrupts.
* Input : - CAN_IT: specifies the CAN interrupt sources to be enabled or
* disabled.
* - NewState: new state of the CAN interrupts.
* This parameter can be: ENABLE or DISABLE.
* Output : None.
* Return : None.
*******************************************************************************/
void CAN_ITConfig(u32 CAN_IT, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_CAN_IT(CAN_IT));
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected CAN interrupt */
CAN->IER |= CAN_IT;
}
else
{
/* Disable the selected CAN interrupt */
CAN->IER &= ~CAN_IT;
}
}
/*******************************************************************************
* Function Name : CAN_Transmit
* Description : Initiates the transmission of a message.
* Input : TxMessage: pointer to a structure which contains CAN Id, CAN
* DLC and CAN datas.
* Output : None.
* Return : The number of the mailbox that is used for transmission
* or CAN_NO_MB if there is no empty mailbox.
*******************************************************************************/
u8 CAN_Transmit(CanTxMsg* TxMessage)
{
u8 TransmitMailbox = 0;
/* Check the parameters */
assert(IS_CAN_STDID(TxMessage->StdId));
assert(IS_CAN_EXTID(TxMessage->StdId));
assert(IS_CAN_IDTYPE(TxMessage->IDE));
assert(IS_CAN_RTR(TxMessage->RTR));
assert(IS_CAN_DLC(TxMessage->DLC));
/* Select one empty transmit mailbox */
if ((CAN->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
{
TransmitMailbox = 0;
}
else if ((CAN->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
{
TransmitMailbox = 1;
}
else if ((CAN->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
{
TransmitMailbox = 2;
}
else
{
TransmitMailbox = CAN_NO_MB;
}
if (TransmitMailbox != CAN_NO_MB)
{
/* Set up the Id */
TxMessage->StdId &= (u32)0x000007FF;
TxMessage->StdId = TxMessage->StdId << 21;
TxMessage->ExtId &= (u32)0x0003FFFF;
TxMessage->ExtId <<= 3;
CAN->sTxMailBox[TransmitMailbox].TIR &= CAN_TMIDxR_TXRQ;
CAN->sTxMailBox[TransmitMailbox].TIR |= (TxMessage->StdId | TxMessage->ExtId |
TxMessage->IDE | TxMessage->RTR);
/* Set up the DLC */
TxMessage->DLC &= (u8)0x0000000F;
CAN->sTxMailBox[TransmitMailbox].TDTR &= (u32)0xFFFFFFF0;
CAN->sTxMailBox[TransmitMailbox].TDTR |= TxMessage->DLC;
/* Set up the data field */
CAN->sTxMailBox[TransmitMailbox].TDLR = (((u32)TxMessage->Data[3] << 24) | ((u32)TxMessage->Data[2] << 16) |
((u32)TxMessage->Data[1] << 8) | ((u32)TxMessage->Data[0]));
CAN->sTxMailBox[TransmitMailbox].TDHR = (((u32)TxMessage->Data[7] << 24) | ((u32)TxMessage->Data[6] << 16) |
((u32)TxMessage->Data[5] << 8) | ((u32)TxMessage->Data[4]));
/* Request transmission */
CAN->sTxMailBox[TransmitMailbox].TIR |= CAN_TMIDxR_TXRQ;
}
return TransmitMailbox;
}
/*******************************************************************************
* Function Name : CAN_TransmitStatus
* Description : Check the transmission of a message.
* Input : TransmitMailbox: the number of the mailbox that is used for
* transmission.
* Output : None.
* Return : CANTXOK if the CAN driver transmits the message, CANTXFAILED
* in an other case.
*******************************************************************************/
u32 CAN_TransmitStatus(u8 TransmitMailbox)
{
/* RQCP, TXOK and TME bits */
u32 State = 0;
/* Check the parameters */
assert(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
switch (TransmitMailbox)
{
case (0): State |= ((CAN->TSR & CAN_TSR_RQCP0) << 2);
State |= ((CAN->TSR & CAN_TSR_TXOK0) >> 0);
State |= ((CAN->TSR & CAN_TSR_TME0) >> 26);
break;
case (1): State |= ((CAN->TSR & CAN_TSR_RQCP1) >> 6);
State |= ((CAN->TSR & CAN_TSR_TXOK1) >> 8);
State |= ((CAN->TSR & CAN_TSR_TME1) >> 27);
break;
case (2): State |= ((CAN->TSR & CAN_TSR_RQCP2) >> 14);
State |= ((CAN->TSR & CAN_TSR_TXOK2) >> 16);
State |= ((CAN->TSR & CAN_TSR_TME2) >> 28);
break;
default:
State = CANTXFAILED;
break;
}
switch (State)
{
/* transmit pending */
case (0x0): State = CANTXPENDING;
break;
/* transmit failed */
case (0x5): State = CANTXFAILED;
break;
/* transmit succedeed */
case (0x7): State = CANTXOK;
break;
default:
State = CANTXFAILED;
break;
}
return State;
}
/*******************************************************************************
* Function Name : CAN_CancelTransmit
* Description : Cancels a transmit request.
* Input : Mailbox number.
* Output : None.
* Return : None.
*******************************************************************************/
void CAN_CancelTransmit(u8 Mailbox)
{
/* Check the parameters */
assert(IS_CAN_TRANSMITMAILBOX(Mailbox));
/* abort transmission */
switch (Mailbox)
{
case (0): CAN->TSR |= CAN_TSR_ABRQ0;
break;
case (1): CAN->TSR |= CAN_TSR_ABRQ1;
break;
case (2): CAN->TSR |= CAN_TSR_ABRQ2;
break;
default:
break;
}
}
/*******************************************************************************
* Function Name : CAN_FIFORelease
* Description : Release a FIFO.
* Input : FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
* Output : None.
* Return : None.
*******************************************************************************/
void CAN_FIFORelease(u8 FIFONumber)
{
/* Check the parameters */
assert(IS_CAN_FIFO(FIFONumber));
/* Release FIFO0 */
if (FIFONumber == CAN_FIFO0)
{
CAN->RF0R = CAN_RF0R_RFOM0;
}
/* Release FIFO1 */
else /* FIFONumber == CAN_FIFO1 */
{
CAN->RF1R = CAN_RF1R_RFOM1;
}
}
/*******************************************************************************
* Function Name : CAN_MessagePending
* Description : Return the number of pending messages.
* Input : FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
* Output : None.
* Return : NbMessage which is the number of pending message.
*******************************************************************************/
u8 CAN_MessagePending(u8 FIFONumber)
{
u8 MessagePending=0;
/* Check the parameters */
assert(IS_CAN_FIFO(FIFONumber));
if (FIFONumber == CAN_FIFO0)
{
MessagePending = (u8)(CAN->RF0R&(u32)0x03);
}
else if (FIFONumber == CAN_FIFO1)
{
MessagePending = (u8)(CAN->RF1R&(u32)0x03);
}
else
{
MessagePending = 0;
}
return MessagePending;
}
/*******************************************************************************
* Function Name : CAN_Receive
* Description : Receives a message.
* Input : FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
* Output : RxMessage: pointer to a structure which contains CAN Id,
* CAN DLC, CAN datas and FMI number.
* Return : None.
*******************************************************************************/
void CAN_Receive(u8 FIFONumber, CanRxMsg* RxMessage)
{
/* Check the parameters */
assert(IS_CAN_FIFO(FIFONumber));
/* Get the Id */
RxMessage->StdId = (u32)0x000007FF & (CAN->sFIFOMailBox[FIFONumber].RIR >> 21);
RxMessage->ExtId = (u32)0x0003FFFF & (CAN->sFIFOMailBox[FIFONumber].RIR >> 3);
RxMessage->IDE = (u32)0x00000004 & CAN->sFIFOMailBox[FIFONumber].RIR;
RxMessage->RTR = (u32)0x00000002 & CAN->sFIFOMailBox[FIFONumber].RIR;
/* Get the DLC */
RxMessage->DLC = (u32)0x0000000F & CAN->sFIFOMailBox[FIFONumber].RDTR;
/* Get the FMI */
RxMessage->FMI = (u32)0x000000FF & (CAN->sFIFOMailBox[FIFONumber].RDTR >> 8);
/* Get the data field */
RxMessage->Data[0] = (u32)0x000000FF & CAN->sFIFOMailBox[FIFONumber].RDLR;
RxMessage->Data[1] = (u32)0x000000FF & (CAN->sFIFOMailBox[FIFONumber].RDLR >> 8);
RxMessage->Data[2] = (u32)0x000000FF & (CAN->sFIFOMailBox[FIFONumber].RDLR >> 16);
RxMessage->Data[3] = (u32)0x000000FF & (CAN->sFIFOMailBox[FIFONumber].RDLR >> 24);
RxMessage->Data[4] = (u32)0x000000FF & CAN->sFIFOMailBox[FIFONumber].RDHR;
RxMessage->Data[5] = (u32)0x000000FF & (CAN->sFIFOMailBox[FIFONumber].RDHR >> 8);
RxMessage->Data[6] = (u32)0x000000FF & (CAN->sFIFOMailBox[FIFONumber].RDHR >> 16);
RxMessage->Data[7] = (u32)0x000000FF & (CAN->sFIFOMailBox[FIFONumber].RDHR >> 24);
/* Release the FIFO */
CAN_FIFORelease(FIFONumber);
}
/*******************************************************************************
* Function Name : CAN_Sleep
* Description : Enters the low power mode.
* Input : None.
* Output : None.
* Return : CANSLEEPOK if sleep entered, CANSLEEPFAILED in an other case.
*******************************************************************************/
u8 CAN_Sleep(void)
{
u8 SleepStatus = 0;
/* Sleep mode entering request */
CAN->MCR |= CAN_MCR_SLEEP;
SleepStatus = CANSLEEPOK;
/* Sleep mode status */
if ((CAN->MCR&CAN_MCR_SLEEP) == 0)
{
/* Sleep mode not entered */
SleepStatus = CANSLEEPFAILED;
}
/* At this step, sleep mode status */
return SleepStatus;
}
/*******************************************************************************
* Function Name : CAN_WakeUp
* Description : Wakes the CAN up.
* Input : None.
* Output : None.
* Return : CANWAKEUPOK if sleep mode left, CANWAKEUPFAILED in an other
* case.
*******************************************************************************/
u8 CAN_WakeUp(void)
{
u8 WakeUpStatus = 0;
/* Wake up request */
CAN->MCR &= ~CAN_MCR_SLEEP;
WakeUpStatus = CANWAKEUPFAILED;
/* Sleep mode status */
if ((CAN->MCR&CAN_MCR_SLEEP) == 0)
{
/* Sleep mode exited */
WakeUpStatus = CANWAKEUPOK;
}
/* At this step, sleep mode status */
return WakeUpStatus;
}
/*******************************************************************************
* Function Name : CAN_GetFlagStatus
* Description : Checks whether the CAN flag is set or not.
* Input : CAN_FLAG: specifies the flag to check.
* Output : None.
* Return : The new state of CAN_FLAG (SET or RESET).
*******************************************************************************/
FlagStatus CAN_GetFlagStatus(u32 CAN_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_CAN_FLAG(CAN_FLAG));
/* Check the status of the specified CAN flag */
if ((CAN->ESR & CAN_FLAG) != (u32)RESET)
{
/* CAN_FLAG is set */
bitstatus = SET;
}
else
{
/* CAN_FLAG is reset */
bitstatus = RESET;
}
/* Return the CAN_FLAG status */
return bitstatus;
}
/*******************************************************************************
* Function Name : CAN_ClearFlag
* Description : Clears the CAN's pending flags.
* Input : CAN_FLAG: specifies the flag to clear.
* Output : None.
* Return : None.
*******************************************************************************/
void CAN_ClearFlag(u32 CAN_FLAG)
{
/* Check the parameters */
assert(IS_CAN_FLAG(CAN_FLAG));
/* Clear the selected CAN flags */
CAN->ESR &= ~CAN_FLAG;
}
/*******************************************************************************
* Function Name : CAN_GetITStatus
* Description : Checks whether the CAN interrupt has occurred or not.
* Input : CAN_IT: specifies the CAN interrupt source to check.
* Output : None.
* Return : The new state of CAN_IT (SET or RESET).
*******************************************************************************/
ITStatus CAN_GetITStatus(u32 CAN_IT)
{
ITStatus pendingbitstatus = RESET;
/* Check the parameters */
assert(IS_CAN_IT(CAN_IT));
switch (CAN_IT)
{
case CAN_IT_RQCP0:
pendingbitstatus = CheckITStatus(CAN->TSR, CAN_TSR_RQCP0);
break;
case CAN_IT_RQCP1:
pendingbitstatus = CheckITStatus(CAN->TSR, CAN_TSR_RQCP1);
break;
case CAN_IT_RQCP2:
pendingbitstatus = CheckITStatus(CAN->TSR, CAN_TSR_RQCP2);
break;
case CAN_IT_FF0:
pendingbitstatus = CheckITStatus(CAN->RF0R, CAN_RF0R_FULL0);
break;
case CAN_IT_FOV0:
pendingbitstatus = CheckITStatus(CAN->RF0R, CAN_RF0R_FOVR0);
break;
case CAN_IT_FF1:
pendingbitstatus = CheckITStatus(CAN->RF1R, CAN_RF1R_FULL1);
break;
case CAN_IT_FOV1:
pendingbitstatus = CheckITStatus(CAN->RF1R, CAN_RF1R_FOVR1);
break;
case CAN_IT_EWG:
pendingbitstatus = CheckITStatus(CAN->ESR, CAN_ESR_EWGF);
break;
case CAN_IT_EPV:
pendingbitstatus = CheckITStatus(CAN->ESR, CAN_ESR_EPVF);
break;
case CAN_IT_BOF:
pendingbitstatus = CheckITStatus(CAN->ESR, CAN_ESR_BOFF);
break;
case CAN_IT_SLK:
pendingbitstatus = CheckITStatus(CAN->MSR, CAN_MSR_SLAKI);
break;
case CAN_IT_WKU:
pendingbitstatus = CheckITStatus(CAN->MSR, CAN_MSR_WKUI);
break;
default :
pendingbitstatus = RESET;
break;
}
/* Return the CAN_IT status */
return pendingbitstatus;
}
/*******************************************************************************
* Function Name : CAN_ClearITPendingBit
* Description : Clears the CANs interrupt pending bits.
* Input : CAN_IT: specifies the interrupt pending bit to clear.
* Output : None.
* Return : None.
*******************************************************************************/
void CAN_ClearITPendingBit(u32 CAN_IT)
{
/* Check the parameters */
assert(IS_CAN_IT(CAN_IT));
switch (CAN_IT)
{
case CAN_IT_RQCP0:
CAN->TSR = CAN_TSR_RQCP0; /* rc_w1*/
break;
case CAN_IT_RQCP1:
CAN->TSR = CAN_TSR_RQCP1; /* rc_w1*/
break;
case CAN_IT_RQCP2:
CAN->TSR = CAN_TSR_RQCP2; /* rc_w1*/
break;
case CAN_IT_FF0:
CAN->RF0R = CAN_RF0R_FULL0; /* rc_w1*/
break;
case CAN_IT_FOV0:
CAN->RF0R = CAN_RF0R_FOVR0; /* rc_w1*/
break;
case CAN_IT_FF1:
CAN->RF1R = CAN_RF1R_FULL1; /* rc_w1*/
break;
case CAN_IT_FOV1:
CAN->RF1R = CAN_RF1R_FOVR1; /* rc_w1*/
break;
case CAN_IT_EWG:
CAN->ESR &= ~ CAN_ESR_EWGF; /* rw */
break;
case CAN_IT_EPV:
CAN->ESR &= ~ CAN_ESR_EPVF; /* rw */
break;
case CAN_IT_BOF:
CAN->ESR &= ~ CAN_ESR_BOFF; /* rw */
break;
case CAN_IT_WKU:
CAN->MSR = CAN_MSR_WKUI; /* rc_w1*/
break;
case CAN_IT_SLK:
CAN->MSR = CAN_MSR_SLAKI; /* rc_w1*/
break;
default :
break;
}
}
/*******************************************************************************
* Function Name : CheckITStatus
* Description : Checks whether the CAN interrupt has occurred or not.
* Input : CAN_Reg: specifies the CAN interrupt register to check.
* It_Bit: specifies the interrupt source bit to check.
* Output : None.
* Return : The new state of the CAN Interrupt (SET or RESET).
*******************************************************************************/
static ITStatus CheckITStatus(u32 CAN_Reg, u32 It_Bit)
{
ITStatus pendingbitstatus = RESET;
if ((CAN_Reg & It_Bit) != (u32)RESET)
{
/* CAN_IT is set */
pendingbitstatus = SET;
}
else
{
/* CAN_IT is reset */
pendingbitstatus = RESET;
}
return pendingbitstatus;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,164 @@
/**
******************************************************************************
* @file stm32f10x_crc.c
* @author MCD Application Team
* @version V3.0.0
* @date 04/06/2009
* @brief This file provides all the CRC firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_crc.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup CRC
* @brief CRC driver modules
* @{
*/
/** @defgroup CRC_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup CRC_Private_Defines
* @{
*/
/* CR register bit mask */
#define CR_RESET_Set ((uint32_t)0x00000001)
/**
* @}
*/
/** @defgroup CRC_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup CRC_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup CRC_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup CRC_Private_Functions
* @{
*/
/**
* @brief Resets the CRC Data register (DR).
* @param None
* @retval : None
*/
void CRC_ResetDR(void)
{
/* Reset CRC generator */
CRC->CR = CR_RESET_Set;
}
/**
* @brief Computes the 32-bit CRC of a given data word(32-bit).
* @param Data: data word(32-bit) to compute its CRC
* @retval : 32-bit CRC
*/
uint32_t CRC_CalcCRC(uint32_t Data)
{
CRC->DR = Data;
return (CRC->DR);
}
/**
* @brief Computes the 32-bit CRC of a given buffer of data word(32-bit).
* @param pBuffer: pointer to the buffer containing the data to be
* computed
* @param BufferLength: length of the buffer to be computed
* @retval : 32-bit CRC
*/
uint32_t CRC_CalcBlockCRC(uint32_t pBuffer[], uint32_t BufferLength)
{
uint32_t index = 0;
for(index = 0; index < BufferLength; index++)
{
CRC->DR = pBuffer[index];
}
return (CRC->DR);
}
/**
* @brief Returns the current CRC value.
* @param None
* @retval : 32-bit CRC
*/
uint32_t CRC_GetCRC(void)
{
return (CRC->DR);
}
/**
* @brief Stores a 8-bit data in the Independent Data(ID) register.
* @param IDValue: 8-bit value to be stored in the ID register
* @retval : None
*/
void CRC_SetIDRegister(uint8_t IDValue)
{
CRC->IDR = IDValue;
}
/**
* @brief Returns the 8-bit data stored in the Independent Data(ID) register
* @param None
* @retval : 8-bit value of the ID register
*/
uint8_t CRC_GetIDRegister(void)
{
return (CRC->IDR);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,412 @@
/**
******************************************************************************
* @file stm32f10x_dac.c
* @author MCD Application Team
* @version V3.0.0
* @date 04/06/2009
* @brief This file provides all the DAC firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_dac.h"
#include "stm32f10x_rcc.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup DAC
* @brief DAC driver modules
* @{
*/
/** @defgroup DAC_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup DAC_Private_Defines
* @{
*/
/* DAC EN mask */
#define CR_EN_Set ((uint32_t)0x00000001)
/* DAC DMAEN mask */
#define CR_DMAEN_Set ((uint32_t)0x00001000)
/* CR register Mask */
#define CR_CLEAR_Mask ((uint32_t)0x00000FFE)
/* DAC SWTRIG mask */
#define SWTRIGR_SWTRIG_Set ((uint32_t)0x00000001)
/* DAC Dual Channels SWTRIG masks */
#define DUAL_SWTRIG_Set ((uint32_t)0x00000003)
#define DUAL_SWTRIG_Reset ((uint32_t)0xFFFFFFFC)
/* DHR registers offsets */
#define DHR12R1_Offset ((uint32_t)0x00000008)
#define DHR12R2_Offset ((uint32_t)0x00000014)
#define DHR12RD_Offset ((uint32_t)0x00000020)
/* DOR register offset */
#define DOR_Offset ((uint32_t)0x0000002C)
/**
* @}
*/
/** @defgroup DAC_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup DAC_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup DAC_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup DAC_Private_Functions
* @{
*/
/**
* @brief Deinitializes the DAC peripheral registers to their default
* reset values.
* @param None
* @retval : None
*/
void DAC_DeInit(void)
{
/* Enable DAC reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, ENABLE);
/* Release DAC from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, DISABLE);
}
/**
* @brief Initializes the DAC peripheral according to the specified
* parameters in the DAC_InitStruct.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure that
* contains the configuration information for the specified
* DAC channel.
* @retval : None
*/
void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct)
{
uint32_t tmpreg1 = 0, tmpreg2 = 0;
/* Check the DAC parameters */
assert_param(IS_DAC_TRIGGER(DAC_InitStruct->DAC_Trigger));
assert_param(IS_DAC_GENERATE_WAVE(DAC_InitStruct->DAC_WaveGeneration));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude));
assert_param(IS_DAC_OUTPUT_BUFFER_STATE(DAC_InitStruct->DAC_OutputBuffer));
/*---------------------------- DAC CR Configuration --------------------------*/
/* Get the DAC CR value */
tmpreg1 = DAC->CR;
/* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */
tmpreg1 &= ~(CR_CLEAR_Mask << DAC_Channel);
/* Configure for the selected DAC channel: buffer output, trigger, wave genration,
mask/amplitude for wave genration */
/* Set TSELx and TENx bits according to DAC_Trigger value */
/* Set WAVEx bits according to DAC_WaveGeneration value */
/* Set MAMPx bits according to DAC_LFSRUnmask_TriangleAmplitude value */
/* Set BOFFx bit according to DAC_OutputBuffer value */
tmpreg2 = (DAC_InitStruct->DAC_Trigger | DAC_InitStruct->DAC_WaveGeneration |
DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude | DAC_InitStruct->DAC_OutputBuffer);
/* Calculate CR register value depending on DAC_Channel */
tmpreg1 |= tmpreg2 << DAC_Channel;
/* Write to DAC CR */
DAC->CR = tmpreg1;
}
/**
* @brief Fills each DAC_InitStruct member with its default value.
* @param DAC_InitStruct : pointer to a DAC_InitTypeDef structure
* which will be initialized.
* @retval : None
*/
void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct)
{
/*--------------- Reset DAC init structure parameters values -----------------*/
/* Initialize the DAC_Trigger member */
DAC_InitStruct->DAC_Trigger = DAC_Trigger_None;
/* Initialize the DAC_WaveGeneration member */
DAC_InitStruct->DAC_WaveGeneration = DAC_WaveGeneration_None;
/* Initialize the DAC_LFSRUnmask_TriangleAmplitude member */
DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0;
/* Initialize the DAC_OutputBuffer member */
DAC_InitStruct->DAC_OutputBuffer = DAC_OutputBuffer_Enable;
}
/**
* @brief Enables or disables the specified DAC channel.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the DAC channel.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void DAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DAC channel */
DAC->CR |= CR_EN_Set << DAC_Channel;
}
else
{
/* Disable the selected DAC channel */
DAC->CR &= ~(CR_EN_Set << DAC_Channel);
}
}
/**
* @brief Enables or disables the specified DAC channel DMA request.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the selected DAC channel DMA request.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void DAC_DMACmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DAC channel DMA request */
DAC->CR |= CR_DMAEN_Set << DAC_Channel;
}
else
{
/* Disable the selected DAC channel DMA request */
DAC->CR &= ~(CR_DMAEN_Set << DAC_Channel);
}
}
/**
* @brief Enables or disables the selected DAC channel software trigger.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the selected DAC channel software trigger.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable software trigger for the selected DAC channel */
DAC->SWTRIGR |= SWTRIGR_SWTRIG_Set << (DAC_Channel >> 4);
}
else
{
/* Disable software trigger for the selected DAC channel */
DAC->SWTRIGR &= ~(SWTRIGR_SWTRIG_Set << (DAC_Channel >> 4));
}
}
/**
* @brief Enables or disables simultaneously the two DAC channels software
* triggers.
* @param NewState: new state of the DAC channels software triggers.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void DAC_DualSoftwareTriggerCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable software trigger for both DAC channels */
DAC->SWTRIGR |= DUAL_SWTRIG_Set ;
}
else
{
/* Disable software trigger for both DAC channels */
DAC->SWTRIGR &= DUAL_SWTRIG_Reset;
}
}
/**
* @brief Enables or disables the selected DAC channel wave generation.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_Wave: Specifies the wave type to enable or disable.
* This parameter can be one of the following values:
* @arg DAC_Wave_Noise: noise wave generation
* @arg DAC_Wave_Triangle: triangle wave generation
* @param NewState: new state of the selected DAC channel wave generation.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_WAVE(DAC_Wave));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected wave generation for the selected DAC channel */
DAC->CR |= DAC_Wave << DAC_Channel;
}
else
{
/* Disable the selected wave generation for the selected DAC channel */
DAC->CR &= ~(DAC_Wave << DAC_Channel);
}
}
/**
* @brief Set the specified data holding register value for DAC channel1.
* @param DAC_Align: Specifies the data alignement for DAC channel1.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignement selected
* @arg DAC_Align_12b_L: 12bit left data alignement selected
* @arg DAC_Align_12b_R: 12bit right data alignement selected
* @param Data : Data to be loaded in the selected data holding
* register.
* @retval : None
*/
void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data)
{
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data));
/* Set the DAC channel1 selected data holding register */
*((__IO uint32_t *)(DAC_BASE + DHR12R1_Offset + DAC_Align)) = (uint32_t)Data;
}
/**
* @brief Set the specified data holding register value for DAC channel2.
* @param DAC_Align: Specifies the data alignement for DAC channel2.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignement selected
* @arg DAC_Align_12b_L: 12bit left data alignement selected
* @arg DAC_Align_12b_R: 12bit right data alignement selected
* @param Data : Data to be loaded in the selected data holding
* register.
* @retval : None
*/
void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data)
{
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data));
/* Set the DAC channel2 selected data holding register */
*((__IO uint32_t *)(DAC_BASE + DHR12R2_Offset + DAC_Align)) = (uint32_t)Data;
}
/**
* @brief Set the specified data holding register value for dual channel
* DAC.
* @param DAC_Align: Specifies the data alignement for dual channel DAC.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignement selected
* @arg DAC_Align_12b_L: 12bit left data alignement selected
* @arg DAC_Align_12b_R: 12bit right data alignement selected
* @param Data2: Data for DAC Channel2 to be loaded in the selected data
* holding register.
* @param Data1: Data for DAC Channel1 to be loaded in the selected data
* holding register.
* @retval : None
*/
void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1)
{
uint32_t data = 0;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data1));
assert_param(IS_DAC_DATA(Data2));
/* Calculate and set dual DAC data holding register value */
if (DAC_Align == DAC_Align_8b_R)
{
data = ((uint32_t)Data2 << 8) | Data1;
}
else
{
data = ((uint32_t)Data2 << 16) | Data1;
}
/* Set the dual DAC selected data holding register */
*((__IO uint32_t *)(DAC_BASE + DHR12RD_Offset + DAC_Align)) = data;
}
/**
* @brief Returns the last data output value of the selected DAC cahnnel.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @retval : The selected DAC channel data output value.
*/
uint16_t DAC_GetDataOutputValue(uint32_t DAC_Channel)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
/* Returns the DAC channel data output register value */
return (uint16_t) (*(__IO uint32_t*)(DAC_BASE + DOR_Offset + ((uint32_t)DAC_Channel >> 2)));
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,152 @@
/**
******************************************************************************
* @file stm32f10x_dbgmcu.c
* @author MCD Application Team
* @version V3.0.0
* @date 04/06/2009
* @brief This file provides all the DBGMCU firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_dbgmcu.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup DBGMCU
* @brief DBGMCU driver modules
* @{
*/
/** @defgroup DBGMCU_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup DBGMCU_Private_Defines
* @{
*/
#define IDCODE_DEVID_Mask ((uint32_t)0x00000FFF)
/**
* @}
*/
/** @defgroup DBGMCU_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup DBGMCU_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup DBGMCU_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup DBGMCU_Private_Functions
* @{
*/
/**
* @brief Returns the device revision identifier.
* @param None
* @retval : Device revision identifier
*/
uint32_t DBGMCU_GetREVID(void)
{
return(DBGMCU->IDCODE >> 16);
}
/**
* @brief Returns the device identifier.
* @param None
* @retval : Device identifier
*/
uint32_t DBGMCU_GetDEVID(void)
{
return(DBGMCU->IDCODE & IDCODE_DEVID_Mask);
}
/**
* @brief Configures the specified peripheral and low power mode behavior
* when the MCU under Debug mode.
* @param DBGMCU_Periph: specifies the peripheral and low power mode.
* This parameter can be any combination of the following values:
* @arg DBGMCU_SLEEP: Keep debugger connection during SLEEP mode
* @arg DBGMCU_STOP: Keep debugger connection during STOP mode
* @arg DBGMCU_STANDBY: Keep debugger connection during STANDBY mode
* @arg DBGMCU_IWDG_STOP: Debug IWDG stopped when Core is halted
* @arg DBGMCU_WWDG_STOP: Debug WWDG stopped when Core is halted
* @arg DBGMCU_TIM1_STOP: TIM1 counter stopped when Core is halted
* @arg DBGMCU_TIM2_STOP: TIM2 counter stopped when Core is halted
* @arg DBGMCU_TIM3_STOP: TIM3 counter stopped when Core is halted
* @arg DBGMCU_TIM4_STOP: TIM4 counter stopped when Core is halted
* @arg DBGMCU_CAN1_STOP: Debug CAN 1 stopped when Core is halted
* @arg DBGMCU_I2C1_SMBUS_TIMEOUT: I2C1 SMBUS timeout mode stopped when Core is
* halted
* @arg DBGMCU_I2C2_SMBUS_TIMEOUT: I2C2 SMBUS timeout mode stopped when Core is
* halted
* @arg DBGMCU_TIM5_STOP: TIM5 counter stopped when Core is halted
* @arg DBGMCU_TIM6_STOP: TIM6 counter stopped when Core is halted
* @arg DBGMCU_TIM7_STOP: TIM7 counter stopped when Core is halted
* @arg DBGMCU_TIM8_STOP: TIM8 counter stopped when Core is halted
* @param NewState: new state of the specified peripheral in Debug mode.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void DBGMCU_Config(uint32_t DBGMCU_Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DBGMCU_PERIPH(DBGMCU_Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
DBGMCU->CR |= DBGMCU_Periph;
}
else
{
DBGMCU->CR &= ~DBGMCU_Periph;
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,503 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_dma.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the DMA firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_dma.h"
#include "stm32f10x_rcc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* DMA ENABLE mask */
#define CCR_ENABLE_Set ((u32)0x00000001)
#define CCR_ENABLE_Reset ((u32)0xFFFFFFFE)
/* DMA Channelx interrupt pending bit masks */
#define DMA_Channel1_IT_Mask ((u32)0x0000000F)
#define DMA_Channel2_IT_Mask ((u32)0x000000F0)
#define DMA_Channel3_IT_Mask ((u32)0x00000F00)
#define DMA_Channel4_IT_Mask ((u32)0x0000F000)
#define DMA_Channel5_IT_Mask ((u32)0x000F0000)
#define DMA_Channel6_IT_Mask ((u32)0x00F00000)
#define DMA_Channel7_IT_Mask ((u32)0x0F000000)
/* DMA registers Masks */
#define CCR_CLEAR_Mask ((u32)0xFFFF800F)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : DMA_DeInit
* Description : Deinitializes the DMA Channelx registers to their default reset
* values.
* Input : - DMA_Channelx: where x can be 1, 2 to 7 to select the DMA
* Channel.
* Output : None
* Return : None
*******************************************************************************/
void DMA_DeInit(DMA_Channel_TypeDef* DMA_Channelx)
{
/* DMA Channelx disable */
DMA_Cmd(DMA_Channelx, DISABLE);
/* Reset Channelx control register */
DMA_Channelx->CCR = 0;
/* Reset Channelx remaining bytes register */
DMA_Channelx->CNDTR = 0;
/* Reset Channelx peripheral address register */
DMA_Channelx->CPAR = 0;
/* Reset Channelx memory address register */
DMA_Channelx->CMAR = 0;
switch (*(u32*)&DMA_Channelx)
{
case DMA_Channel1_BASE:
/* Reset interrupt pending bits for Channel1 */
DMA->IFCR |= DMA_Channel1_IT_Mask;
break;
case DMA_Channel2_BASE:
/* Reset interrupt pending bits for Channel2 */
DMA->IFCR |= DMA_Channel2_IT_Mask;
break;
case DMA_Channel3_BASE:
/* Reset interrupt pending bits for Channel3 */
DMA->IFCR |= DMA_Channel3_IT_Mask;
break;
case DMA_Channel4_BASE:
/* Reset interrupt pending bits for Channel4 */
DMA->IFCR |= DMA_Channel4_IT_Mask;
break;
case DMA_Channel5_BASE:
/* Reset interrupt pending bits for Channel5 */
DMA->IFCR |= DMA_Channel5_IT_Mask;
break;
case DMA_Channel6_BASE:
/* Reset interrupt pending bits for Channel6 */
DMA->IFCR |= DMA_Channel6_IT_Mask;
break;
case DMA_Channel7_BASE:
/* Reset interrupt pending bits for Channel7 */
DMA->IFCR |= DMA_Channel7_IT_Mask;
break;
default:
break;
}
}
/*******************************************************************************
* Function Name : DMA_Init
* Description : Initializes the DMA Channelx according to the specified
* parameters in the DMA_InitStruct.
* Input : - DMA_Channelx: where x can be 1, 2 to 7 to select the DMA
* Channel.
* - DMA_InitStruct: pointer to a DMA_InitTypeDef structure that
* contains the configuration information for the specified
* DMA Channel.
* Output : None
* Return : None
******************************************************************************/
void DMA_Init(DMA_Channel_TypeDef* DMA_Channelx, DMA_InitTypeDef* DMA_InitStruct)
{
u32 tmpreg = 0;
/* Check the parameters */
assert(IS_DMA_DIR(DMA_InitStruct->DMA_DIR));
assert(IS_DMA_BUFFER_SIZE(DMA_InitStruct->DMA_BufferSize));
assert(IS_DMA_PERIPHERAL_INC_STATE(DMA_InitStruct->DMA_PeripheralInc));
assert(IS_DMA_MEMORY_INC_STATE(DMA_InitStruct->DMA_MemoryInc));
assert(IS_DMA_PERIPHERAL_DATA_SIZE(DMA_InitStruct->DMA_PeripheralDataSize));
assert(IS_DMA_MEMORY_DATA_SIZE(DMA_InitStruct->DMA_MemoryDataSize));
assert(IS_DMA_MODE(DMA_InitStruct->DMA_Mode));
assert(IS_DMA_PRIORITY(DMA_InitStruct->DMA_Priority));
assert(IS_DMA_M2M_STATE(DMA_InitStruct->DMA_M2M));
/*--------------------------- DMA Channelx CCR Configuration -----------------*/
/* Get the DMA_Channelx CCR value */
tmpreg = DMA_Channelx->CCR;
/* Clear MEM2MEM, PL, MSIZE, PSIZE, MINC, PINC, CIRCULAR and DIR bits */
tmpreg &= CCR_CLEAR_Mask;
/* Configure DMA Channelx: data transfer, data size, priority level and mode */
/* Set DIR bit according to DMA_DIR value */
/* Set CIRCULAR bit according to DMA_Mode value */
/* Set PINC bit according to DMA_PeripheralInc value */
/* Set MINC bit according to DMA_MemoryInc value */
/* Set PSIZE bits according to DMA_PeripheralDataSize value */
/* Set MSIZE bits according to DMA_MemoryDataSize value */
/* Set PL bits according to DMA_Priority value */
/* Set the MEM2MEM bit according to DMA_M2M value */
tmpreg |= DMA_InitStruct->DMA_DIR | DMA_InitStruct->DMA_Mode |
DMA_InitStruct->DMA_PeripheralInc | DMA_InitStruct->DMA_MemoryInc |
DMA_InitStruct->DMA_PeripheralDataSize | DMA_InitStruct->DMA_MemoryDataSize |
DMA_InitStruct->DMA_Priority | DMA_InitStruct->DMA_M2M;
/* Write to DMA Channelx CCR */
DMA_Channelx->CCR = tmpreg;
/*--------------------------- DMA Channelx CNBTR Configuration ---------------*/
/* Write to DMA Channelx CNBTR */
DMA_Channelx->CNDTR = DMA_InitStruct->DMA_BufferSize;
/*--------------------------- DMA Channelx CPAR Configuration ----------------*/
/* Write to DMA Channelx CPAR */
DMA_Channelx->CPAR = DMA_InitStruct->DMA_PeripheralBaseAddr;
/*--------------------------- DMA Channelx CMAR Configuration ----------------*/
/* Write to DMA Channelx CMAR */
DMA_Channelx->CMAR = DMA_InitStruct->DMA_MemoryBaseAddr;
}
/*******************************************************************************
* Function Name : DMA_StructInit
* Description : Fills each DMA_InitStruct member with its default value.
* Input : - DMA_InitStruct : pointer to a DMA_InitTypeDef structure
* which will be initialized.
* Output : None
* Return : None
*******************************************************************************/
void DMA_StructInit(DMA_InitTypeDef* DMA_InitStruct)
{
/*-------------- Reset DMA init structure parameters values ------------------*/
/* Initialize the DMA_PeripheralBaseAddr member */
DMA_InitStruct->DMA_PeripheralBaseAddr = 0;
/* Initialize the DMA_MemoryBaseAddr member */
DMA_InitStruct->DMA_MemoryBaseAddr = 0;
/* Initialize the DMA_DIR member */
DMA_InitStruct->DMA_DIR = DMA_DIR_PeripheralSRC;
/* Initialize the DMA_BufferSize member */
DMA_InitStruct->DMA_BufferSize = 0;
/* Initialize the DMA_PeripheralInc member */
DMA_InitStruct->DMA_PeripheralInc = DMA_PeripheralInc_Disable;
/* Initialize the DMA_MemoryInc member */
DMA_InitStruct->DMA_MemoryInc = DMA_MemoryInc_Disable;
/* Initialize the DMA_PeripheralDataSize member */
DMA_InitStruct->DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
/* Initialize the DMA_MemoryDataSize member */
DMA_InitStruct->DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
/* Initialize the DMA_Mode member */
DMA_InitStruct->DMA_Mode = DMA_Mode_Normal;
/* Initialize the DMA_Priority member */
DMA_InitStruct->DMA_Priority = DMA_Priority_Low;
/* Initialize the DMA_M2M member */
DMA_InitStruct->DMA_M2M = DMA_M2M_Disable;
}
/*******************************************************************************
* Function Name : DMA_Cmd
* Description : Enables or disables the specified DMA Channel.
* Input : - DMA_Channelx: where x can be 1, 2 to 7 to select the DMA
* Channel.
* - NewState: new state of the DMAx Channel.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void DMA_Cmd(DMA_Channel_TypeDef* DMA_Channelx, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA Channelx */
DMA_Channelx->CCR |= CCR_ENABLE_Set;
}
else
{
/* Disable the selected DMA Channelx */
DMA_Channelx->CCR &= CCR_ENABLE_Reset;
}
}
/*******************************************************************************
* Function Name : DMA_ITConfig
* Description : Enables or disables the specified DMA interrupts.
* Input : - DMA_IT: specifies the DMA interrupts sources to be enabled
* or disabled.
* This parameter can be any combination of the following values:
* - DMA_IT_TC: Transfer complete interrupt mask
* - DMA_IT_HT: Half transfer interrupt mask
* - DMA_IT_TE: Transfer error interrupt mask
* - NewState: new state of the specified DMA interrupts.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void DMA_ITConfig(DMA_Channel_TypeDef* DMA_Channelx, u32 DMA_IT, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_DMA_CONFIG_IT(DMA_IT));
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA interrupts */
DMA_Channelx->CCR |= DMA_IT;
}
else
{
/* Disable the selected DMA interrupts */
DMA_Channelx->CCR &= ~DMA_IT;
}
}
/*******************************************************************************
* Function Name : DMA_GetCurrDataCounter
* Description : Returns the number of remaining data units in the current
* DMA Channel transfer.
* Input : - DMA_Channelx: where x can be 1, 2 to 7 to select the DMA
* Channel.
* Output : None
* Return : The number of remaining data units in the current DMA Channel
* transfer..
*******************************************************************************/
u16 DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMA_Channelx)
{
/* Return the current memory address value for Channelx */
return ((u16)(DMA_Channelx->CNDTR));
}
/*******************************************************************************
* Function Name : DMA_GetFlagStatus
* Description : Checks whether the specified DMA flag is set or not.
* Input : - DMA_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* - DMA_FLAG_GL1: Channel1 global flag.
* - DMA_FLAG_TC1: Channel1 transfer complete flag.
* - DMA_FLAG_HT1: Channel1 half transfer flag.
* - DMA_FLAG_TE1: Channel1 transfer error flag.
* - DMA_FLAG_GL2: Channel2 global flag.
* - DMA_FLAG_TC2: Channel2 transfer complete flag.
* - DMA_FLAG_HT2: Channel2 half transfer flag.
* - DMA_FLAG_TE2: Channel2 transfer error flag.
* - DMA_FLAG_GL3: Channel3 global flag.
* - DMA_FLAG_TC3: Channel3 transfer complete flag.
* - DMA_FLAG_HT3: Channel3 half transfer flag.
* - DMA_FLAG_TE3: Channel3 transfer error flag.
* - DMA_FLAG_GL4: Channel4 global flag.
* - DMA_FLAG_TC4: Channel4 transfer complete flag.
* - DMA_FLAG_HT4: Channel4 half transfer flag.
* - DMA_FLAG_TE4: Channel4 transfer error flag.
* - DMA_FLAG_GL5: Channel5 global flag.
* - DMA_FLAG_TC5: Channel5 transfer complete flag.
* - DMA_FLAG_HT5: Channel5 half transfer flag.
* - DMA_FLAG_TE5: Channel5 transfer error flag.
* - DMA_FLAG_GL6: Channel6 global flag.
* - DMA_FLAG_TC6: Channel6 transfer complete flag.
* - DMA_FLAG_HT6: Channel6 half transfer flag.
* - DMA_FLAG_TE6: Channel6 transfer error flag.
* - DMA_FLAG_GL7: Channel7 global flag.
* - DMA_FLAG_TC7: Channel7 transfer complete flag.
* - DMA_FLAG_HT7: Channel7 half transfer flag.
* - DMA_FLAG_TE7: Channel7 transfer error flag.
* Output : None
* Return : The new state of DMA_FLAG (SET or RESET).
*******************************************************************************/
FlagStatus DMA_GetFlagStatus(u32 DMA_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_DMA_GET_FLAG(DMA_FLAG));
/* Check the status of the specified DMA flag */
if ((DMA->ISR & DMA_FLAG) != (u32)RESET)
{
/* DMA_FLAG is set */
bitstatus = SET;
}
else
{
/* DMA_FLAG is reset */
bitstatus = RESET;
}
/* Return the DMA_FLAG status */
return bitstatus;
}
/*******************************************************************************
* Function Name : DMA_ClearFlag
* Description : Clears the DMA's pending flags.
* Input : - DMA_FLAG: specifies the flag to clear.
* This parameter can be any combination of the following values:
* - DMA_FLAG_GL1: Channel1 global flag.
* - DMA_FLAG_TC1: Channel1 transfer complete flag.
* - DMA_FLAG_HT1: Channel1 half transfer flag.
* - DMA_FLAG_TE1: Channel1 transfer error flag.
* - DMA_FLAG_GL2: Channel2 global flag.
* - DMA_FLAG_TC2: Channel2 transfer complete flag.
* - DMA_FLAG_HT2: Channel2 half transfer flag.
* - DMA_FLAG_TE2: Channel2 transfer error flag.
* - DMA_FLAG_GL3: Channel3 global flag.
* - DMA_FLAG_TC3: Channel3 transfer complete flag.
* - DMA_FLAG_HT3: Channel3 half transfer flag.
* - DMA_FLAG_TE3: Channel3 transfer error flag.
* - DMA_FLAG_GL4: Channel4 global flag.
* - DMA_FLAG_TC4: Channel4 transfer complete flag.
* - DMA_FLAG_HT4: Channel4 half transfer flag.
* - DMA_FLAG_TE4: Channel4 transfer error flag.
* - DMA_FLAG_GL5: Channel5 global flag.
* - DMA_FLAG_TC5: Channel5 transfer complete flag.
* - DMA_FLAG_HT5: Channel5 half transfer flag.
* - DMA_FLAG_TE5: Channel5 transfer error flag.
* - DMA_FLAG_GL6: Channel6 global flag.
* - DMA_FLAG_TC6: Channel6 transfer complete flag.
* - DMA_FLAG_HT6: Channel6 half transfer flag.
* - DMA_FLAG_TE6: Channel6 transfer error flag.
* - DMA_FLAG_GL7: Channel7 global flag.
* - DMA_FLAG_TC7: Channel7 transfer complete flag.
* - DMA_FLAG_HT7: Channel7 half transfer flag.
* - DMA_FLAG_TE7: Channel7 transfer error flag.
* Output : None
* Return : None
*******************************************************************************/
void DMA_ClearFlag(u32 DMA_FLAG)
{
/* Check the parameters */
assert(IS_DMA_CLEAR_FLAG(DMA_FLAG));
/* Clear the selected DMA flags */
DMA->IFCR = DMA_FLAG;
}
/*******************************************************************************
* Function Name : DMA_GetITStatus
* Description : Checks whether the specified DMA interrupt has occurred or not.
* Input : - DMA_IT: specifies the DMA interrupt source to check.
* This parameter can be one of the following values:
* - DMA_IT_GL1: Channel1 global interrupt.
* - DMA_IT_TC1: Channel1 transfer complete interrupt.
* - DMA_IT_HT1: Channel1 half transfer interrupt.
* - DMA_IT_TE1: Channel1 transfer error interrupt.
* - DMA_IT_GL2: Channel2 global interrupt.
* - DMA_IT_TC2: Channel2 transfer complete interrupt.
* - DMA_IT_HT2: Channel2 half transfer interrupt.
* - DMA_IT_TE2: Channel2 transfer error interrupt.
* - DMA_IT_GL3: Channel3 global interrupt.
* - DMA_IT_TC3: Channel3 transfer complete interrupt.
* - DMA_IT_HT3: Channel3 half transfer interrupt.
* - DMA_IT_TE3: Channel3 transfer error interrupt.
* - DMA_IT_GL4: Channel4 global interrupt.
* - DMA_IT_TC4: Channel4 transfer complete interrupt.
* - DMA_IT_HT4: Channel4 half transfer interrupt.
* - DMA_IT_TE4: Channel4 transfer error interrupt.
* - DMA_IT_GL5: Channel5 global interrupt.
* - DMA_IT_TC5: Channel5 transfer complete interrupt.
* - DMA_IT_HT5: Channel5 half transfer interrupt.
* - DMA_IT_TE5: Channel5 transfer error interrupt.
* - DMA_IT_GL6: Channel6 global interrupt.
* - DMA_IT_TC6: Channel6 transfer complete interrupt.
* - DMA_IT_HT6: Channel6 half transfer interrupt.
* - DMA_IT_TE6: Channel6 transfer error interrupt.
* - DMA_IT_GL7: Channel7 global interrupt.
* - DMA_IT_TC7: Channel7 transfer complete interrupt.
* - DMA_IT_HT7: Channel7 half transfer interrupt.
* - DMA_IT_TE7: Channel7 transfer error interrupt.
* Output : None
* Return : The new state of DMA_IT (SET or RESET).
*******************************************************************************/
ITStatus DMA_GetITStatus(u32 DMA_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_DMA_GET_IT(DMA_IT));
/* Check the status of the specified DMA interrupt */
if ((DMA->ISR & DMA_IT) != (u32)RESET)
{
/* DMA_IT is set */
bitstatus = SET;
}
else
{
/* DMA_IT is reset */
bitstatus = RESET;
}
/* Return the DMA_IT status */
return bitstatus;
}
/*******************************************************************************
* Function Name : DMA_ClearITPendingBit
* Description : Clears the DMAs interrupt pending bits.
* Input : - DMA_IT: specifies the DMA interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* - DMA_IT_GL1: Channel1 global interrupt.
* - DMA_IT_TC1: Channel1 transfer complete interrupt.
* - DMA_IT_HT1: Channel1 half transfer interrupt.
* - DMA_IT_TE1: Channel1 transfer error interrupt.
* - DMA_IT_GL2: Channel2 global interrupt.
* - DMA_IT_TC2: Channel2 transfer complete interrupt.
* - DMA_IT_HT2: Channel2 half transfer interrupt.
* - DMA_IT_TE2: Channel2 transfer error interrupt.
* - DMA_IT_GL3: Channel3 global interrupt.
* - DMA_IT_TC3: Channel3 transfer complete interrupt.
* - DMA_IT_HT3: Channel3 half transfer interrupt.
* - DMA_IT_TE3: Channel3 transfer error interrupt.
* - DMA_IT_GL4: Channel4 global interrupt.
* - DMA_IT_TC4: Channel4 transfer complete interrupt.
* - DMA_IT_HT4: Channel4 half transfer interrupt.
* - DMA_IT_TE4: Channel4 transfer error interrupt.
* - DMA_IT_GL5: Channel5 global interrupt.
* - DMA_IT_TC5: Channel5 transfer complete interrupt.
* - DMA_IT_HT5: Channel5 half transfer interrupt.
* - DMA_IT_TE5: Channel5 transfer error interrupt.
* - DMA_IT_GL6: Channel6 global interrupt.
* - DMA_IT_TC6: Channel6 transfer complete interrupt.
* - DMA_IT_HT6: Channel6 half transfer interrupt.
* - DMA_IT_TE6: Channel6 transfer error interrupt.
* - DMA_IT_GL7: Channel7 global interrupt.
* - DMA_IT_TC7: Channel7 transfer complete interrupt.
* - DMA_IT_HT7: Channel7 half transfer interrupt.
* - DMA_IT_TE7: Channel7 transfer error interrupt.
* Output : None
* Return : None
*******************************************************************************/
void DMA_ClearITPendingBit(u32 DMA_IT)
{
/* Check the parameters */
assert(IS_DMA_CLEAR_IT(DMA_IT));
/* Clear the selected DMA interrupt pending bits */
DMA->IFCR = DMA_IT;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,219 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_exti.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the EXTI firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_exti.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define EXTI_LineNone ((u32)0x00000) /* No interrupt selected */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : EXTI_DeInit
* Description : Deinitializes the EXTI peripheral registers to their default
* reset values.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void EXTI_DeInit(void)
{
EXTI->IMR = 0x00000000;
EXTI->EMR = 0x00000000;
EXTI->RTSR = 0x00000000;
EXTI->FTSR = 0x00000000;
EXTI->PR = 0x0007FFFF;
}
/*******************************************************************************
* Function Name : EXTI_Init
* Description : Initializes the EXTI peripheral according to the specified
* parameters in the EXTI_InitStruct.
* Input : - EXTI_InitStruct: pointer to a EXTI_InitTypeDef structure
* that contains the configuration information for the EXTI
* peripheral.
* Output : None
* Return : None
*******************************************************************************/
void EXTI_Init(EXTI_InitTypeDef* EXTI_InitStruct)
{
/* Check the parameters */
assert(IS_EXTI_MODE(EXTI_InitStruct->EXTI_Mode));
assert(IS_EXTI_TRIGGER(EXTI_InitStruct->EXTI_Trigger));
assert(IS_EXTI_LINE(EXTI_InitStruct->EXTI_Line));
assert(IS_FUNCTIONAL_STATE(EXTI_InitStruct->EXTI_LineCmd));
if (EXTI_InitStruct->EXTI_LineCmd != DISABLE)
{
*(u32 *)(EXTI_BASE + (u32)EXTI_InitStruct->EXTI_Mode)|= EXTI_InitStruct->EXTI_Line;
/* Clear Rising Falling edge configuration */
EXTI->RTSR &= ~EXTI_InitStruct->EXTI_Line;
EXTI->FTSR &= ~EXTI_InitStruct->EXTI_Line;
/* Select the trigger for the selected external interrupts */
if (EXTI_InitStruct->EXTI_Trigger == EXTI_Trigger_Rising_Falling)
{
/* Rising Falling edge */
EXTI->RTSR |= EXTI_InitStruct->EXTI_Line;
EXTI->FTSR |= EXTI_InitStruct->EXTI_Line;
}
else
{
*(u32 *)(EXTI_BASE + (u32)EXTI_InitStruct->EXTI_Trigger)|= EXTI_InitStruct->EXTI_Line;
}
}
else
{
/* Disable the selected external lines */
*(u32 *)(EXTI_BASE + (u32)EXTI_InitStruct->EXTI_Mode)&= ~EXTI_InitStruct->EXTI_Line;
}
}
/*******************************************************************************
* Function Name : EXTI_StructInit
* Description : Fills each EXTI_InitStruct member with its reset value.
* Input : - EXTI_InitStruct: pointer to a EXTI_InitTypeDef structure
* which will be initialized.
* Output : None
* Return : None
*******************************************************************************/
void EXTI_StructInit(EXTI_InitTypeDef* EXTI_InitStruct)
{
EXTI_InitStruct->EXTI_Line = EXTI_LineNone;
EXTI_InitStruct->EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStruct->EXTI_Trigger = EXTI_Trigger_Falling;
EXTI_InitStruct->EXTI_LineCmd = DISABLE;
}
/*******************************************************************************
* Function Name : EXTI_GenerateSWInterrupt
* Description : Generates a Software interrupt.
* Input : - EXTI_Line: specifies the EXTI lines to be enabled or
* disabled.
* This parameter can be:
* - EXTI_Linex: External interrupt line x where x(0..18)
* Output : None
* Return : None
*******************************************************************************/
void EXTI_GenerateSWInterrupt(u32 EXTI_Line)
{
/* Check the parameters */
assert(IS_EXTI_LINE(EXTI_Line));
EXTI->SWIER |= EXTI_Line;
}
/*******************************************************************************
* Function Name : EXTI_GetFlagStatus
* Description : Checks whether the specified EXTI line flag is set or not.
* Input : - EXTI_Line: specifies the EXTI lines flag to check.
* This parameter can be:
* - EXTI_Linex: External interrupt line x where x(0..18)
* Output : None
* Return : The new state of EXTI_Line (SET or RESET).
*******************************************************************************/
FlagStatus EXTI_GetFlagStatus(u32 EXTI_Line)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_GET_EXTI_LINE(EXTI_Line));
if ((EXTI->PR & EXTI_Line) != (u32)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : EXTI_ClearFlag
* Description : Clears the EXTIs line pending flags.
* Input : - EXTI_Line: specifies the EXTI lines flags to clear.
* This parameter can be:
* - EXTI_Linex: External interrupt line x where x(0..18)
* Output : None
* Return : None
*******************************************************************************/
void EXTI_ClearFlag(u32 EXTI_Line)
{
/* Check the parameters */
assert(IS_EXTI_LINE(EXTI_Line));
EXTI->PR = EXTI_Line;
}
/*******************************************************************************
* Function Name : EXTI_GetITStatus
* Description : Checks whether the specified EXTI line is asserted or not.
* Input : - EXTI_Line: specifies the EXTI lines to check.
* This parameter can be:
* - EXTI_Linex: External interrupt line x where x(0..18)
* Output : None
* Return : The new state of EXTI_Line (SET or RESET).
*******************************************************************************/
ITStatus EXTI_GetITStatus(u32 EXTI_Line)
{
ITStatus bitstatus = RESET;
u32 enablestatus = 0;
/* Check the parameters */
assert(IS_GET_EXTI_LINE(EXTI_Line));
enablestatus = EXTI->IMR & EXTI_Line;
if (((EXTI->PR & EXTI_Line) != (u32)RESET) && enablestatus)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : EXTI_ClearITPendingBit
* Description : Clears the EXTIs line pending bits.
* Input : - EXTI_Line: specifies the EXTI lines to clear.
* This parameter can be:
* - EXTI_Linex: External interrupt line x where x(0..18)
* Output : None
* Return : None
*******************************************************************************/
void EXTI_ClearITPendingBit(u32 EXTI_Line)
{
/* Check the parameters */
assert(IS_EXTI_LINE(EXTI_Line));
EXTI->PR = EXTI_Line;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,881 @@
/**
******************************************************************************
* @file stm32f10x_flash.c
* @author MCD Application Team
* @version V3.0.0
* @date 04/06/2009
* @brief This file provides all the FLASH firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_flash.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup FLASH
* @brief FLASH driver modules
* @{
*/
/** @defgroup FLASH_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup FLASH_Private_Defines
* @{
*/
/* Flash Access Control Register bits */
#define ACR_LATENCY_Mask ((uint32_t)0x00000038)
#define ACR_HLFCYA_Mask ((uint32_t)0xFFFFFFF7)
#define ACR_PRFTBE_Mask ((uint32_t)0xFFFFFFEF)
/* Flash Access Control Register bits */
#define ACR_PRFTBS_Mask ((uint32_t)0x00000020)
/* Flash Control Register bits */
#define CR_PG_Set ((uint32_t)0x00000001)
#define CR_PG_Reset ((uint32_t)0x00001FFE)
#define CR_PER_Set ((uint32_t)0x00000002)
#define CR_PER_Reset ((uint32_t)0x00001FFD)
#define CR_MER_Set ((uint32_t)0x00000004)
#define CR_MER_Reset ((uint32_t)0x00001FFB)
#define CR_OPTPG_Set ((uint32_t)0x00000010)
#define CR_OPTPG_Reset ((uint32_t)0x00001FEF)
#define CR_OPTER_Set ((uint32_t)0x00000020)
#define CR_OPTER_Reset ((uint32_t)0x00001FDF)
#define CR_STRT_Set ((uint32_t)0x00000040)
#define CR_LOCK_Set ((uint32_t)0x00000080)
/* FLASH Mask */
#define RDPRT_Mask ((uint32_t)0x00000002)
#define WRP0_Mask ((uint32_t)0x000000FF)
#define WRP1_Mask ((uint32_t)0x0000FF00)
#define WRP2_Mask ((uint32_t)0x00FF0000)
#define WRP3_Mask ((uint32_t)0xFF000000)
/* FLASH Keys */
#define RDP_Key ((uint16_t)0x00A5)
#define FLASH_KEY1 ((uint32_t)0x45670123)
#define FLASH_KEY2 ((uint32_t)0xCDEF89AB)
/* Delay definition */
#define EraseTimeout ((uint32_t)0x00000FFF)
#define ProgramTimeout ((uint32_t)0x0000000F)
/**
* @}
*/
/** @defgroup FLASH_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup FLASH_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup FLASH_Private_FunctionPrototypes
* @{
*/
static void delay(void);
/**
* @}
*/
/** @defgroup FLASH_Private_Functions
* @{
*/
/**
* @brief Sets the code latency value.
* @param FLASH_Latency: specifies the FLASH Latency value.
* This parameter can be one of the following values:
* @arg FLASH_Latency_0: FLASH Zero Latency cycle
* @arg FLASH_Latency_1: FLASH One Latency cycle
* @arg FLASH_Latency_2: FLASH Two Latency cycles
* @retval : None
*/
void FLASH_SetLatency(uint32_t FLASH_Latency)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_FLASH_LATENCY(FLASH_Latency));
/* Read the ACR register */
tmpreg = FLASH->ACR;
/* Sets the Latency value */
tmpreg &= ACR_LATENCY_Mask;
tmpreg |= FLASH_Latency;
/* Write the ACR register */
FLASH->ACR = tmpreg;
}
/**
* @brief Enables or disables the Half cycle flash access.
* @param FLASH_HalfCycleAccess: specifies the FLASH Half cycle Access mode.
* This parameter can be one of the following values:
* @arg FLASH_HalfCycleAccess_Enable: FLASH Half Cycle Enable
* @arg FLASH_HalfCycleAccess_Disable: FLASH Half Cycle Disable
* @retval : None
*/
void FLASH_HalfCycleAccessCmd(uint32_t FLASH_HalfCycleAccess)
{
/* Check the parameters */
assert_param(IS_FLASH_HALFCYCLEACCESS_STATE(FLASH_HalfCycleAccess));
/* Enable or disable the Half cycle access */
FLASH->ACR &= ACR_HLFCYA_Mask;
FLASH->ACR |= FLASH_HalfCycleAccess;
}
/**
* @brief Enables or disables the Prefetch Buffer.
* @param FLASH_PrefetchBuffer: specifies the Prefetch buffer status.
* This parameter can be one of the following values:
* @arg FLASH_PrefetchBuffer_Enable: FLASH Prefetch Buffer Enable
* @arg FLASH_PrefetchBuffer_Disable: FLASH Prefetch Buffer Disable
* @retval : None
*/
void FLASH_PrefetchBufferCmd(uint32_t FLASH_PrefetchBuffer)
{
/* Check the parameters */
assert_param(IS_FLASH_PREFETCHBUFFER_STATE(FLASH_PrefetchBuffer));
/* Enable or disable the Prefetch Buffer */
FLASH->ACR &= ACR_PRFTBE_Mask;
FLASH->ACR |= FLASH_PrefetchBuffer;
}
/**
* @brief Unlocks the FLASH Program Erase Controller.
* @param None
* @retval : None
*/
void FLASH_Unlock(void)
{
/* Authorize the FPEC Access */
FLASH->KEYR = FLASH_KEY1;
FLASH->KEYR = FLASH_KEY2;
}
/**
* @brief Locks the FLASH Program Erase Controller.
* @param None
* @retval : None
*/
void FLASH_Lock(void)
{
/* Set the Lock Bit to lock the FPEC and the FCR */
FLASH->CR |= CR_LOCK_Set;
}
/**
* @brief Erases a specified FLASH page.
* @param Page_Address: The page address to be erased.
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_ErasePage(uint32_t Page_Address)
{
FLASH_Status status = FLASH_COMPLETE;
/* Check the parameters */
assert_param(IS_FLASH_ADDRESS(Page_Address));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status == FLASH_COMPLETE)
{
/* if the previous operation is completed, proceed to erase the page */
FLASH->CR|= CR_PER_Set;
FLASH->AR = Page_Address;
FLASH->CR|= CR_STRT_Set;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status != FLASH_BUSY)
{
/* if the erase operation is completed, disable the PER Bit */
FLASH->CR &= CR_PER_Reset;
}
}
/* Return the Erase Status */
return status;
}
/**
* @brief Erases all FLASH pages.
* @param None
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_EraseAllPages(void)
{
FLASH_Status status = FLASH_COMPLETE;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status == FLASH_COMPLETE)
{
/* if the previous operation is completed, proceed to erase all pages */
FLASH->CR |= CR_MER_Set;
FLASH->CR |= CR_STRT_Set;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status != FLASH_BUSY)
{
/* if the erase operation is completed, disable the MER Bit */
FLASH->CR &= CR_MER_Reset;
}
}
/* Return the Erase Status */
return status;
}
/**
* @brief Erases the FLASH option bytes.
* @param None
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_EraseOptionBytes(void)
{
FLASH_Status status = FLASH_COMPLETE;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status == FLASH_COMPLETE)
{
/* Authorize the small information block programming */
FLASH->OPTKEYR = FLASH_KEY1;
FLASH->OPTKEYR = FLASH_KEY2;
/* if the previous operation is completed, proceed to erase the option bytes */
FLASH->CR |= CR_OPTER_Set;
FLASH->CR |= CR_STRT_Set;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status == FLASH_COMPLETE)
{
/* if the erase operation is completed, disable the OPTER Bit */
FLASH->CR &= CR_OPTER_Reset;
/* Enable the Option Bytes Programming operation */
FLASH->CR |= CR_OPTPG_Set;
/* Enable the readout access */
OB->RDP= RDP_Key;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status != FLASH_BUSY)
{
/* if the program operation is completed, disable the OPTPG Bit */
FLASH->CR &= CR_OPTPG_Reset;
}
}
else
{
if (status != FLASH_BUSY)
{
/* Disable the OPTPG Bit */
FLASH->CR &= CR_OPTPG_Reset;
}
}
}
/* Return the erase status */
return status;
}
/**
* @brief Programs a word at a specified address.
* @param Address: specifies the address to be programmed.
* @param Data: specifies the data to be programmed.
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_ProgramWord(uint32_t Address, uint32_t Data)
{
FLASH_Status status = FLASH_COMPLETE;
/* Check the parameters */
assert_param(IS_FLASH_ADDRESS(Address));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status == FLASH_COMPLETE)
{
/* if the previous operation is completed, proceed to program the new first
half word */
FLASH->CR |= CR_PG_Set;
*(__IO uint16_t*)Address = (uint16_t)Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status == FLASH_COMPLETE)
{
/* if the previous operation is completed, proceed to program the new second
half word */
*(__IO uint16_t*)(Address + 2) = Data >> 16;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status != FLASH_BUSY)
{
/* Disable the PG Bit */
FLASH->CR &= CR_PG_Reset;
}
}
else
{
if (status != FLASH_BUSY)
{
/* Disable the PG Bit */
FLASH->CR &= CR_PG_Reset;
}
}
}
/* Return the Program Status */
return status;
}
/**
* @brief Programs a half word at a specified address.
* @param Address: specifies the address to be programmed.
* @param Data: specifies the data to be programmed.
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data)
{
FLASH_Status status = FLASH_COMPLETE;
/* Check the parameters */
assert_param(IS_FLASH_ADDRESS(Address));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status == FLASH_COMPLETE)
{
/* if the previous operation is completed, proceed to program the new data */
FLASH->CR |= CR_PG_Set;
*(__IO uint16_t*)Address = Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status != FLASH_BUSY)
{
/* if the program operation is completed, disable the PG Bit */
FLASH->CR &= CR_PG_Reset;
}
}
/* Return the Program Status */
return status;
}
/**
* @brief Programs a half word at a specified Option Byte Data address.
* @param Address: specifies the address to be programmed.
* This parameter can be 0x1FFFF804 or 0x1FFFF806.
* @param Data: specifies the data to be programmed.
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_ProgramOptionByteData(uint32_t Address, uint8_t Data)
{
FLASH_Status status = FLASH_COMPLETE;
/* Check the parameters */
assert_param(IS_OB_DATA_ADDRESS(Address));
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status == FLASH_COMPLETE)
{
/* Authorize the small information block programming */
FLASH->OPTKEYR = FLASH_KEY1;
FLASH->OPTKEYR = FLASH_KEY2;
/* Enables the Option Bytes Programming operation */
FLASH->CR |= CR_OPTPG_Set;
*(__IO uint16_t*)Address = Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status != FLASH_BUSY)
{
/* if the program operation is completed, disable the OPTPG Bit */
FLASH->CR &= CR_OPTPG_Reset;
}
}
/* Return the Option Byte Data Program Status */
return status;
}
/**
* @brief Write protects the desired pages
* @param FLASH_Pages: specifies the address of the pages to be
* write protected. This parameter can be:
* @arg For STM32F10Xxx Medium-density devices (FLASH page size equal to 1 KB)
* A value between FLASH_WRProt_Pages0to3 and FLASH_WRProt_Pages124to127
* @arg For STM32F10Xxx High-density devices (FLASH page size equal to 2 KB)
* A value between FLASH_WRProt_Pages0to1 and FLASH_WRProt_Pages60to61
* or FLASH_WRProt_Pages62to255
* @arg FLASH_WRProt_AllPages
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_EnableWriteProtection(uint32_t FLASH_Pages)
{
uint16_t WRP0_Data = 0xFFFF, WRP1_Data = 0xFFFF, WRP2_Data = 0xFFFF, WRP3_Data = 0xFFFF;
FLASH_Status status = FLASH_COMPLETE;
/* Check the parameters */
assert_param(IS_FLASH_WRPROT_PAGE(FLASH_Pages));
FLASH_Pages = (uint32_t)(~FLASH_Pages);
WRP0_Data = (uint16_t)(FLASH_Pages & WRP0_Mask);
WRP1_Data = (uint16_t)((FLASH_Pages & WRP1_Mask) >> 8);
WRP2_Data = (uint16_t)((FLASH_Pages & WRP2_Mask) >> 16);
WRP3_Data = (uint16_t)((FLASH_Pages & WRP3_Mask) >> 24);
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status == FLASH_COMPLETE)
{
/* Authorizes the small information block programming */
FLASH->OPTKEYR = FLASH_KEY1;
FLASH->OPTKEYR = FLASH_KEY2;
FLASH->CR |= CR_OPTPG_Set;
if(WRP0_Data != 0xFF)
{
OB->WRP0 = WRP0_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
}
if((status == FLASH_COMPLETE) && (WRP1_Data != 0xFF))
{
OB->WRP1 = WRP1_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
}
if((status == FLASH_COMPLETE) && (WRP2_Data != 0xFF))
{
OB->WRP2 = WRP2_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
}
if((status == FLASH_COMPLETE)&& (WRP3_Data != 0xFF))
{
OB->WRP3 = WRP3_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
}
if(status != FLASH_BUSY)
{
/* if the program operation is completed, disable the OPTPG Bit */
FLASH->CR &= CR_OPTPG_Reset;
}
}
/* Return the write protection operation Status */
return status;
}
/**
* @brief Enables or disables the read out protection.
* If the user has already programmed the other option bytes before
* calling this function, he must re-program them since this
* function erases all option bytes.
* @param Newstate: new state of the ReadOut Protection.
* This parameter can be: ENABLE or DISABLE.
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_ReadOutProtection(FunctionalState NewState)
{
FLASH_Status status = FLASH_COMPLETE;
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status == FLASH_COMPLETE)
{
/* Authorizes the small information block programming */
FLASH->OPTKEYR = FLASH_KEY1;
FLASH->OPTKEYR = FLASH_KEY2;
FLASH->CR |= CR_OPTER_Set;
FLASH->CR |= CR_STRT_Set;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status == FLASH_COMPLETE)
{
/* if the erase operation is completed, disable the OPTER Bit */
FLASH->CR &= CR_OPTER_Reset;
/* Enable the Option Bytes Programming operation */
FLASH->CR |= CR_OPTPG_Set;
if(NewState != DISABLE)
{
OB->RDP = 0x00;
}
else
{
OB->RDP = RDP_Key;
}
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(EraseTimeout);
if(status != FLASH_BUSY)
{
/* if the program operation is completed, disable the OPTPG Bit */
FLASH->CR &= CR_OPTPG_Reset;
}
}
else
{
if(status != FLASH_BUSY)
{
/* Disable the OPTER Bit */
FLASH->CR &= CR_OPTER_Reset;
}
}
}
/* Return the protection operation Status */
return status;
}
/**
* @brief Programs the FLASH User Option Byte: IWDG_SW / RST_STOP /
* RST_STDBY.
* @param OB_IWDG: Selects the IWDG mode
* This parameter can be one of the following values:
* @arg OB_IWDG_SW: Software IWDG selected
* @arg OB_IWDG_HW: Hardware IWDG selected
* @param OB_STOP: Reset event when entering STOP mode.
* This parameter can be one of the following values:
* @arg OB_STOP_NoRST: No reset generated when entering in STOP
* @arg OB_STOP_RST: Reset generated when entering in STOP
* @param OB_STDBY: Reset event when entering Standby mode.
* This parameter can be one of the following values:
* @arg OB_STDBY_NoRST: No reset generated when entering in STANDBY
* @arg OB_STDBY_RST: Reset generated when entering in STANDBY
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_UserOptionByteConfig(uint16_t OB_IWDG, uint16_t OB_STOP, uint16_t OB_STDBY)
{
FLASH_Status status = FLASH_COMPLETE;
/* Check the parameters */
assert_param(IS_OB_IWDG_SOURCE(OB_IWDG));
assert_param(IS_OB_STOP_SOURCE(OB_STOP));
assert_param(IS_OB_STDBY_SOURCE(OB_STDBY));
/* Authorize the small information block programming */
FLASH->OPTKEYR = FLASH_KEY1;
FLASH->OPTKEYR = FLASH_KEY2;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status == FLASH_COMPLETE)
{
/* Enable the Option Bytes Programming operation */
FLASH->CR |= CR_OPTPG_Set;
OB->USER = ( OB_IWDG | OB_STOP |OB_STDBY) | (uint16_t)0xF8;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(ProgramTimeout);
if(status != FLASH_BUSY)
{
/* if the program operation is completed, disable the OPTPG Bit */
FLASH->CR &= CR_OPTPG_Reset;
}
}
/* Return the Option Byte program Status */
return status;
}
/**
* @brief Returns the FLASH User Option Bytes values.
* @param None
* @retval : The FLASH User Option Bytes values:IWDG_SW(Bit0), RST_STOP(Bit1)
* and RST_STDBY(Bit2).
*/
uint32_t FLASH_GetUserOptionByte(void)
{
/* Return the User Option Byte */
return (uint32_t)(FLASH->OBR >> 2);
}
/**
* @brief Returns the FLASH Write Protection Option Bytes Register value.
* @param None
* @retval : The FLASH Write Protection Option Bytes Register value
*/
uint32_t FLASH_GetWriteProtectionOptionByte(void)
{
/* Return the Falsh write protection Register value */
return (uint32_t)(FLASH->WRPR);
}
/**
* @brief Checks whether the FLASH Read Out Protection Status is set
* or not.
* @param None
* @retval : FLASH ReadOut Protection Status(SET or RESET)
*/
FlagStatus FLASH_GetReadOutProtectionStatus(void)
{
FlagStatus readoutstatus = RESET;
if ((FLASH->OBR & RDPRT_Mask) != (uint32_t)RESET)
{
readoutstatus = SET;
}
else
{
readoutstatus = RESET;
}
return readoutstatus;
}
/**
* @brief Checks whether the FLASH Prefetch Buffer status is set or not.
* @param None
* @retval : FLASH Prefetch Buffer Status (SET or RESET).
*/
FlagStatus FLASH_GetPrefetchBufferStatus(void)
{
FlagStatus bitstatus = RESET;
if ((FLASH->ACR & ACR_PRFTBS_Mask) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the new state of FLASH Prefetch Buffer Status (SET or RESET) */
return bitstatus;
}
/**
* @brief Enables or disables the specified FLASH interrupts.
* @param FLASH_IT: specifies the FLASH interrupt sources to be
* enabled or disabled.
* This parameter can be any combination of the following values:
* @arg FLASH_IT_ERROR: FLASH Error Interrupt
* @arg FLASH_IT_EOP: FLASH end of operation Interrupt
* @param NewState: new state of the specified Flash interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void FLASH_ITConfig(uint16_t FLASH_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FLASH_IT(FLASH_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if(NewState != DISABLE)
{
/* Enable the interrupt sources */
FLASH->CR |= FLASH_IT;
}
else
{
/* Disable the interrupt sources */
FLASH->CR &= ~(uint32_t)FLASH_IT;
}
}
/**
* @brief Checks whether the specified FLASH flag is set or not.
* @param FLASH_FLAG: specifies the FLASH flag to check.
* This parameter can be one of the following values:
* @arg FLASH_FLAG_BSY: FLASH Busy flag
* @arg FLASH_FLAG_PGERR: FLASH Program error flag
* @arg FLASH_FLAG_WRPRTERR: FLASH Write protected error flag
* @arg FLASH_FLAG_EOP: FLASH End of Operation flag
* @arg FLASH_FLAG_OPTERR: FLASH Option Byte error flag
* @retval : The new state of FLASH_FLAG (SET or RESET).
*/
FlagStatus FLASH_GetFlagStatus(uint16_t FLASH_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_FLASH_GET_FLAG(FLASH_FLAG)) ;
if(FLASH_FLAG == FLASH_FLAG_OPTERR)
{
if((FLASH->OBR & FLASH_FLAG_OPTERR) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
else
{
if((FLASH->SR & FLASH_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
/* Return the new state of FLASH_FLAG (SET or RESET) */
return bitstatus;
}
/**
* @brief Clears the FLASHs pending flags.
* @param FLASH_FLAG: specifies the FLASH flags to clear.
* This parameter can be any combination of the following values:
* @arg FLASH_FLAG_BSY: FLASH Busy flag
* @arg FLASH_FLAG_PGERR: FLASH Program error flag
* @arg FLASH_FLAG_WRPRTERR: FLASH Write protected error flag
* @arg FLASH_FLAG_EOP: FLASH End of Operation flag
* @retval : None
*/
void FLASH_ClearFlag(uint16_t FLASH_FLAG)
{
/* Check the parameters */
assert_param(IS_FLASH_CLEAR_FLAG(FLASH_FLAG)) ;
/* Clear the flags */
FLASH->SR = FLASH_FLAG;
}
/**
* @brief Returns the FLASH Status.
* @param None
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP or FLASH_COMPLETE
*/
FLASH_Status FLASH_GetStatus(void)
{
FLASH_Status flashstatus = FLASH_COMPLETE;
if((FLASH->SR & FLASH_FLAG_BSY) == FLASH_FLAG_BSY)
{
flashstatus = FLASH_BUSY;
}
else
{
if(FLASH->SR & FLASH_FLAG_PGERR)
{
flashstatus = FLASH_ERROR_PG;
}
else
{
if(FLASH->SR & FLASH_FLAG_WRPRTERR)
{
flashstatus = FLASH_ERROR_WRP;
}
else
{
flashstatus = FLASH_COMPLETE;
}
}
}
/* Return the Flash Status */
return flashstatus;
}
/**
* @brief Waits for a Flash operation to complete or a TIMEOUT to occur.
* @param Timeout: FLASH progamming Timeout
* @retval : FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
FLASH_Status FLASH_WaitForLastOperation(uint32_t Timeout)
{
FLASH_Status status = FLASH_COMPLETE;
/* Check for the Flash Status */
status = FLASH_GetStatus();
/* Wait for a Flash operation to complete or a TIMEOUT to occur */
while((status == FLASH_BUSY) && (Timeout != 0x00))
{
delay();
status = FLASH_GetStatus();
Timeout--;
}
if(Timeout == 0x00 )
{
status = FLASH_TIMEOUT;
}
/* Return the operation status */
return status;
}
/**
* @brief Inserts a time delay.
* @param None
* @retval : None
*/
static void delay(void)
{
__IO uint32_t i = 0;
for(i = 0xFF; i != 0; i--)
{
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,865 @@
/**
******************************************************************************
* @file stm32f10x_fsmc.c
* @author MCD Application Team
* @version V3.0.0
* @date 04/06/2009
* @brief This file provides all the FSMC firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_fsmc.h"
#include "stm32f10x_rcc.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup FSMC
* @brief FSMC driver modules
* @{
*/
/** @defgroup FSMC_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup FSMC_Private_Defines
* @{
*/
/* --------------------- FSMC registers bit mask ---------------------------- */
/* FSMC BCRx Mask */
#define BCR_MBKEN_Set ((uint32_t)0x00000001)
#define BCR_MBKEN_Reset ((uint32_t)0x000FFFFE)
#define BCR_FACCEN_Set ((uint32_t)0x00000040)
/* FSMC PCRx Mask */
#define PCR_PBKEN_Set ((uint32_t)0x00000004)
#define PCR_PBKEN_Reset ((uint32_t)0x000FFFFB)
#define PCR_ECCEN_Set ((uint32_t)0x00000040)
#define PCR_ECCEN_Reset ((uint32_t)0x000FFFBF)
#define PCR_MemoryType_NAND ((uint32_t)0x00000008)
/**
* @}
*/
/** @defgroup FSMC_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup FSMC_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup FSMC_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup FSMC_Private_Functions
* @{
*/
/**
* @brief Deinitializes the FSMC NOR/SRAM Banks registers to their default
* reset values.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank1_NORSRAM1: FSMC Bank1 NOR/SRAM1
* @arg FSMC_Bank1_NORSRAM2: FSMC Bank1 NOR/SRAM2
* @arg FSMC_Bank1_NORSRAM3: FSMC Bank1 NOR/SRAM3
* @arg FSMC_Bank1_NORSRAM4: FSMC Bank1 NOR/SRAM4
* @retval : None
*/
void FSMC_NORSRAMDeInit(uint32_t FSMC_Bank)
{
/* Check the parameter */
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_Bank));
/* FSMC_Bank1_NORSRAM1 */
if(FSMC_Bank == FSMC_Bank1_NORSRAM1)
{
FSMC_Bank1->BTCR[FSMC_Bank] = 0x000030DB;
}
/* FSMC_Bank1_NORSRAM2, FSMC_Bank1_NORSRAM3 or FSMC_Bank1_NORSRAM4 */
else
{
FSMC_Bank1->BTCR[FSMC_Bank] = 0x000030D2;
}
FSMC_Bank1->BTCR[FSMC_Bank + 1] = 0x0FFFFFFF;
FSMC_Bank1E->BWTR[FSMC_Bank] = 0x0FFFFFFF;
}
/**
* @brief Deinitializes the FSMC NAND Banks registers to their default
* reset values.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @retval : None
*/
void FSMC_NANDDeInit(uint32_t FSMC_Bank)
{
/* Check the parameter */
assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
if(FSMC_Bank == FSMC_Bank2_NAND)
{
/* Set the FSMC_Bank2 registers to their reset values */
FSMC_Bank2->PCR2 = 0x00000018;
FSMC_Bank2->SR2 = 0x00000040;
FSMC_Bank2->PMEM2 = 0xFCFCFCFC;
FSMC_Bank2->PATT2 = 0xFCFCFCFC;
}
/* FSMC_Bank3_NAND */
else
{
/* Set the FSMC_Bank3 registers to their reset values */
FSMC_Bank3->PCR3 = 0x00000018;
FSMC_Bank3->SR3 = 0x00000040;
FSMC_Bank3->PMEM3 = 0xFCFCFCFC;
FSMC_Bank3->PATT3 = 0xFCFCFCFC;
}
}
/**
* @brief Deinitializes the FSMC PCCARD Bank registers to their default
* reset values.
* @param None
* @retval : None
*/
void FSMC_PCCARDDeInit(void)
{
/* Set the FSMC_Bank4 registers to their reset values */
FSMC_Bank4->PCR4 = 0x00000018;
FSMC_Bank4->SR4 = 0x00000000;
FSMC_Bank4->PMEM4 = 0xFCFCFCFC;
FSMC_Bank4->PATT4 = 0xFCFCFCFC;
FSMC_Bank4->PIO4 = 0xFCFCFCFC;
}
/**
* @brief Initializes the FSMC NOR/SRAM Banks according to the
* specified parameters in the FSMC_NORSRAMInitStruct.
* @param FSMC_NORSRAMInitStruct : pointer to a FSMC_NORSRAMInitTypeDef
* structure that contains the configuration information for
* the FSMC NOR/SRAM specified Banks.
* @retval : None
*/
void FSMC_NORSRAMInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct)
{
/* Check the parameters */
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_NORSRAMInitStruct->FSMC_Bank));
assert_param(IS_FSMC_MUX(FSMC_NORSRAMInitStruct->FSMC_DataAddressMux));
assert_param(IS_FSMC_MEMORY(FSMC_NORSRAMInitStruct->FSMC_MemoryType));
assert_param(IS_FSMC_MEMORY_WIDTH(FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth));
assert_param(IS_FSMC_BURSTMODE(FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode));
assert_param(IS_FSMC_WAIT_POLARITY(FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity));
assert_param(IS_FSMC_WRAP_MODE(FSMC_NORSRAMInitStruct->FSMC_WrapMode));
assert_param(IS_FSMC_WAIT_SIGNAL_ACTIVE(FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive));
assert_param(IS_FSMC_WRITE_OPERATION(FSMC_NORSRAMInitStruct->FSMC_WriteOperation));
assert_param(IS_FSMC_WAITE_SIGNAL(FSMC_NORSRAMInitStruct->FSMC_WaitSignal));
assert_param(IS_FSMC_EXTENDED_MODE(FSMC_NORSRAMInitStruct->FSMC_ExtendedMode));
assert_param(IS_FSMC_WRITE_BURST(FSMC_NORSRAMInitStruct->FSMC_WriteBurst));
assert_param(IS_FSMC_ADDRESS_SETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime));
assert_param(IS_FSMC_ADDRESS_HOLD_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime));
assert_param(IS_FSMC_DATASETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime));
assert_param(IS_FSMC_TURNAROUND_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration));
assert_param(IS_FSMC_CLK_DIV(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision));
assert_param(IS_FSMC_DATA_LATENCY(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency));
assert_param(IS_FSMC_ACCESS_MODE(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode));
/* Bank1 NOR/SRAM control register configuration */
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank] =
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_DataAddressMux |
FSMC_NORSRAMInitStruct->FSMC_MemoryType |
FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth |
FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode |
FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity |
FSMC_NORSRAMInitStruct->FSMC_WrapMode |
FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive |
FSMC_NORSRAMInitStruct->FSMC_WriteOperation |
FSMC_NORSRAMInitStruct->FSMC_WaitSignal |
FSMC_NORSRAMInitStruct->FSMC_ExtendedMode |
FSMC_NORSRAMInitStruct->FSMC_WriteBurst;
if(FSMC_NORSRAMInitStruct->FSMC_MemoryType == FSMC_MemoryType_NOR)
{
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank] |= (uint32_t)BCR_FACCEN_Set;
}
/* Bank1 NOR/SRAM timing register configuration */
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank+1] =
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime << 4) |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime << 8) |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration << 16) |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision << 20) |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency << 24) |
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode;
/* Bank1 NOR/SRAM timing register for write configuration, if extended mode is used */
if(FSMC_NORSRAMInitStruct->FSMC_ExtendedMode == FSMC_ExtendedMode_Enable)
{
assert_param(IS_FSMC_ADDRESS_SETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime));
assert_param(IS_FSMC_ADDRESS_HOLD_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime));
assert_param(IS_FSMC_DATASETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime));
assert_param(IS_FSMC_CLK_DIV(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision));
assert_param(IS_FSMC_DATA_LATENCY(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency));
assert_param(IS_FSMC_ACCESS_MODE(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode));
FSMC_Bank1E->BWTR[FSMC_NORSRAMInitStruct->FSMC_Bank] =
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime |
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime << 4 )|
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime << 8) |
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision << 20) |
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency << 24) |
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode;
}
else
{
FSMC_Bank1E->BWTR[FSMC_NORSRAMInitStruct->FSMC_Bank] = 0x0FFFFFFF;
}
}
/**
* @brief Initializes the FSMC NAND Banks according to the specified
* parameters in the FSMC_NANDInitStruct.
* @param FSMC_NANDInitStruct : pointer to a FSMC_NANDInitTypeDef
* structure that contains the configuration information for
* the FSMC NAND specified Banks.
* @retval : None
*/
void FSMC_NANDInit(FSMC_NANDInitTypeDef* FSMC_NANDInitStruct)
{
uint32_t tmppcr = 0x00000000, tmppmem = 0x00000000, tmppatt = 0x00000000;
/* Check the parameters */
assert_param( IS_FSMC_NAND_BANK(FSMC_NANDInitStruct->FSMC_Bank));
assert_param( IS_FSMC_WAIT_FEATURE(FSMC_NANDInitStruct->FSMC_Waitfeature));
assert_param( IS_FSMC_DATA_WIDTH(FSMC_NANDInitStruct->FSMC_MemoryDataWidth));
assert_param( IS_FSMC_ECC_STATE(FSMC_NANDInitStruct->FSMC_ECC));
assert_param( IS_FSMC_ECCPAGE_SIZE(FSMC_NANDInitStruct->FSMC_ECCPageSize));
assert_param( IS_FSMC_TCLR_TIME(FSMC_NANDInitStruct->FSMC_TCLRSetupTime));
assert_param( IS_FSMC_TAR_TIME(FSMC_NANDInitStruct->FSMC_TARSetupTime));
assert_param(IS_FSMC_SETUP_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime));
assert_param(IS_FSMC_WAIT_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime));
assert_param(IS_FSMC_HOLD_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime));
assert_param(IS_FSMC_HIZ_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime));
assert_param(IS_FSMC_SETUP_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime));
assert_param(IS_FSMC_WAIT_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime));
assert_param(IS_FSMC_HOLD_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime));
assert_param(IS_FSMC_HIZ_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime));
/* Set the tmppcr value according to FSMC_NANDInitStruct parameters */
tmppcr = (uint32_t)FSMC_NANDInitStruct->FSMC_Waitfeature |
PCR_MemoryType_NAND |
FSMC_NANDInitStruct->FSMC_MemoryDataWidth |
FSMC_NANDInitStruct->FSMC_ECC |
FSMC_NANDInitStruct->FSMC_ECCPageSize |
(FSMC_NANDInitStruct->FSMC_TCLRSetupTime << 9 )|
(FSMC_NANDInitStruct->FSMC_TARSetupTime << 13);
/* Set tmppmem value according to FSMC_CommonSpaceTimingStructure parameters */
tmppmem = (uint32_t)FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime |
(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime << 24);
/* Set tmppatt value according to FSMC_AttributeSpaceTimingStructure parameters */
tmppatt = (uint32_t)FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime |
(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime << 24);
if(FSMC_NANDInitStruct->FSMC_Bank == FSMC_Bank2_NAND)
{
/* FSMC_Bank2_NAND registers configuration */
FSMC_Bank2->PCR2 = tmppcr;
FSMC_Bank2->PMEM2 = tmppmem;
FSMC_Bank2->PATT2 = tmppatt;
}
else
{
/* FSMC_Bank3_NAND registers configuration */
FSMC_Bank3->PCR3 = tmppcr;
FSMC_Bank3->PMEM3 = tmppmem;
FSMC_Bank3->PATT3 = tmppatt;
}
}
/**
* @brief Initializes the FSMC PCCARD Bank according to the specified
* parameters in the FSMC_PCCARDInitStruct.
* @param FSMC_PCCARDInitStruct : pointer to a FSMC_PCCARDInitTypeDef
* structure that contains the configuration information for
* the FSMC PCCARD Bank.
* @retval : None
*/
void FSMC_PCCARDInit(FSMC_PCCARDInitTypeDef* FSMC_PCCARDInitStruct)
{
/* Check the parameters */
assert_param(IS_FSMC_WAIT_FEATURE(FSMC_PCCARDInitStruct->FSMC_Waitfeature));
assert_param(IS_FSMC_TCLR_TIME(FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime));
assert_param(IS_FSMC_TAR_TIME(FSMC_PCCARDInitStruct->FSMC_TARSetupTime));
assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime));
assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime));
assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime));
assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime));
assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime));
assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime));
assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime));
assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime));
assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime));
assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime));
assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime));
assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime));
/* Set the PCR4 register value according to FSMC_PCCARDInitStruct parameters */
FSMC_Bank4->PCR4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_Waitfeature |
FSMC_MemoryDataWidth_16b |
(FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime << 9) |
(FSMC_PCCARDInitStruct->FSMC_TARSetupTime << 13);
/* Set PMEM4 register value according to FSMC_CommonSpaceTimingStructure parameters */
FSMC_Bank4->PMEM4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime |
(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime << 24);
/* Set PATT4 register value according to FSMC_AttributeSpaceTimingStructure parameters */
FSMC_Bank4->PATT4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime |
(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime << 24);
/* Set PIO4 register value according to FSMC_IOSpaceTimingStructure parameters */
FSMC_Bank4->PIO4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime |
(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime << 24);
}
/**
* @brief Fills each FSMC_NORSRAMInitStruct member with its default value.
* @param FSMC_NORSRAMInitStruct: pointer to a FSMC_NORSRAMInitTypeDef
* structure which will be initialized.
* @retval : None
*/
void FSMC_NORSRAMStructInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct)
{
/* Reset NOR/SRAM Init structure parameters values */
FSMC_NORSRAMInitStruct->FSMC_Bank = FSMC_Bank1_NORSRAM1;
FSMC_NORSRAMInitStruct->FSMC_DataAddressMux = FSMC_DataAddressMux_Enable;
FSMC_NORSRAMInitStruct->FSMC_MemoryType = FSMC_MemoryType_SRAM;
FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStruct->FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStruct->FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStruct->FSMC_WaitSignal = FSMC_WaitSignal_Enable;
FSMC_NORSRAMInitStruct->FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStruct->FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime = 0xFF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode = FSMC_AccessMode_A;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime = 0xFF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_BusTurnAroundDuration = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode = FSMC_AccessMode_A;
}
/**
* @brief Fills each FSMC_NANDInitStruct member with its default value.
* @param FSMC_NANDInitStruct: pointer to a FSMC_NANDInitTypeDef
* structure which will be initialized.
* @retval : None
*/
void FSMC_NANDStructInit(FSMC_NANDInitTypeDef* FSMC_NANDInitStruct)
{
/* Reset NAND Init structure parameters values */
FSMC_NANDInitStruct->FSMC_Bank = FSMC_Bank2_NAND;
FSMC_NANDInitStruct->FSMC_Waitfeature = FSMC_Waitfeature_Disable;
FSMC_NANDInitStruct->FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
FSMC_NANDInitStruct->FSMC_ECC = FSMC_ECC_Disable;
FSMC_NANDInitStruct->FSMC_ECCPageSize = FSMC_ECCPageSize_256Bytes;
FSMC_NANDInitStruct->FSMC_TCLRSetupTime = 0x0;
FSMC_NANDInitStruct->FSMC_TARSetupTime = 0x0;
FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime = 0xFC;
FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime = 0xFC;
FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
}
/**
* @brief Fills each FSMC_PCCARDInitStruct member with its default value.
* @param FSMC_PCCARDInitStruct: pointer to a FSMC_PCCARDInitTypeDef
* structure which will be initialized.
* @retval : None
*/
void FSMC_PCCARDStructInit(FSMC_PCCARDInitTypeDef* FSMC_PCCARDInitStruct)
{
/* Reset PCCARD Init structure parameters values */
FSMC_PCCARDInitStruct->FSMC_Waitfeature = FSMC_Waitfeature_Disable;
FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime = 0x0;
FSMC_PCCARDInitStruct->FSMC_TARSetupTime = 0x0;
FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
}
/**
* @brief Enables or disables the specified NOR/SRAM Memory Bank.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank1_NORSRAM1: FSMC Bank1 NOR/SRAM1
* @arg FSMC_Bank1_NORSRAM2: FSMC Bank1 NOR/SRAM2
* @arg FSMC_Bank1_NORSRAM3: FSMC Bank1 NOR/SRAM3
* @arg FSMC_Bank1_NORSRAM4: FSMC Bank1 NOR/SRAM4
* @param NewState: new state of the FSMC_Bank.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void FSMC_NORSRAMCmd(uint32_t FSMC_Bank, FunctionalState NewState)
{
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_Bank));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected NOR/SRAM Bank by setting the PBKEN bit in the BCRx register */
FSMC_Bank1->BTCR[FSMC_Bank] |= BCR_MBKEN_Set;
}
else
{
/* Disable the selected NOR/SRAM Bank by clearing the PBKEN bit in the BCRx register */
FSMC_Bank1->BTCR[FSMC_Bank] &= BCR_MBKEN_Reset;
}
}
/**
* @brief Enables or disables the specified NAND Memory Bank.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @param NewState: new state of the FSMC_Bank.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void FSMC_NANDCmd(uint32_t FSMC_Bank, FunctionalState NewState)
{
assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected NAND Bank by setting the PBKEN bit in the PCRx register */
if(FSMC_Bank == FSMC_Bank2_NAND)
{
FSMC_Bank2->PCR2 |= PCR_PBKEN_Set;
}
else
{
FSMC_Bank3->PCR3 |= PCR_PBKEN_Set;
}
}
else
{
/* Disable the selected NAND Bank by clearing the PBKEN bit in the PCRx register */
if(FSMC_Bank == FSMC_Bank2_NAND)
{
FSMC_Bank2->PCR2 &= PCR_PBKEN_Reset;
}
else
{
FSMC_Bank3->PCR3 &= PCR_PBKEN_Reset;
}
}
}
/**
* @brief Enables or disables the PCCARD Memory Bank.
* @param NewState: new state of the PCCARD Memory Bank.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void FSMC_PCCARDCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the PCCARD Bank by setting the PBKEN bit in the PCR4 register */
FSMC_Bank4->PCR4 |= PCR_PBKEN_Set;
}
else
{
/* Disable the PCCARD Bank by clearing the PBKEN bit in the PCR4 register */
FSMC_Bank4->PCR4 &= PCR_PBKEN_Reset;
}
}
/**
* @brief Enables or disables the FSMC NAND ECC feature.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @param NewState: new state of the FSMC NAND ECC feature.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void FSMC_NANDECCCmd(uint32_t FSMC_Bank, FunctionalState NewState)
{
assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected NAND Bank ECC function by setting the ECCEN bit in the PCRx register */
if(FSMC_Bank == FSMC_Bank2_NAND)
{
FSMC_Bank2->PCR2 |= PCR_ECCEN_Set;
}
else
{
FSMC_Bank3->PCR3 |= PCR_ECCEN_Set;
}
}
else
{
/* Disable the selected NAND Bank ECC function by clearing the ECCEN bit in the PCRx register */
if(FSMC_Bank == FSMC_Bank2_NAND)
{
FSMC_Bank2->PCR2 &= PCR_ECCEN_Reset;
}
else
{
FSMC_Bank3->PCR3 &= PCR_ECCEN_Reset;
}
}
}
/**
* @brief Returns the error correction code register value.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @retval : The Error Correction Code (ECC) value.
*/
uint32_t FSMC_GetECC(uint32_t FSMC_Bank)
{
uint32_t eccval = 0x00000000;
if(FSMC_Bank == FSMC_Bank2_NAND)
{
/* Get the ECCR2 register value */
eccval = FSMC_Bank2->ECCR2;
}
else
{
/* Get the ECCR3 register value */
eccval = FSMC_Bank3->ECCR3;
}
/* Return the error correction code value */
return(eccval);
}
/**
* @brief Enables or disables the specified FSMC interrupts.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
* @param FSMC_IT: specifies the FSMC interrupt sources to be
* enabled or disabled.
* This parameter can be any combination of the following values:
* @arg FSMC_IT_RisingEdge: Rising edge detection interrupt.
* @arg FSMC_IT_Level: Level edge detection interrupt.
* @arg FSMC_IT_FallingEdge: Falling edge detection interrupt.
* @param NewState: new state of the specified FSMC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void FSMC_ITConfig(uint32_t FSMC_Bank, uint32_t FSMC_IT, FunctionalState NewState)
{
assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
assert_param(IS_FSMC_IT(FSMC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected FSMC_Bank2 interrupts */
if(FSMC_Bank == FSMC_Bank2_NAND)
{
FSMC_Bank2->SR2 |= FSMC_IT;
}
/* Enable the selected FSMC_Bank3 interrupts */
else if (FSMC_Bank == FSMC_Bank3_NAND)
{
FSMC_Bank3->SR3 |= FSMC_IT;
}
/* Enable the selected FSMC_Bank4 interrupts */
else
{
FSMC_Bank4->SR4 |= FSMC_IT;
}
}
else
{
/* Disable the selected FSMC_Bank2 interrupts */
if(FSMC_Bank == FSMC_Bank2_NAND)
{
FSMC_Bank2->SR2 &= (uint32_t)~FSMC_IT;
}
/* Disable the selected FSMC_Bank3 interrupts */
else if (FSMC_Bank == FSMC_Bank3_NAND)
{
FSMC_Bank3->SR3 &= (uint32_t)~FSMC_IT;
}
/* Disable the selected FSMC_Bank4 interrupts */
else
{
FSMC_Bank4->SR4 &= (uint32_t)~FSMC_IT;
}
}
}
/**
* @brief Checks whether the specified FSMC flag is set or not.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
* @param FSMC_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg FSMC_FLAG_RisingEdge: Rising egde detection Flag.
* @arg FSMC_FLAG_Level: Level detection Flag.
* @arg FSMC_FLAG_FallingEdge: Falling egde detection Flag.
* @arg FSMC_FLAG_FEMPT: Fifo empty Flag.
* @retval : The new state of FSMC_FLAG (SET or RESET).
*/
FlagStatus FSMC_GetFlagStatus(uint32_t FSMC_Bank, uint32_t FSMC_FLAG)
{
FlagStatus bitstatus = RESET;
uint32_t tmpsr = 0x00000000;
/* Check the parameters */
assert_param(IS_FSMC_GETFLAG_BANK(FSMC_Bank));
assert_param(IS_FSMC_GET_FLAG(FSMC_FLAG));
if(FSMC_Bank == FSMC_Bank2_NAND)
{
tmpsr = FSMC_Bank2->SR2;
}
else if(FSMC_Bank == FSMC_Bank3_NAND)
{
tmpsr = FSMC_Bank3->SR3;
}
/* FSMC_Bank4_PCCARD*/
else
{
tmpsr = FSMC_Bank4->SR4;
}
/* Get the flag status */
if ((tmpsr & FSMC_FLAG) != (uint16_t)RESET )
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the FSMCs pending flags.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
* @param FSMC_FLAG: specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg FSMC_FLAG_RisingEdge: Rising egde detection Flag.
* @arg FSMC_FLAG_Level: Level detection Flag.
* @arg FSMC_FLAG_FallingEdge: Falling egde detection Flag.
* @retval : None
*/
void FSMC_ClearFlag(uint32_t FSMC_Bank, uint32_t FSMC_FLAG)
{
/* Check the parameters */
assert_param(IS_FSMC_GETFLAG_BANK(FSMC_Bank));
assert_param(IS_FSMC_CLEAR_FLAG(FSMC_FLAG)) ;
if(FSMC_Bank == FSMC_Bank2_NAND)
{
FSMC_Bank2->SR2 &= ~FSMC_FLAG;
}
else if(FSMC_Bank == FSMC_Bank3_NAND)
{
FSMC_Bank3->SR3 &= ~FSMC_FLAG;
}
/* FSMC_Bank4_PCCARD*/
else
{
FSMC_Bank4->SR4 &= ~FSMC_FLAG;
}
}
/**
* @brief Checks whether the specified FSMC interrupt has occurred or not.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
* @param FSMC_IT: specifies the FSMC interrupt source to check.
* This parameter can be one of the following values:
* @arg FSMC_IT_RisingEdge: Rising edge detection interrupt.
* @arg FSMC_IT_Level: Level edge detection interrupt.
* @arg FSMC_IT_FallingEdge: Falling edge detection interrupt.
* @retval : The new state of FSMC_IT (SET or RESET).
*/
ITStatus FSMC_GetITStatus(uint32_t FSMC_Bank, uint32_t FSMC_IT)
{
ITStatus bitstatus = RESET;
uint32_t tmpsr = 0x0, itstatus = 0x0, itenable = 0x0;
/* Check the parameters */
assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
assert_param(IS_FSMC_GET_IT(FSMC_IT));
if(FSMC_Bank == FSMC_Bank2_NAND)
{
tmpsr = FSMC_Bank2->SR2;
}
else if(FSMC_Bank == FSMC_Bank3_NAND)
{
tmpsr = FSMC_Bank3->SR3;
}
/* FSMC_Bank4_PCCARD*/
else
{
tmpsr = FSMC_Bank4->SR4;
}
itstatus = tmpsr & FSMC_IT;
itenable = tmpsr & (FSMC_IT >> 3);
if ((itstatus != (uint32_t)RESET) && (itenable != (uint32_t)RESET))
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the FSMCs interrupt pending bits.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank2_NAND: FSMC Bank2 NAND
* @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
* @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
* @param FSMC_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg FSMC_IT_RisingEdge: Rising edge detection interrupt.
* @arg FSMC_IT_Level: Level edge detection interrupt.
* @arg FSMC_IT_FallingEdge: Falling edge detection interrupt.
* @retval : None
*/
void FSMC_ClearITPendingBit(uint32_t FSMC_Bank, uint32_t FSMC_IT)
{
/* Check the parameters */
assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
assert_param(IS_FSMC_IT(FSMC_IT));
if(FSMC_Bank == FSMC_Bank2_NAND)
{
FSMC_Bank2->SR2 &= ~(FSMC_IT >> 3);
}
else if(FSMC_Bank == FSMC_Bank3_NAND)
{
FSMC_Bank3->SR3 &= ~(FSMC_IT >> 3);
}
/* FSMC_Bank4_PCCARD*/
else
{
FSMC_Bank4->SR4 &= ~(FSMC_IT >> 3);
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,515 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_gpio.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the GPIO firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_gpio.h"
#include "stm32f10x_rcc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ------------ RCC registers bit address in the alias region ----------- */
#define AFIO_OFFSET (AFIO_BASE - PERIPH_BASE)
/* --- EVENTCR Register ---*/
/* Alias word address of EVOE bit */
#define EVCR_OFFSET (AFIO_OFFSET + 0x00)
#define EVOE_BitNumber ((u8)0x07)
#define EVCR_EVOE_BB (PERIPH_BB_BASE + (EVCR_OFFSET * 32) + (EVOE_BitNumber * 4))
#define EVCR_PORTPINCONFIG_MASK ((u16)0xFF80)
#define LSB_MASK ((u16)0xFFFF)
#define DBGAFR_POSITION_MASK ((u32)0x000F0000)
#define DBGAFR_SWJCFG_MASK ((u32)0xF8FFFFFF)
#define DBGAFR_LOCATION_MASK ((u32)0x00200000)
#define DBGAFR_NUMBITS_MASK ((u32)0x00100000)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : GPIO_DeInit
* Description : Deinitializes the GPIOx peripheral registers to their default
* reset values.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* Output : None
* Return : None
*******************************************************************************/
void GPIO_DeInit(GPIO_TypeDef* GPIOx)
{
switch (*(u32*)&GPIOx)
{
case GPIOA_BASE:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOA, DISABLE);
break;
case GPIOB_BASE:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOB, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOB, DISABLE);
break;
case GPIOC_BASE:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOC, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOC, DISABLE);
break;
case GPIOD_BASE:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOD, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOD, DISABLE);
break;
case GPIOE_BASE:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOE, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOE, DISABLE);
break;
default:
break;
}
}
/*******************************************************************************
* Function Name : GPIO_AFIODeInit
* Description : Deinitializes the Alternate Functions (remap, event control
* and EXTI configuration) registers to their default reset
* values.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void GPIO_AFIODeInit(void)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_AFIO, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_AFIO, DISABLE);
}
/*******************************************************************************
* Function Name : GPIO_Init
* Description : Initializes the GPIOx peripheral according to the specified
* parameters in the GPIO_InitStruct.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* - GPIO_InitStruct: pointer to a GPIO_InitTypeDef structure that
* contains the configuration information for the specified GPIO
* peripheral.
* Output : None
* Return : None
*******************************************************************************/
void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)
{
u32 currentmode = 0x00, currentpin = 0x00, pinpos = 0x00, pos = 0x00;
u32 tmpreg = 0x00, pinmask = 0x00;
/* Check the parameters */
assert(IS_GPIO_MODE(GPIO_InitStruct->GPIO_Mode));
assert(IS_GPIO_PIN(GPIO_InitStruct->GPIO_Pin));
/*---------------------------- GPIO Mode Configuration -----------------------*/
currentmode = ((u32)GPIO_InitStruct->GPIO_Mode) & ((u32)0x0F);
if ((((u32)GPIO_InitStruct->GPIO_Mode) & ((u32)0x10)) != 0x00)
{
/* Check the parameters */
assert(IS_GPIO_SPEED(GPIO_InitStruct->GPIO_Speed));
/* Output mode */
currentmode |= (u32)GPIO_InitStruct->GPIO_Speed;
}
/*---------------------------- GPIO CRL Configuration ------------------------*/
/* Configure the eight low port pins */
if (((u32)GPIO_InitStruct->GPIO_Pin & ((u32)0x00FF)) != 0x00)
{
tmpreg = GPIOx->CRL;
for (pinpos = 0x00; pinpos < 0x08; pinpos++)
{
pos = ((u32)0x01) << pinpos;
/* Get the port pins position */
currentpin = (GPIO_InitStruct->GPIO_Pin) & pos;
if (currentpin == pos)
{
pos = pinpos << 2;
/* Clear the corresponding low control register bits */
pinmask = ((u32)0x0F) << pos;
tmpreg &= ~pinmask;
/* Write the mode configuration in the corresponding bits */
tmpreg |= (currentmode << pos);
/* Reset the corresponding ODR bit */
if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPD)
{
GPIOx->BRR = (((u32)0x01) << pinpos);
}
/* Set the corresponding ODR bit */
if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPU)
{
GPIOx->BSRR = (((u32)0x01) << pinpos);
}
}
}
GPIOx->CRL = tmpreg;
tmpreg = 0;
}
/*---------------------------- GPIO CRH Configuration ------------------------*/
/* Configure the eight high port pins */
if (GPIO_InitStruct->GPIO_Pin > 0x00FF)
{
tmpreg = GPIOx->CRH;
for (pinpos = 0x00; pinpos < 0x08; pinpos++)
{
pos = (((u32)0x01) << (pinpos + 0x08));
/* Get the port pins position */
currentpin = ((GPIO_InitStruct->GPIO_Pin) & pos);
if (currentpin == pos)
{
pos = pinpos << 2;
/* Clear the corresponding high control register bits */
pinmask = ((u32)0x0F) << pos;
tmpreg &= ~pinmask;
/* Write the mode configuration in the corresponding bits */
tmpreg |= (currentmode << pos);
/* Reset the corresponding ODR bit */
if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPD)
{
GPIOx->BRR = (((u32)0x01) << (pinpos + 0x08));
}
/* Set the corresponding ODR bit */
if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPU)
{
GPIOx->BSRR = (((u32)0x01) << (pinpos + 0x08));
}
}
}
GPIOx->CRH = tmpreg;
}
}
/*******************************************************************************
* Function Name : GPIO_StructInit
* Description : Fills each GPIO_InitStruct member with its default value.
* Input : - GPIO_InitStruct : pointer to a GPIO_InitTypeDef structure
* which will be initialized.
* Output : None
* Return : None
*******************************************************************************/
void GPIO_StructInit(GPIO_InitTypeDef* GPIO_InitStruct)
{
/* Reset GPIO init structure parameters values */
GPIO_InitStruct->GPIO_Pin = GPIO_Pin_All;
GPIO_InitStruct->GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStruct->GPIO_Mode = GPIO_Mode_IN_FLOATING;
}
/*******************************************************************************
* Function Name : GPIO_ReadInputDataBit
* Description : Reads the specified input port pin.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* : - GPIO_Pin: specifies the port bit to read.
* This parameter can be GPIO_Pin_x where x can be (0..15).
* Output : None
* Return : The input port pin value.
*******************************************************************************/
u8 GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, u16 GPIO_Pin)
{
u8 bitstatus = 0x00;
/* Check the parameters */
assert(IS_GPIO_PIN(GPIO_Pin));
if ((GPIOx->IDR & GPIO_Pin) != (u32)Bit_RESET)
{
bitstatus = (u8)Bit_SET;
}
else
{
bitstatus = (u8)Bit_RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : GPIO_ReadInputData
* Description : Reads the specified GPIO input data port.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* Output : None
* Return : GPIO input data port value.
*******************************************************************************/
u16 GPIO_ReadInputData(GPIO_TypeDef* GPIOx)
{
return ((u16)GPIOx->IDR);
}
/*******************************************************************************
* Function Name : GPIO_ReadOutputDataBit
* Description : Reads the specified output data port bit.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* : - GPIO_Pin: specifies the port bit to read.
* This parameter can be GPIO_Pin_x where x can be (0..15).
* Output : None
* Return : The output port pin value.
*******************************************************************************/
u8 GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, u16 GPIO_Pin)
{
u8 bitstatus = 0x00;
/* Check the parameters */
assert(IS_GPIO_PIN(GPIO_Pin));
if ((GPIOx->ODR & GPIO_Pin) != (u32)Bit_RESET)
{
bitstatus = (u8)Bit_SET;
}
else
{
bitstatus = (u8)Bit_RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : GPIO_ReadOutputData
* Description : Reads the specified GPIO output data port.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* Output : None
* Return : GPIO output data port value.
*******************************************************************************/
u16 GPIO_ReadOutputData(GPIO_TypeDef* GPIOx)
{
return ((u16)GPIOx->ODR);
}
/*******************************************************************************
* Function Name : GPIO_WriteBit
* Description : Sets or clears the selected data port bit.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* - GPIO_Pin: specifies the port bit to be written.
* This parameter can be GPIO_Pin_x where x can be (0..15).
* - BitVal: specifies the value to be written to the selected bit.
* This parameter can be one of the BitAction enum values:
* - Bit_RESET: to clear the port pin
* - Bit_SET: to set the port pin
* Output : None
* Return : None
*******************************************************************************/
void GPIO_WriteBit(GPIO_TypeDef* GPIOx, u16 GPIO_Pin, BitAction BitVal)
{
/* Check the parameters */
assert(IS_GPIO_PIN(GPIO_Pin));
assert(IS_GPIO_BIT_ACTION(BitVal));
if (BitVal != Bit_RESET)
{
GPIOx->BSRR = GPIO_Pin;
}
else
{
GPIOx->BRR = GPIO_Pin;
}
}
/*******************************************************************************
* Function Name : GPIO_Write
* Description : Writes data to the specified GPIO data port.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* - PortVal: specifies the value to be written to the port output
* data register.
* Output : None
* Return : None
*******************************************************************************/
void GPIO_Write(GPIO_TypeDef* GPIOx, u16 PortVal)
{
GPIOx->ODR = PortVal;
}
/*******************************************************************************
* Function Name : GPIO_PinLockConfig
* Description : Locks GPIO Pins configuration registers.
* Input : - GPIOx: where x can be (A..E) to select the GPIO peripheral.
* - GPIO_Pin: specifies the port bit to be written.
* This parameter can be GPIO_Pin_x where x can be (0..15).
* Output : None
* Return : None
*******************************************************************************/
void GPIO_PinLockConfig(GPIO_TypeDef* GPIOx, u16 GPIO_Pin)
{
u32 tmp = 0x00010000;
/* Check the parameters */
assert(IS_GPIO_PIN(GPIO_Pin));
tmp |= GPIO_Pin;
/* Set LCKK bit */
GPIOx->LCKR = tmp;
/* Reset LCKK bit */
GPIOx->LCKR = GPIO_Pin;
/* Set LCKK bit */
GPIOx->LCKR = tmp;
/* Read LCKK bit*/
tmp = GPIOx->LCKR;
/* Read LCKK bit*/
tmp = GPIOx->LCKR;
}
/*******************************************************************************
* Function Name : GPIO_EventOutputConfig
* Description : Selects the GPIO pin used as Event output.
* Input : - GPIO_PortSource: selects the GPIO port to be used as source
* for Event output.
* This parameter can be GPIO_PortSourceGPIOx where x can be
* (A..E).
* - GPIO_PinSource: specifies the pin for the Event output.
* This parameter can be GPIO_PinSourcex where x can be (0..15).
* Output : None
* Return : None
*******************************************************************************/
void GPIO_EventOutputConfig(u8 GPIO_PortSource, u8 GPIO_PinSource)
{
u32 tmpreg = 0x00;
/* Check the parameters */
assert(IS_GPIO_PORT_SOURCE(GPIO_PortSource));
assert(IS_GPIO_PIN_SOURCE(GPIO_PinSource));
tmpreg = AFIO->EVCR;
/* Clear the PORT[6:4] and PIN[3:0] bits */
tmpreg &= EVCR_PORTPINCONFIG_MASK;
tmpreg |= (u32)GPIO_PortSource << 0x04;
tmpreg |= GPIO_PinSource;
AFIO->EVCR = tmpreg;
}
/*******************************************************************************
* Function Name : GPIO_EventOutputCmd
* Description : Enables or disables the Event Output.
* Input : - NewState: new state of the Event output.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void GPIO_EventOutputCmd(FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
*(vu32 *) EVCR_EVOE_BB = (u32)NewState;
}
/*******************************************************************************
* Function Name : GPIO_PinRemapConfig
* Description : Changes the mapping of the specified pin.
* Input : - GPIO_Remap: selects the pin to remap.
* This parameter can be one of the following values:
* - GPIO_Remap_SPI1
* - GPIO_Remap_I2C1
* - GPIO_Remap_USART1
* - GPIO_Remap_USART2
* - GPIO_PartialRemap_USART3
* - GPIO_FullRemap_USART3
* - GPIO_PartialRemap_TIM1
* - GPIO_FullRemap_TIM1
* - GPIO_PartialRemap1_TIM2
* - GPIO_PartialRemap2_TIM2
* - GPIO_FullRemap_TIM2
* - GPIO_PartialRemap_TIM3
* - GPIO_FullRemap_TIM3
* - GPIO_Remap_TIM4
* - GPIO_Remap1_CAN
* - GPIO_Remap2_CAN
* - GPIO_Remap_PD01
* - GPIO_Remap_SWJ_NoJTRST
* - GPIO_Remap_SWJ_JTAGDisable
* - GPIO_Remap_SWJ_Disable
* - NewState: new state of the port pin remapping.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void GPIO_PinRemapConfig(u32 GPIO_Remap, FunctionalState NewState)
{
u32 tmp = 0x00, tmp1 = 0x00, tmpreg = 0x00, tmpmask = 0x00;
/* Check the parameters */
assert(IS_GPIO_REMAP(GPIO_Remap));
assert(IS_FUNCTIONAL_STATE(NewState));
tmpreg = AFIO->MAPR;
tmpmask = (GPIO_Remap & DBGAFR_POSITION_MASK) >> 0x10;
tmp = GPIO_Remap & LSB_MASK;
if ((GPIO_Remap & DBGAFR_LOCATION_MASK) == DBGAFR_LOCATION_MASK)
{
tmpreg &= DBGAFR_SWJCFG_MASK;
}
else if ((GPIO_Remap & DBGAFR_NUMBITS_MASK) == DBGAFR_NUMBITS_MASK)
{
tmp1 = ((u32)0x03) << tmpmask;
tmpreg &= ~tmp1;
}
else
{
tmpreg &= ~tmp;
}
if (NewState != DISABLE)
{
if ((GPIO_Remap & DBGAFR_LOCATION_MASK) == DBGAFR_LOCATION_MASK)
{
tmpreg |= (tmp << 0x10);
}
else
{
tmpreg |= tmp;
}
}
AFIO->MAPR = tmpreg;
}
/*******************************************************************************
* Function Name : GPIO_EXTILineConfig
* Description : Selects the GPIO pin used as EXTI Line.
* Input : - GPIO_PortSource: selects the GPIO port to be used as
* source for EXTI lines.
* - GPIO_PinSource: specifies the EXTI line to be configured.
* This parameter can be GPIO_PinSourcex where x can be (0..15).
* Output : None
* Return : None
*******************************************************************************/
void GPIO_EXTILineConfig(u8 GPIO_PortSource, u8 GPIO_PinSource)
{
u32 tmp = 0x00;
/* Check the parameters */
assert(IS_GPIO_PORT_SOURCE(GPIO_PortSource));
assert(IS_GPIO_PIN_SOURCE(GPIO_PinSource));
tmp = ((u32)0x0F) << (0x04 * (GPIO_PinSource & (u8)0x03));
AFIO->EXTICR[GPIO_PinSource >> 0x02] &= ~tmp;
AFIO->EXTICR[GPIO_PinSource >> 0x02] |= (((u32)GPIO_PortSource) << (0x04 * (GPIO_PinSource & (u8)0x03)));
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,152 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_iwdg.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the IWDG firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_iwdg.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ---------------------- IWDG registers bit mask ------------------------ */
/* KR register bit mask */
#define KR_Reload ((u16)0xAAAA)
#define KR_Enable ((u16)0xCCCC)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : IWDG_WriteAccessCmd
* Description : Enables or disables write access to IWDG_PR and IWDG_RLR
* registers.
* Input : - IWDG_WriteAccess: new state of write access to IWDG_PR and
* IWDG_RLR registers.
* This parameter can be one of the following values:
* - IWDG_WriteAccess_Enable: Enable write access to
* IWDG_PR and IWDG_RLR registers
* - IWDG_WriteAccess_Disable: Disable write access to
* IWDG_PR and IWDG_RLR registers
* Output : None
* Return : None
*******************************************************************************/
void IWDG_WriteAccessCmd(u16 IWDG_WriteAccess)
{
/* Check the parameters */
assert(IS_IWDG_WRITE_ACCESS(IWDG_WriteAccess));
IWDG->KR = IWDG_WriteAccess;
}
/*******************************************************************************
* Function Name : IWDG_SetPrescaler
* Description : Sets IWDG Prescaler value.
* Input : - IWDG_Prescaler: specifies the IWDG Prescaler value.
* This parameter can be one of the following values:
* - IWDG_Prescaler_4: IWDG prescaler set to 4
* - IWDG_Prescaler_8: IWDG prescaler set to 8
* - IWDG_Prescaler_16: IWDG prescaler set to 16
* - IWDG_Prescaler_32: IWDG prescaler set to 32
* - IWDG_Prescaler_64: IWDG prescaler set to 64
* - IWDG_Prescaler_128: IWDG prescaler set to 128
* - IWDG_Prescaler_256: IWDG prescaler set to 256
* Output : None
* Return : None
*******************************************************************************/
void IWDG_SetPrescaler(u8 IWDG_Prescaler)
{
/* Check the parameters */
assert(IS_IWDG_PRESCALER(IWDG_Prescaler));
IWDG->PR = IWDG_Prescaler;
}
/*******************************************************************************
* Function Name : IWDG_SetReload
* Description : Sets IWDG Reload value.
* Input : - Reload: specifies the IWDG Reload value.
* This parameter must be a number between 0 and 0x0FFF.
* Output : None
* Return : None
*******************************************************************************/
void IWDG_SetReload(u16 Reload)
{
/* Check the parameters */
assert(IS_IWDG_RELOAD(Reload));
IWDG->RLR = Reload;
}
/*******************************************************************************
* Function Name : IWDG_ReloadCounter
* Description : Reloads IWDG counter with value defined in the reload register
* (write access to IWDG_PR and IWDG_RLR registers disabled).
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void IWDG_ReloadCounter(void)
{
IWDG->KR = KR_Reload;
}
/*******************************************************************************
* Function Name : IWDG_Enable
* Description : Enables IWDG (write access to IWDG_PR and IWDG_RLR registers
* disabled).
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void IWDG_Enable(void)
{
IWDG->KR = KR_Enable;
}
/*******************************************************************************
* Function Name : IWDG_GetFlagStatus
* Description : Checks whether the specified IWDG flag is set or not.
* Input : - IWDG_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* - IWDG_FLAG_PVU: Prescaler Value Update on going
* - IWDG_FLAG_RVU: Reload Value Update on going
* Output : None
* Return : The new state of IWDG_FLAG (SET or RESET).
*******************************************************************************/
FlagStatus IWDG_GetFlagStatus(u16 IWDG_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_IWDG_FLAG(IWDG_FLAG));
if ((IWDG->SR & IWDG_FLAG) != (u32)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,221 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_lib.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all peripherals pointers initialization.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
#define EXT
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_lib.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
#ifdef DEBUG
/*******************************************************************************
* Function Name : debug
* Description : This function initialize peripherals pointers.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void debug(void)
{
/************************************* ADC ************************************/
#ifdef _ADC1
ADC1 = (ADC_TypeDef *) ADC1_BASE;
#endif /*_ADC1 */
#ifdef _ADC2
ADC2 = (ADC_TypeDef *) ADC2_BASE;
#endif /*_ADC2 */
/************************************* BKP ************************************/
#ifdef _BKP
BKP = (BKP_TypeDef *) BKP_BASE;
#endif /*_BKP */
/************************************* CAN ************************************/
#ifdef _CAN
CAN = (CAN_TypeDef *) CAN_BASE;
#endif /*_CAN */
/************************************* DMA ************************************/
#ifdef _DMA
DMA = (DMA_TypeDef *) DMA_BASE;
#endif /*_DMA */
#ifdef _DMA_Channel1
DMA_Channel1 = (DMA_Channel_TypeDef *) DMA_Channel1_BASE;
#endif /*_DMA_Channel1 */
#ifdef _DMA_Channel2
DMA_Channel2 = (DMA_Channel_TypeDef *) DMA_Channel2_BASE;
#endif /*_DMA_Channel2 */
#ifdef _DMA_Channel3
DMA_Channel3 = (DMA_Channel_TypeDef *) DMA_Channel3_BASE;
#endif /*_DMA_Channel3 */
#ifdef _DMA_Channel4
DMA_Channel4 = (DMA_Channel_TypeDef *) DMA_Channel4_BASE;
#endif /*_DMA_Channel4 */
#ifdef _DMA_Channel5
DMA_Channel5 = (DMA_Channel_TypeDef *) DMA_Channel5_BASE;
#endif /*_DMA_Channel5 */
#ifdef _DMA_Channel6
DMA_Channel6 = (DMA_Channel_TypeDef *) DMA_Channel6_BASE;
#endif /*_DMA_Channel6 */
#ifdef _DMA_Channel7
DMA_Channel7 = (DMA_Channel_TypeDef *) DMA_Channel7_BASE;
#endif /*_DMA_Channel7 */
/************************************* EXTI ***********************************/
#ifdef _EXTI
EXTI = (EXTI_TypeDef *) EXTI_BASE;
#endif /*_EXTI */
/************************************* FLASH and Option Bytes *****************/
#ifdef _FLASH
FLASH = (FLASH_TypeDef *) FLASH_BASE;
OB = (OB_TypeDef *) OB_BASE;
#endif /*_FLASH */
/************************************* GPIO ***********************************/
#ifdef _GPIOA
GPIOA = (GPIO_TypeDef *) GPIOA_BASE;
#endif /*_GPIOA */
#ifdef _GPIOB
GPIOB = (GPIO_TypeDef *) GPIOB_BASE;
#endif /*_GPIOB */
#ifdef _GPIOC
GPIOC = (GPIO_TypeDef *) GPIOC_BASE;
#endif /*_GPIOC */
#ifdef _GPIOD
GPIOD = (GPIO_TypeDef *) GPIOD_BASE;
#endif /*_GPIOD */
#ifdef _GPIOE
GPIOE = (GPIO_TypeDef *) GPIOE_BASE;
#endif /*_GPIOE */
#ifdef _AFIO
AFIO = (AFIO_TypeDef *) AFIO_BASE;
#endif /*_AFIO */
/************************************* I2C ************************************/
#ifdef _I2C1
I2C1 = (I2C_TypeDef *) I2C1_BASE;
#endif /*_I2C1 */
#ifdef _I2C2
I2C2 = (I2C_TypeDef *) I2C2_BASE;
#endif /*_I2C2 */
/************************************* IWDG ***********************************/
#ifdef _IWDG
IWDG = (IWDG_TypeDef *) IWDG_BASE;
#endif /*_IWDG */
/************************************* NVIC ***********************************/
#ifdef _NVIC
NVIC = (NVIC_TypeDef *) NVIC_BASE;
#endif /*_NVIC */
#ifdef _SCB
SCB = (SCB_TypeDef *) SCB_BASE;
#endif /*_SCB */
/************************************* PWR ************************************/
#ifdef _PWR
PWR = (PWR_TypeDef *) PWR_BASE;
#endif /*_PWR */
/************************************* RCC ************************************/
#ifdef _RCC
RCC = (RCC_TypeDef *) RCC_BASE;
#endif /*_RCC */
/************************************* RTC ************************************/
#ifdef _RTC
RTC = (RTC_TypeDef *) RTC_BASE;
#endif /*_RTC */
/************************************* SPI ************************************/
#ifdef _SPI1
SPI1 = (SPI_TypeDef *) SPI1_BASE;
#endif /*_SPI1 */
#ifdef _SPI2
SPI2 = (SPI_TypeDef *) SPI2_BASE;
#endif /*_SPI2 */
/************************************* SysTick ********************************/
#ifdef _SysTick
SysTick = (SysTick_TypeDef *) SysTick_BASE;
#endif /*_SysTick */
/************************************* TIM1 ***********************************/
#ifdef _TIM1
TIM1 = (TIM1_TypeDef *) TIM1_BASE;
#endif /*_TIM1 */
/************************************* TIM ************************************/
#ifdef _TIM2
TIM2 = (TIM_TypeDef *) TIM2_BASE;
#endif /*_TIM2 */
#ifdef _TIM3
TIM3 = (TIM_TypeDef *) TIM3_BASE;
#endif /*_TIM3 */
#ifdef _TIM4
TIM4 = (TIM_TypeDef *) TIM4_BASE;
#endif /*_TIM4 */
/************************************* USART **********************************/
#ifdef _USART1
USART1 = (USART_TypeDef *) USART1_BASE;
#endif /*_USART1 */
#ifdef _USART2
USART2 = (USART_TypeDef *) USART2_BASE;
#endif /*_USART2 */
#ifdef _USART3
USART3 = (USART_TypeDef *) USART3_BASE;
#endif /*_USART3 */
/************************************* WWDG ***********************************/
#ifdef _WWDG
WWDG = (WWDG_TypeDef *) WWDG_BASE;
#endif /*_WWDG */
}
#endif
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,755 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_nvic.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the NVIC firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_nvic.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define AIRC_VECTKEY_MASK ((u32)0x05FA0000)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : NVIC_DeInit
* Description : Deinitializes the NVIC peripheral registers to their default
* reset values.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_DeInit(void)
{
u32 index = 0;
NVIC->Disable[0] = 0xFFFFFFFF;
NVIC->Disable[1] = 0x000007FF;
NVIC->Clear[0] = 0xFFFFFFFF;
NVIC->Clear[1] = 0x000007FF;
for(index = 0; index < 0x0B; index++)
{
NVIC->Priority[index] = 0x00000000;
}
}
/*******************************************************************************
* Function Name : NVIC_SCBDeInit
* Description : Deinitializes the SCB peripheral registers to their default
* reset values.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SCBDeInit(void)
{
u32 index = 0x00;
SCB->IRQControlState = 0x0A000000;
SCB->ExceptionTableOffset = 0x00000000;
SCB->AIRC = AIRC_VECTKEY_MASK;
SCB->SysCtrl = 0x00000000;
SCB->ConfigCtrl = 0x00000000;
for(index = 0; index < 0x03; index++)
{
SCB->SystemPriority[index] = 0;
}
SCB->SysHandlerCtrl = 0x00000000;
SCB->ConfigFaultStatus = 0xFFFFFFFF;
SCB->HardFaultStatus = 0xFFFFFFFF;
SCB->DebugFaultStatus = 0xFFFFFFFF;
}
/*******************************************************************************
* Function Name : NVIC_PriorityGroupConfig
* Description : Configures the priority grouping: pre-emption priority
* and subpriority.
* Input : - NVIC_PriorityGroup: specifies the priority grouping bits
* length. This parameter can be one of the following values:
* - NVIC_PriorityGroup_0: 0 bits for pre-emption priority
* 4 bits for subpriority
* - NVIC_PriorityGroup_1: 1 bits for pre-emption priority
* 3 bits for subpriority
* - NVIC_PriorityGroup_2: 2 bits for pre-emption priority
* 2 bits for subpriority
* - NVIC_PriorityGroup_3: 3 bits for pre-emption priority
* 1 bits for subpriority
* - NVIC_PriorityGroup_4: 4 bits for pre-emption priority
* 0 bits for subpriority
* Output : None
* Return : None
*******************************************************************************/
void NVIC_PriorityGroupConfig(u32 NVIC_PriorityGroup)
{
/* Check the parameters */
assert(IS_NVIC_PRIORITY_GROUP(NVIC_PriorityGroup));
/* Set the PRIGROUP[10:8] bits according to NVIC_PriorityGroup value */
SCB->AIRC = AIRC_VECTKEY_MASK | NVIC_PriorityGroup;
}
/*******************************************************************************
* Function Name : NVIC_Init
* Description : Initializes the NVIC peripheral according to the specified
* parameters in the NVIC_InitStruct.
* Input : - NVIC_InitStruct: pointer to a NVIC_InitTypeDef structure
* that contains the configuration information for the
* specified NVIC peripheral.
* Output : None
* Return : None
*******************************************************************************/
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct)
{
u32 tmppriority = 0x00, tmpreg = 0x00, tmpmask = 0x00;
u32 tmppre = 0, tmpsub = 0x0F;
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NVIC_InitStruct->NVIC_IRQChannelCmd));
assert(IS_NVIC_IRQ_CHANNEL(NVIC_InitStruct->NVIC_IRQChannel));
assert(IS_NVIC_PREEMPTION_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority));
assert(IS_NVIC_SUB_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelSubPriority));
if (NVIC_InitStruct->NVIC_IRQChannelCmd != DISABLE)
{
/* Compute the Corresponding IRQ Priority --------------------------------*/
tmppriority = (0x700 - (SCB->AIRC & (u32)0x700))>> 0x08;
tmppre = (0x4 - tmppriority);
tmpsub = tmpsub >> tmppriority;
tmppriority = (u32)NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority << tmppre;
tmppriority |= NVIC_InitStruct->NVIC_IRQChannelSubPriority & tmpsub;
tmppriority = tmppriority << 0x04;
tmppriority = ((u32)tmppriority) << ((NVIC_InitStruct->NVIC_IRQChannel & (u8)0x03) * 0x08);
tmpreg = NVIC->Priority[(NVIC_InitStruct->NVIC_IRQChannel >> 0x02)];
tmpmask = (u32)0xFF << ((NVIC_InitStruct->NVIC_IRQChannel & (u8)0x03) * 0x08);
tmpreg &= ~tmpmask;
tmppriority &= tmpmask;
tmpreg |= tmppriority;
NVIC->Priority[(NVIC_InitStruct->NVIC_IRQChannel >> 0x02)] = tmpreg;
/* Enable the Selected IRQ Channels --------------------------------------*/
NVIC->Enable[(NVIC_InitStruct->NVIC_IRQChannel >> 0x05)] =
(u32)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (u8)0x1F);
}
else
{
/* Disable the Selected IRQ Channels -------------------------------------*/
NVIC->Disable[(NVIC_InitStruct->NVIC_IRQChannel >> 0x05)] =
(u32)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (u8)0x1F);
}
}
/*******************************************************************************
* Function Name : NVIC_StructInit
* Description : Fills each NVIC_InitStruct member with its default value.
* Input : - NVIC_InitStruct: pointer to a NVIC_InitTypeDef structure which
* will be initialized.
* Output : None
* Return : None
*******************************************************************************/
void NVIC_StructInit(NVIC_InitTypeDef* NVIC_InitStruct)
{
/* NVIC_InitStruct members default value */
NVIC_InitStruct->NVIC_IRQChannel = 0x00;
NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority = 0x00;
NVIC_InitStruct->NVIC_IRQChannelSubPriority = 0x00;
NVIC_InitStruct->NVIC_IRQChannelCmd = DISABLE;
}
/*******************************************************************************
* Function Name : NVIC_SETPRIMASK
* Description : Enables the PRIMASK priority: Raises the execution priority to 0.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SETPRIMASK(void)
{
__SETPRIMASK();
}
/*******************************************************************************
* Function Name : NVIC_RESETPRIMASK
* Description : Disables the PRIMASK priority.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_RESETPRIMASK(void)
{
__RESETPRIMASK();
}
/*******************************************************************************
* Function Name : NVIC_SETFAULTMASK
* Description : Enables the FAULTMASK priority: Raises the execution priority to -1.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SETFAULTMASK(void)
{
__SETFAULTMASK();
}
/*******************************************************************************
* Function Name : NVIC_RESETFAULTMASK
* Description : Disables the FAULTMASK priority.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_RESETFAULTMASK(void)
{
__RESETFAULTMASK();
}
/*******************************************************************************
* Function Name : NVIC_BASEPRICONFIG
* Description : The execution priority can be changed from 15 (lowest
configurable priority) to 1.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_BASEPRICONFIG(u32 NewPriority)
{
/* Check the parameters */
assert(IS_NVIC_BASE_PRI(NewPriority));
__BASEPRICONFIG(NewPriority << 0x04);
}
/*******************************************************************************
* Function Name : NVIC_GetBASEPRI
* Description : Returns the BASEPRI mask value.
* Input : None
* Output : None
* Return : BASEPRI register value
*******************************************************************************/
u32 NVIC_GetBASEPRI(void)
{
return (__GetBASEPRI());
}
/*******************************************************************************
* Function Name : NVIC_GetCurrentPendingIRQChannel
* Description : Returns the current pending IRQ channel identifier.
* Input : None
* Output : None
* Return : Pending IRQ Channel Identifier.
*******************************************************************************/
u16 NVIC_GetCurrentPendingIRQChannel(void)
{
return ((u16)((SCB->IRQControlState & (u32)0x003FF000) >> 0x0C));
}
/*******************************************************************************
* Function Name : NVIC_GetIRQChannelPendingBitStatus
* Description : Checks whether the specified IRQ Channel pending bit is set
* or not.
* Input : - NVIC_IRQChannel: specifies the interrupt pending bit to check.
* Output : None
* Return : The new state of IRQ Channel pending bit(SET or RESET).
*******************************************************************************/
ITStatus NVIC_GetIRQChannelPendingBitStatus(u8 NVIC_IRQChannel)
{
ITStatus pendingirqstatus = RESET;
u32 tmp = 0x00;
/* Check the parameters */
assert(IS_NVIC_IRQ_CHANNEL(NVIC_IRQChannel));
tmp = ((u32)0x01 << (NVIC_IRQChannel & (u32)0x1F));
if (((NVIC->Set[(NVIC_IRQChannel >> 0x05)]) & tmp) == tmp)
{
pendingirqstatus = SET;
}
else
{
pendingirqstatus = RESET;
}
return pendingirqstatus;
}
/*******************************************************************************
* Function Name : NVIC_SetIRQChannelPendingBit
* Description : Sets the NVICs interrupt pending bit.
* Input : - NVIC_IRQChannel: specifies the interrupt pending bit to Set.
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SetIRQChannelPendingBit(u8 NVIC_IRQChannel)
{
/* Check the parameters */
assert(IS_NVIC_IRQ_CHANNEL(NVIC_IRQChannel));
*(u32*)0xE000EF00 = (u32)NVIC_IRQChannel;
}
/*******************************************************************************
* Function Name : NVIC_ClearIRQChannelPendingBit
* Description : Clears the NVICs interrupt pending bit.
* Input : - NVIC_IRQChannel: specifies the interrupt pending bit to clear.
* Output : None
* Return : None
*******************************************************************************/
void NVIC_ClearIRQChannelPendingBit(u8 NVIC_IRQChannel)
{
/* Check the parameters */
assert(IS_NVIC_IRQ_CHANNEL(NVIC_IRQChannel));
NVIC->Clear[(NVIC_IRQChannel >> 0x05)] = (u32)0x01 << (NVIC_IRQChannel & (u32)0x1F);
}
/*******************************************************************************
* Function Name : NVIC_GetCurrentActiveHandler
* Description : Returns the current active Handler (IRQ Channel and
* SystemHandler) identifier.
* Input : None
* Output : None
* Return : Active Handler Identifier.
*******************************************************************************/
u16 NVIC_GetCurrentActiveHandler(void)
{
return ((u16)(SCB->IRQControlState & (u32)0x3FF));
}
/*******************************************************************************
* Function Name : NVIC_GetIRQChannelActiveBitStatus
* Description : Checks whether the specified IRQ Channel active bit is set
* or not.
* Input : - NVIC_IRQChannel: specifies the interrupt active bit to check.
* Output : None
* Return : The new state of IRQ Channel active bit(SET or RESET).
*******************************************************************************/
ITStatus NVIC_GetIRQChannelActiveBitStatus(u8 NVIC_IRQChannel)
{
ITStatus activeirqstatus = RESET;
u32 tmp = 0x00;
/* Check the parameters */
assert(IS_NVIC_IRQ_CHANNEL(NVIC_IRQChannel));
tmp = ((u32)0x01 << (NVIC_IRQChannel & (u32)0x1F));
if (((NVIC->Active[(NVIC_IRQChannel >> 0x05)]) & tmp) == tmp )
{
activeirqstatus = SET;
}
else
{
activeirqstatus = RESET;
}
return activeirqstatus;
}
/*******************************************************************************
* Function Name : NVIC_GetCPUID
* Description : Returns the ID number, the version number and the implementation
* details of the Cortex-M3 core.
* Input : None
* Output : None
* Return : CPU ID.
*******************************************************************************/
u32 NVIC_GetCPUID(void)
{
return (SCB->CPUID);
}
/*******************************************************************************
* Function Name : NVIC_SetVectorTable
* Description : Sets the vector table location and Offset.
* Input : - NVIC_VectTab: specifies if the vector table is in RAM or
* code memory.
* This parameter can be one of the following values:
* - NVIC_VectTab_RAM
* - NVIC_VectTab_FLASH
* - Offset: Vector Table base offset field.
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SetVectorTable(u32 NVIC_VectTab, u32 Offset)
{
/* Check the parameters */
assert(IS_NVIC_VECTTAB(NVIC_VectTab));
assert(IS_NVIC_OFFSET(Offset));
SCB->ExceptionTableOffset = (((u32)Offset << 0x07) & (u32)0x1FFFFF80);
SCB->ExceptionTableOffset |= NVIC_VectTab;
}
/*******************************************************************************
* Function Name : NVIC_GenerateSystemReset
* Description : Generates a system reset.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_GenerateSystemReset(void)
{
SCB->AIRC = AIRC_VECTKEY_MASK | (u32)0x04;
}
/*******************************************************************************
* Function Name : NVIC_GenerateCoreReset
* Description : Generates a Core (Core + NVIC) reset.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_GenerateCoreReset(void)
{
SCB->AIRC = AIRC_VECTKEY_MASK | (u32)0x01;
}
/*******************************************************************************
* Function Name : NVIC_SystemLPConfig
* Description : Selects the condition for the system to enter low power mode.
* Input : - LowPowerMode: Specifies the new mode for the system to enter
* low power mode.
* This parameter can be one of the following values:
* - NVIC_LP_SEVONPEND
* - NVIC_LP_SLEEPDEEP
* - NVIC_LP_SLEEPONEXIT
* - NewState: new state of LP condition.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SystemLPConfig(u8 LowPowerMode, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_NVIC_LP(LowPowerMode));
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
SCB->SysCtrl |= LowPowerMode;
}
else
{
SCB->SysCtrl &= (u32)(~(u32)LowPowerMode);
}
}
/*******************************************************************************
* Function Name : NVIC_SystemHandlerConfig
* Description : Enables or disables the specified System Handlers.
* Input : - SystemHandler: specifies the system handler to be enabled
* or disabled.
* This parameter can be one of the following values:
* - SystemHandler_MemoryManage
* - SystemHandler_BusFault
* - SystemHandler_UsageFault
* - NewState: new state of specified System Handlers.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SystemHandlerConfig(u32 SystemHandler, FunctionalState NewState)
{
u32 tmpreg = 0x00;
/* Check the parameters */
assert(IS_CONFIG_SYSTEM_HANDLER(SystemHandler));
assert(IS_FUNCTIONAL_STATE(NewState));
tmpreg = (u32)0x01 << (SystemHandler & (u32)0x1F);
if (NewState != DISABLE)
{
SCB->SysHandlerCtrl |= tmpreg;
}
else
{
SCB->SysHandlerCtrl &= ~tmpreg;
}
}
/*******************************************************************************
* Function Name : NVIC_SystemHandlerPriorityConfig
* Description : Configures the specified System Handlers priority.
* Input : - SystemHandler: specifies the system handler to be
* enabled or disabled.
* This parameter can be one of the following values:
* - SystemHandler_MemoryManage
* - SystemHandler_BusFault
* - SystemHandler_UsageFault
* - SystemHandler_SVCall
* - SystemHandler_DebugMonitor
* - SystemHandler_PSV
* - SystemHandler_SysTick
* - SystemHandlerPreemptionPriority: new priority group of the
* specified system handlers.
* - SystemHandlerSubPriority: new sub priority of the specified
* system handlers.
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SystemHandlerPriorityConfig(u32 SystemHandler, u8 SystemHandlerPreemptionPriority,
u8 SystemHandlerSubPriority)
{
u32 tmp1 = 0x00, tmp2 = 0xFF, handlermask = 0x00;
u32 tmppriority = 0x00;
/* Check the parameters */
assert(IS_PRIORITY_SYSTEM_HANDLER(SystemHandler));
assert(IS_NVIC_PREEMPTION_PRIORITY(SystemHandlerPreemptionPriority));
assert(IS_NVIC_SUB_PRIORITY(SystemHandlerSubPriority));
tmppriority = (0x700 - (SCB->AIRC & (u32)0x700))>> 0x08;
tmp1 = (0x4 - tmppriority);
tmp2 = tmp2 >> tmppriority;
tmppriority = (u32)SystemHandlerPreemptionPriority << tmp1;
tmppriority |= SystemHandlerSubPriority & tmp2;
tmppriority = tmppriority << 0x04;
tmp1 = SystemHandler & (u32)0xC0;
tmp1 = tmp1 >> 0x06;
tmp2 = (SystemHandler >> 0x08) & (u32)0x03;
tmppriority = tmppriority << (tmp2 * 0x08);
handlermask = (u32)0xFF << (tmp2 * 0x08);
SCB->SystemPriority[tmp1] &= ~handlermask;
SCB->SystemPriority[tmp1] |= tmppriority;
}
/*******************************************************************************
* Function Name : NVIC_GetSystemHandlerPendingBitStatus
* Description : Checks whether the specified System handlers pending bit is
* set or not.
* Input : - SystemHandler: specifies the system handler pending bit to
* check.
* This parameter can be one of the following values:
* - SystemHandler_MemoryManage
* - SystemHandler_BusFault
* - SystemHandler_SVCall
* Output : None
* Return : The new state of System Handler pending bit(SET or RESET).
*******************************************************************************/
ITStatus NVIC_GetSystemHandlerPendingBitStatus(u32 SystemHandler)
{
ITStatus bitstatus = RESET;
u32 tmp = 0x00, tmppos = 0x00;
/* Check the parameters */
assert(IS_GET_PENDING_SYSTEM_HANDLER(SystemHandler));
tmppos = (SystemHandler >> 0x0A);
tmppos &= (u32)0x0F;
tmppos = (u32)0x01 << tmppos;
tmp = SCB->SysHandlerCtrl & tmppos;
if (tmp == tmppos)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : NVIC_SetSystemHandlerPendingBit
* Description : Sets System Handler pending bit.
* Input : - SystemHandler: specifies the system handler pending bit
* to be set.
* This parameter can be one of the following values:
* - SystemHandler_NMI
* - SystemHandler_PSV
* - SystemHandler_SysTick
* Output : None
* Return : None
*******************************************************************************/
void NVIC_SetSystemHandlerPendingBit(u32 SystemHandler)
{
u32 tmp = 0x00;
/* Check the parameters */
assert(IS_SET_PENDING_SYSTEM_HANDLER(SystemHandler));
/* Get the System Handler pending bit position */
tmp = SystemHandler & (u32)0x1F;
/* Set the corresponding System Handler pending bit */
SCB->IRQControlState |= ((u32)0x01 << tmp);
}
/*******************************************************************************
* Function Name : NVIC_ClearSystemHandlerPendingBit
* Description : Clears System Handler pending bit.
* Input : - SystemHandler: specifies the system handler pending bit to
* be clear.
* This parameter can be one of the following values:
* - SystemHandler_PSV
* - SystemHandler_SysTick
* Output : None
* Return : None
*******************************************************************************/
void NVIC_ClearSystemHandlerPendingBit(u32 SystemHandler)
{
u32 tmp = 0x00;
/* Check the parameters */
assert(IS_CLEAR_SYSTEM_HANDLER(SystemHandler));
/* Get the System Handler pending bit position */
tmp = SystemHandler & (u32)0x1F;
/* Clear the corresponding System Handler pending bit */
SCB->IRQControlState |= ((u32)0x01 << (tmp - 0x01));
}
/*******************************************************************************
* Function Name : NVIC_GetSystemHandlerActiveBitStatus
* Description : Checks whether the specified System handlers active bit is
* set or not.
* Input : - SystemHandler: specifies the system handler active bit to
* check.
* This parameter can be one of the following values:
* - SystemHandler_MemoryManage
* - SystemHandler_BusFault
* - SystemHandler_UsageFault
* - SystemHandler_SVCall
* - SystemHandler_DebugMonitor
* - SystemHandler_PSV
* - SystemHandler_SysTick
* Output : None
* Return : The new state of System Handler active bit(SET or RESET).
*******************************************************************************/
ITStatus NVIC_GetSystemHandlerActiveBitStatus(u32 SystemHandler)
{
ITStatus bitstatus = RESET;
u32 tmp = 0x00, tmppos = 0x00;
/* Check the parameters */
assert(IS_GET_ACTIVE_SYSTEM_HANDLER(SystemHandler));
tmppos = (SystemHandler >> 0x0E) & (u32)0x0F;
tmppos = (u32)0x01 << tmppos;
tmp = SCB->SysHandlerCtrl & tmppos;
if (tmp == tmppos)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : NVIC_GetFaultHandlerSources
* Description : Returns the system fault handlers sources.
* Input : - SystemHandler: specifies the system handler to get its fault
* sources.
* This parameter can be one of the following values:
* - SystemHandler_HardFault
* - SystemHandler_MemoryManage
* - SystemHandler_BusFault
* - SystemHandler_UsageFault
* - SystemHandler_DebugMonitor
* Output : None
* Return : Source of the fault handler.
*******************************************************************************/
u32 NVIC_GetFaultHandlerSources(u32 SystemHandler)
{
u32 faultsources = 0x00;
u32 tmpreg = 0x00, tmppos = 0x00;
/* Check the parameters */
assert(IS_FAULT_SOURCE_SYSTEM_HANDLER(SystemHandler));
tmpreg = (SystemHandler >> 0x12) & (u32)0x03;
tmppos = (SystemHandler >> 0x14) & (u32)0x03;
if (tmpreg == 0x00)
{
faultsources = SCB->HardFaultStatus;
}
else if (tmpreg == 0x01)
{
faultsources = SCB->ConfigFaultStatus >> (tmppos * 0x08);
if (tmppos != 0x02)
{
faultsources &= (u32)0x0F;
}
else
{
faultsources &= (u32)0xFF;
}
}
else
{
faultsources = SCB->DebugFaultStatus;
}
return faultsources;
}
/*******************************************************************************
* Function Name : NVIC_GetFaultAddress
* Description : Returns the address of the location that generated a fault
* handler.
* Input : - SystemHandler: specifies the system handler to get its
* fault address.
* This parameter can be one of the following values:
* - SystemHandler_MemoryManage
* - SystemHandler_BusFault
* Output : None
* Return : Fault address.
*******************************************************************************/
u32 NVIC_GetFaultAddress(u32 SystemHandler)
{
u32 faultaddress = 0x00;
u32 tmp = 0x00;
/* Check the parameters */
assert(IS_FAULT_ADDRESS_SYSTEM_HANDLER(SystemHandler));
tmp = (SystemHandler >> 0x16) & (u32)0x01;
if (tmp == 0x00)
{
faultaddress = SCB->MemoryManageFaultAddr;
}
else
{
faultaddress = SCB->BusFaultAddr;
}
return faultaddress;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,283 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_pwr.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the PWR firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_pwr.h"
#include "stm32f10x_rcc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* --------- PWR registers bit address in the alias region ---------- */
#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of DBP bit */
#define CR_OFFSET (PWR_OFFSET + 0x00)
#define DBP_BitNumber 0x08
#define CR_DBP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))
/* Alias word address of PVDE bit */
#define PVDE_BitNumber 0x04
#define CR_PVDE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PVDE_BitNumber * 4))
/* --- CSR Register ---*/
/* Alias word address of EWUP bit */
#define CSR_OFFSET (PWR_OFFSET + 0x04)
#define EWUP_BitNumber 0x08
#define CSR_EWUP_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (EWUP_BitNumber * 4))
/* ------------------ PWR registers bit mask ------------------------ */
/* CR register bit mask */
#define CR_PDDS_Set ((u32)0x00000002)
#define CR_DS_Mask ((u32)0xFFFFFFFC)
#define CR_CWUF_Set ((u32)0x00000004)
#define CR_PLS_Mask ((u32)0xFFFFFF1F)
/* --------- Cortex System Control register bit mask ---------------- */
/* Cortex System Control register address */
#define SCB_SysCtrl ((u32)0xE000ED10)
/* SLEEPDEEP bit mask */
#define SysCtrl_SLEEPDEEP_Set ((u32)0x00000004)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : PWR_DeInit
* Description : Deinitializes the PWR peripheral registers to their default
* reset values.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void PWR_DeInit(void)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, DISABLE);
}
/*******************************************************************************
* Function Name : PWR_BackupAccessCmd
* Description : Enables or disables access to the RTC and backup registers.
* Input : - NewState: new state of the access to the RTC and backup
* registers. This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void PWR_BackupAccessCmd(FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
*(vu32 *) CR_DBP_BB = (u32)NewState;
}
/*******************************************************************************
* Function Name : PWR_PVDCmd
* Description : Enables or disables the Power Voltage Detector(PVD).
* Input : - NewState: new state of the PVD.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void PWR_PVDCmd(FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
*(vu32 *) CR_PVDE_BB = (u32)NewState;
}
/*******************************************************************************
* Function Name : PWR_PVDLevelConfig
* Description : Configures the value detected by the Power Voltage Detector(PVD).
* Input : - PWR_PVDLevel: specifies the PVD detection level
* This parameter can be one of the following values:
* - PWR_PVDLevel_2V2: PVD detection level set to 2.2V
* - PWR_PVDLevel_2V3: PVD detection level set to 2.3V
* - PWR_PVDLevel_2V4: PVD detection level set to 2.4V
* - PWR_PVDLevel_2V5: PVD detection level set to 2.5V
* - PWR_PVDLevel_2V6: PVD detection level set to 2.6V
* - PWR_PVDLevel_2V7: PVD detection level set to 2.7V
* - PWR_PVDLevel_2V8: PVD detection level set to 2.8V
* - PWR_PVDLevel_2V9: PVD detection level set to 2.9V
* Output : None
* Return : None
*******************************************************************************/
void PWR_PVDLevelConfig(u32 PWR_PVDLevel)
{
u32 tmpreg = 0;
/* Check the parameters */
assert(IS_PWR_PVD_LEVEL(PWR_PVDLevel));
tmpreg = PWR->CR;
/* Clear PLS[7:5] bits */
tmpreg &= CR_PLS_Mask;
/* Set PLS[7:5] bits according to PWR_PVDLevel value */
tmpreg |= PWR_PVDLevel;
/* Store the new value */
PWR->CR = tmpreg;
}
/*******************************************************************************
* Function Name : PWR_WakeUpPinCmd
* Description : Enables or disables the WakeUp Pin functionality.
* Input : - NewState: new state of the WakeUp Pin functionality.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void PWR_WakeUpPinCmd(FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
*(vu32 *) CSR_EWUP_BB = (u32)NewState;
}
/*******************************************************************************
* Function Name : PWR_EnterSTOPMode
* Description : Enters STOP mode.
* Input : - PWR_Regulator: specifies the regulator state in STOP mode.
* This parameter can be one of the following values:
* - PWR_Regulator_ON: STOP mode with regulator ON
* - PWR_Regulator_LowPower: STOP mode with
* regulator in low power mode
* - PWR_STOPEntry: specifies if STOP mode in entered with WFI or
* WFE instruction.
* This parameter can be one of the following values:
* - PWR_STOPEntry_WFI: enter STOP mode with WFI instruction
* - PWR_STOPEntry_WFE: enter STOP mode with WFE instruction
* Output : None
* Return : None
*******************************************************************************/
void PWR_EnterSTOPMode(u32 PWR_Regulator, u8 PWR_STOPEntry)
{
u32 tmpreg = 0;
/* Check the parameters */
assert(IS_PWR_REGULATOR(PWR_Regulator));
assert(IS_PWR_STOP_ENTRY(PWR_STOPEntry));
/* Select the regulator state in STOP mode ---------------------------------*/
tmpreg = PWR->CR;
/* Clear PDDS and LPDS bits */
tmpreg &= CR_DS_Mask;
/* Set LPDS bit according to PWR_Regulator value */
tmpreg |= PWR_Regulator;
/* Store the new value */
PWR->CR = tmpreg;
/* Set SLEEPDEEP bit of Cortex System Control Register */
*(vu32 *) SCB_SysCtrl |= SysCtrl_SLEEPDEEP_Set;
/* Select STOP mode entry --------------------------------------------------*/
if(PWR_STOPEntry == PWR_STOPEntry_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__WFE();
}
}
/*******************************************************************************
* Function Name : PWR_EnterSTANDBYMode
* Description : Enters STANDBY mode.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void PWR_EnterSTANDBYMode(void)
{
/* Clear Wake-up flag */
PWR->CR |= CR_CWUF_Set;
/* Select STANDBY mode */
PWR->CR |= CR_PDDS_Set;
/* Set SLEEPDEEP bit of Cortex System Control Register */
*(vu32 *) SCB_SysCtrl |= SysCtrl_SLEEPDEEP_Set;
/* Request Wait For Interrupt */
__WFI();
}
/*******************************************************************************
* Function Name : PWR_GetFlagStatus
* Description : Checks whether the specified PWR flag is set or not.
* Input : - PWR_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* - PWR_FLAG_WU: Wake Up flag
* - PWR_FLAG_SB: StandBy flag
* - PWR_FLAG_PVDO: PVD Output
* Output : None
* Return : The new state of PWR_FLAG (SET or RESET).
*******************************************************************************/
FlagStatus PWR_GetFlagStatus(u32 PWR_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_PWR_GET_FLAG(PWR_FLAG));
if ((PWR->CSR & PWR_FLAG) != (u32)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/*******************************************************************************
* Function Name : PWR_ClearFlag
* Description : Clears the PWR's pending flags.
* Input : - PWR_FLAG: specifies the flag to clear.
* This parameter can be one of the following values:
* - PWR_FLAG_WU: Wake Up flag
* - PWR_FLAG_SB: StandBy flag
* Output : None
* Return : None
*******************************************************************************/
void PWR_ClearFlag(u32 PWR_FLAG)
{
/* Check the parameters */
assert(IS_PWR_CLEAR_FLAG(PWR_FLAG));
PWR->CR |= PWR_FLAG << 2;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,342 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_rtc.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the RTC firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_rtc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define CRL_CNF_Set ((u16)0x0010) /* Configuration Flag Enable Mask */
#define CRL_CNF_Reset ((u16)0xFFEF) /* Configuration Flag Disable Mask */
#define RTC_LSB_Mask ((u32)0x0000FFFF) /* RTC LSB Mask */
#define RTC_MSB_Mask ((u32)0xFFFF0000) /* RTC MSB Mask */
#define PRLH_MSB_Mask ((u32)0x000F0000) /* RTC Prescaler MSB Mask */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : RTC_ITConfig
* Description : Enables or disables the specified RTC interrupts.
* Input : - RTC_IT: specifies the RTC interrupts sources to be enabled
* or disabled.
* This parameter can be any combination of the following values:
* - RTC_IT_OW: Overflow interrupt
* - RTC_IT_ALR: Alarm interrupt
* - RTC_IT_SEC: Second interrupt
* - NewState: new state of the specified RTC interrupts.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void RTC_ITConfig(u16 RTC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_RTC_IT(RTC_IT));
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RTC->CRH |= RTC_IT;
}
else
{
RTC->CRH &= (u16)~RTC_IT;
}
}
/*******************************************************************************
* Function Name : RTC_EnterConfigMode
* Description : Enters the RTC configuration mode.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RTC_EnterConfigMode(void)
{
/* Set the CNF flag to enter in the Configuration Mode */
RTC->CRL |= CRL_CNF_Set;
}
/*******************************************************************************
* Function Name : RTC_ExitConfigMode
* Description : Exits from the RTC configuration mode.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RTC_ExitConfigMode(void)
{
/* Reset the CNF flag to exit from the Configuration Mode */
RTC->CRL &= CRL_CNF_Reset;
}
/*******************************************************************************
* Function Name : RTC_GetCounter
* Description : Gets the RTC counter value.
* Input : None
* Output : None
* Return : RTC counter value.
*******************************************************************************/
u32 RTC_GetCounter(void)
{
u16 tmp = 0;
tmp = RTC->CNTL;
return (((u32)RTC->CNTH << 16 ) | tmp) ;
}
/*******************************************************************************
* Function Name : RTC_SetCounter
* Description : Sets the RTC counter value.
* Input : - CounterValue: RTC counter new value.
* Output : None
* Return : None
*******************************************************************************/
void RTC_SetCounter(u32 CounterValue)
{
RTC_EnterConfigMode();
/* Set RTC COUNTER MSB word */
RTC->CNTH = (CounterValue & RTC_MSB_Mask) >> 16;
/* Set RTC COUNTER LSB word */
RTC->CNTL = (CounterValue & RTC_LSB_Mask);
RTC_ExitConfigMode();
}
/*******************************************************************************
* Function Name : RTC_GetPrescaler
* Description : Gets the RTC prescaler value.
* Input : None
* Output : None
* Return : RTC prescaler value.
*******************************************************************************/
u32 RTC_GetPrescaler(void)
{
u32 tmp = 0x00;
tmp = ((u32)RTC->PRLH & (u32)0x000F) << 0x10;
tmp |= RTC->PRLL;
return tmp;
}
/*******************************************************************************
* Function Name : RTC_SetPrescaler
* Description : Sets the RTC prescaler value.
* Input : - PrescalerValue: RTC prescaler new value.
* Output : None
* Return : None
*******************************************************************************/
void RTC_SetPrescaler(u32 PrescalerValue)
{
/* Check the parameters */
assert(IS_RTC_PRESCALER(PrescalerValue));
RTC_EnterConfigMode();
/* Set RTC PRESCALER MSB word */
RTC->PRLH = (PrescalerValue & PRLH_MSB_Mask) >> 0x10;
/* Set RTC PRESCALER LSB word */
RTC->PRLL = (PrescalerValue & RTC_LSB_Mask);
RTC_ExitConfigMode();
}
/*******************************************************************************
* Function Name : RTC_SetAlarm
* Description : Sets the RTC alarm value.
* Input : - AlarmValue: RTC alarm new value.
* Output : None
* Return : None
*******************************************************************************/
void RTC_SetAlarm(u32 AlarmValue)
{
RTC_EnterConfigMode();
/* Set the ALARM MSB word */
RTC->ALRH = (AlarmValue & RTC_MSB_Mask) >> 16;
/* Set the ALARM LSB word */
RTC->ALRL = (AlarmValue & RTC_LSB_Mask);
RTC_ExitConfigMode();
}
/*******************************************************************************
* Function Name : RTC_GetDivider
* Description : Gets the RTC divider value.
* Input : None
* Output : None
* Return : RTC Divider value.
*******************************************************************************/
u32 RTC_GetDivider(void)
{
u32 tmp = 0x00;
tmp = ((u32)RTC->DIVH & (u32)0x000F) << 0x10;
tmp |= RTC->DIVL;
return tmp;
}
/*******************************************************************************
* Function Name : RTC_WaitForLastTask
* Description : Waits until last write operation on RTC registers has finished.
* This function must be called before any write to RTC registers.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RTC_WaitForLastTask(void)
{
/* Loop until RTOFF flag is set */
while ((RTC->CRL & RTC_FLAG_RTOFF) == (u16)RESET)
{
}
}
/*******************************************************************************
* Function Name : RTC_WaitForSynchro
* Description : Waits until the RTC registers (RTC_CNT, RTC_ALR and RTC_PRL)
* are synchronized with RTC APB clock.
* This function must be called before any read operation after
* an APB reset or an APB clock stop.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RTC_WaitForSynchro(void)
{
/* Clear RSF flag */
RTC->CRL &= (u16)~RTC_FLAG_RSF;
/* Loop until RSF flag is set */
while ((RTC->CRL & RTC_FLAG_RSF) == (u16)RESET)
{
}
}
/*******************************************************************************
* Function Name : RTC_GetFlagStatus
* Description : Checks whether the specified RTC flag is set or not.
* Input : - RTC_FLAG: specifies the flag to check.
* This parameter can be one the following values:
* - RTC_FLAG_RTOFF: RTC Operation OFF flag
* - RTC_FLAG_RSF: Registers Synchronized flag
* - RTC_FLAG_OW: Overflow flag
* - RTC_FLAG_ALR: Alarm flag
* - RTC_FLAG_SEC: Second flag
* Output : None
* Return : The new state of RTC_FLAG (SET or RESET).
*******************************************************************************/
FlagStatus RTC_GetFlagStatus(u16 RTC_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_RTC_GET_FLAG(RTC_FLAG));
if ((RTC->CRL & RTC_FLAG) != (u16)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : RTC_ClearFlag
* Description : Clears the RTCs pending flags.
* Input : - RTC_FLAG: specifies the flag to clear.
* This parameter can be any combination of the following values:
* - RTC_FLAG_RSF: Registers Synchronized flag. This flag
* is cleared only after an APB reset or an APB Clock stop.
* - RTC_FLAG_OW: Overflow flag
* - RTC_FLAG_ALR: Alarm flag
* - RTC_FLAG_SEC: Second flag
* Output : None
* Return : None
*******************************************************************************/
void RTC_ClearFlag(u16 RTC_FLAG)
{
/* Check the parameters */
assert(IS_RTC_CLEAR_FLAG(RTC_FLAG));
/* Clear the coressponding RTC flag */
RTC->CRL &= (u16)~RTC_FLAG;
}
/*******************************************************************************
* Function Name : RTC_GetITStatus
* Description : Checks whether the specified RTC interrupt has occured or not.
* Input : - RTC_IT: specifies the RTC interrupts sources to check.
* This parameter can be one of the following values:
* - RTC_IT_OW: Overflow interrupt
* - RTC_IT_ALR: Alarm interrupt
* - RTC_IT_SEC: Second interrupt
* Output : None
* Return : The new state of the RTC_IT (SET or RESET).
*******************************************************************************/
ITStatus RTC_GetITStatus(u16 RTC_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_RTC_GET_IT(RTC_IT));
bitstatus = (ITStatus)((RTC->CRL & RTC_IT) != (u16)RESET);
if (((RTC->CRH & RTC_IT) != (u16)RESET) && bitstatus)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : RTC_ClearITPendingBit
* Description : Clears the RTCs interrupt pending bits.
* Input : - RTC_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* - RTC_IT_OW: Overflow interrupt
* - RTC_IT_ALR: Alarm interrupt
* - RTC_IT_SEC: Second interrupt
* Output : None
* Return : None
*******************************************************************************/
void RTC_ClearITPendingBit(u16 RTC_IT)
{
/* Check the parameters */
assert(IS_RTC_IT(RTC_IT));
/* Clear the coressponding RTC pending bit */
RTC->CRL &= (u16)~RTC_IT;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,806 @@
/**
******************************************************************************
* @file stm32f10x_sdio.c
* @author MCD Application Team
* @version V3.0.0
* @date 04/06/2009
* @brief This file provides all the SDIO firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_sdio.h"
#include "stm32f10x_rcc.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup SDIO
* @brief SDIO driver modules
* @{
*/
/** @defgroup SDIO_Private_TypesDefinitions
* @{
*/
/* ------------ SDIO registers bit address in the alias region ----------- */
#define SDIO_OFFSET (SDIO_BASE - PERIPH_BASE)
/* --- CLKCR Register ---*/
/* Alias word address of CLKEN bit */
#define CLKCR_OFFSET (SDIO_OFFSET + 0x04)
#define CLKEN_BitNumber 0x08
#define CLKCR_CLKEN_BB (PERIPH_BB_BASE + (CLKCR_OFFSET * 32) + (CLKEN_BitNumber * 4))
/* --- CMD Register ---*/
/* Alias word address of SDIOSUSPEND bit */
#define CMD_OFFSET (SDIO_OFFSET + 0x0C)
#define SDIOSUSPEND_BitNumber 0x0B
#define CMD_SDIOSUSPEND_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (SDIOSUSPEND_BitNumber * 4))
/* Alias word address of ENCMDCOMPL bit */
#define ENCMDCOMPL_BitNumber 0x0C
#define CMD_ENCMDCOMPL_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (ENCMDCOMPL_BitNumber * 4))
/* Alias word address of NIEN bit */
#define NIEN_BitNumber 0x0D
#define CMD_NIEN_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (NIEN_BitNumber * 4))
/* Alias word address of ATACMD bit */
#define ATACMD_BitNumber 0x0E
#define CMD_ATACMD_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (ATACMD_BitNumber * 4))
/* --- DCTRL Register ---*/
/* Alias word address of DMAEN bit */
#define DCTRL_OFFSET (SDIO_OFFSET + 0x2C)
#define DMAEN_BitNumber 0x03
#define DCTRL_DMAEN_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (DMAEN_BitNumber * 4))
/* Alias word address of RWSTART bit */
#define RWSTART_BitNumber 0x08
#define DCTRL_RWSTART_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWSTART_BitNumber * 4))
/* Alias word address of RWSTOP bit */
#define RWSTOP_BitNumber 0x09
#define DCTRL_RWSTOP_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWSTOP_BitNumber * 4))
/* Alias word address of RWMOD bit */
#define RWMOD_BitNumber 0x0A
#define DCTRL_RWMOD_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWMOD_BitNumber * 4))
/* Alias word address of SDIOEN bit */
#define SDIOEN_BitNumber 0x0B
#define DCTRL_SDIOEN_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (SDIOEN_BitNumber * 4))
/* ---------------------- SDIO registers bit mask ------------------------ */
/* --- CLKCR Register ---*/
/* CLKCR register clear mask */
#define CLKCR_CLEAR_MASK ((uint32_t)0xFFFF8100)
/* --- PWRCTRL Register ---*/
/* SDIO PWRCTRL Mask */
#define PWR_PWRCTRL_MASK ((uint32_t)0xFFFFFFFC)
/* --- DCTRL Register ---*/
/* SDIO DCTRL Clear Mask */
#define DCTRL_CLEAR_MASK ((uint32_t)0xFFFFFF08)
/* --- CMD Register ---*/
/* CMD Register clear mask */
#define CMD_CLEAR_MASK ((uint32_t)0xFFFFF800)
/* SDIO RESP Registers Address */
#define SDIO_RESP_ADDR ((uint32_t)(SDIO_BASE + 0x14))
/**
* @}
*/
/** @defgroup SDIO_Private_Defines
* @{
*/
/**
* @}
*/
/** @defgroup SDIO_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup SDIO_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup SDIO_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup SDIO_Private_Functions
* @{
*/
/**
* @brief Deinitializes the SDIO peripheral registers to their default
* reset values.
* @param None
* @retval : None
*/
void SDIO_DeInit(void)
{
SDIO->POWER = 0x00000000;
SDIO->CLKCR = 0x00000000;
SDIO->ARG = 0x00000000;
SDIO->CMD = 0x00000000;
SDIO->DTIMER = 0x00000000;
SDIO->DLEN = 0x00000000;
SDIO->DCTRL = 0x00000000;
SDIO->ICR = 0x00C007FF;
SDIO->MASK = 0x00000000;
}
/**
* @brief Initializes the SDIO peripheral according to the specified
* parameters in the SDIO_InitStruct.
* @param SDIO_InitStruct : pointer to a SDIO_InitTypeDef structure
* that contains the configuration information for the SDIO
* peripheral.
* @retval : None
*/
void SDIO_Init(SDIO_InitTypeDef* SDIO_InitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_SDIO_CLOCK_EDGE(SDIO_InitStruct->SDIO_ClockEdge));
assert_param(IS_SDIO_CLOCK_BYPASS(SDIO_InitStruct->SDIO_ClockBypass));
assert_param(IS_SDIO_CLOCK_POWER_SAVE(SDIO_InitStruct->SDIO_ClockPowerSave));
assert_param(IS_SDIO_BUS_WIDE(SDIO_InitStruct->SDIO_BusWide));
assert_param(IS_SDIO_HARDWARE_FLOW_CONTROL(SDIO_InitStruct->SDIO_HardwareFlowControl));
/*---------------------------- SDIO CLKCR Configuration ------------------------*/
/* Get the SDIO CLKCR value */
tmpreg = SDIO->CLKCR;
/* Clear CLKDIV, PWRSAV, BYPASS, WIDBUS, NEGEDGE, HWFC_EN bits */
tmpreg &= CLKCR_CLEAR_MASK;
/* Set CLKDIV bits according to SDIO_ClockDiv value */
/* Set PWRSAV bit according to SDIO_ClockPowerSave value */
/* Set BYPASS bit according to SDIO_ClockBypass value */
/* Set WIDBUS bits according to SDIO_BusWide value */
/* Set NEGEDGE bits according to SDIO_ClockEdge value */
/* Set HWFC_EN bits according to SDIO_HardwareFlowControl value */
tmpreg |= (SDIO_InitStruct->SDIO_ClockDiv | SDIO_InitStruct->SDIO_ClockPowerSave |
SDIO_InitStruct->SDIO_ClockBypass | SDIO_InitStruct->SDIO_BusWide |
SDIO_InitStruct->SDIO_ClockEdge | SDIO_InitStruct->SDIO_HardwareFlowControl);
/* Write to SDIO CLKCR */
SDIO->CLKCR = tmpreg;
}
/**
* @brief Fills each SDIO_InitStruct member with its default value.
* @param SDIO_InitStruct: pointer to an SDIO_InitTypeDef structure which
* will be initialized.
* @retval : None
*/
void SDIO_StructInit(SDIO_InitTypeDef* SDIO_InitStruct)
{
/* SDIO_InitStruct members default value */
SDIO_InitStruct->SDIO_ClockDiv = 0x00;
SDIO_InitStruct->SDIO_ClockEdge = SDIO_ClockEdge_Rising;
SDIO_InitStruct->SDIO_ClockBypass = SDIO_ClockBypass_Disable;
SDIO_InitStruct->SDIO_ClockPowerSave = SDIO_ClockPowerSave_Disable;
SDIO_InitStruct->SDIO_BusWide = SDIO_BusWide_1b;
SDIO_InitStruct->SDIO_HardwareFlowControl = SDIO_HardwareFlowControl_Disable;
}
/**
* @brief Enables or disables the SDIO Clock.
* @param NewState: new state of the SDIO Clock.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_ClockCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CLKCR_CLKEN_BB = (uint32_t)NewState;
}
/**
* @brief Sets the power status of the controller.
* @param SDIO_PowerState: new state of the Power state.
* This parameter can be one of the following values:
* @arg SDIO_PowerState_OFF
* @arg SDIO_PowerState_ON
* @retval : None
*/
void SDIO_SetPowerState(uint32_t SDIO_PowerState)
{
/* Check the parameters */
assert_param(IS_SDIO_POWER_STATE(SDIO_PowerState));
SDIO->POWER &= PWR_PWRCTRL_MASK;
SDIO->POWER |= SDIO_PowerState;
}
/**
* @brief Gets the power status of the controller.
* @param None
* @retval : Power status of the controller. The returned value can
* be one of the following:
* - 0x00: Power OFF
* - 0x02: Power UP
* - 0x03: Power ON
*/
uint32_t SDIO_GetPowerState(void)
{
return (SDIO->POWER & (~PWR_PWRCTRL_MASK));
}
/**
* @brief Enables or disables the SDIO interrupts.
* @param SDIO_IT: specifies the SDIO interrupt sources to be
* enabled or disabled.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt
* @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
* bus mode interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt
* @arg SDIO_IT_RXACT: Data receive in progress interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
* @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61
* interrupt
* @param NewState: new state of the specified SDIO interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_ITConfig(uint32_t SDIO_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SDIO_IT(SDIO_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the SDIO interrupts */
SDIO->MASK |= SDIO_IT;
}
else
{
/* Disable the SDIO interrupts */
SDIO->MASK &= ~SDIO_IT;
}
}
/**
* @brief Enables or disables the SDIO DMA request.
* @param NewState: new state of the selected SDIO DMA request.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_DMACmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) DCTRL_DMAEN_BB = (uint32_t)NewState;
}
/**
* @brief Initializes the SDIO Command according to the specified
* parameters in the SDIO_CmdInitStruct and send the command.
* @param SDIO_CmdInitStruct : pointer to a SDIO_CmdInitTypeDef
* structure that contains the configuration information
* for the SDIO command.
* @retval : None
*/
void SDIO_SendCommand(SDIO_CmdInitTypeDef *SDIO_CmdInitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_SDIO_CMD_INDEX(SDIO_CmdInitStruct->SDIO_CmdIndex));
assert_param(IS_SDIO_RESPONSE(SDIO_CmdInitStruct->SDIO_Response));
assert_param(IS_SDIO_WAIT(SDIO_CmdInitStruct->SDIO_Wait));
assert_param(IS_SDIO_CPSM(SDIO_CmdInitStruct->SDIO_CPSM));
/*---------------------------- SDIO ARG Configuration ------------------------*/
/* Set the SDIO Argument value */
SDIO->ARG = SDIO_CmdInitStruct->SDIO_Argument;
/*---------------------------- SDIO CMD Configuration ------------------------*/
/* Get the SDIO CMD value */
tmpreg = SDIO->CMD;
/* Clear CMDINDEX, WAITRESP, WAITINT, WAITPEND, CPSMEN bits */
tmpreg &= CMD_CLEAR_MASK;
/* Set CMDINDEX bits according to SDIO_CmdIndex value */
/* Set WAITRESP bits according to SDIO_Response value */
/* Set WAITINT and WAITPEND bits according to SDIO_Wait value */
/* Set CPSMEN bits according to SDIO_CPSM value */
tmpreg |= (uint32_t)SDIO_CmdInitStruct->SDIO_CmdIndex | SDIO_CmdInitStruct->SDIO_Response
| SDIO_CmdInitStruct->SDIO_Wait | SDIO_CmdInitStruct->SDIO_CPSM;
/* Write to SDIO CMD */
SDIO->CMD = tmpreg;
}
/**
* @brief Fills each SDIO_CmdInitStruct member with its default value.
* @param SDIO_CmdInitStruct: pointer to an SDIO_CmdInitTypeDef
* structure which will be initialized.
* @retval : None
*/
void SDIO_CmdStructInit(SDIO_CmdInitTypeDef* SDIO_CmdInitStruct)
{
/* SDIO_CmdInitStruct members default value */
SDIO_CmdInitStruct->SDIO_Argument = 0x00;
SDIO_CmdInitStruct->SDIO_CmdIndex = 0x00;
SDIO_CmdInitStruct->SDIO_Response = SDIO_Response_No;
SDIO_CmdInitStruct->SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStruct->SDIO_CPSM = SDIO_CPSM_Disable;
}
/**
* @brief Returns command index of last command for which response
* received.
* @param None
* @retval : Returns the command index of the last command response received.
*/
uint8_t SDIO_GetCommandResponse(void)
{
return (uint8_t)(SDIO->RESPCMD);
}
/**
* @brief Returns response received from the card for the last command.
* @param SDIO_RESP: Specifies the SDIO response register.
* This parameter can be one of the following values:
* @arg SDIO_RESP1: Response Register 1
* @arg SDIO_RESP2: Response Register 2
* @arg SDIO_RESP3: Response Register 3
* @arg SDIO_RESP4: Response Register 4
* @retval : The Corresponding response register value.
*/
uint32_t SDIO_GetResponse(uint32_t SDIO_RESP)
{
/* Check the parameters */
assert_param(IS_SDIO_RESP(SDIO_RESP));
return (*(__IO uint32_t *)(SDIO_RESP_ADDR + SDIO_RESP));
}
/**
* @brief Initializes the SDIO data path according to the specified
* parameters in the SDIO_DataInitStruct.
* @param SDIO_DataInitStruct : pointer to a SDIO_DataInitTypeDef
* structure that contains the configuration information
* for the SDIO command.
* @retval : None
*/
void SDIO_DataConfig(SDIO_DataInitTypeDef* SDIO_DataInitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_SDIO_DATA_LENGTH(SDIO_DataInitStruct->SDIO_DataLength));
assert_param(IS_SDIO_BLOCK_SIZE(SDIO_DataInitStruct->SDIO_DataBlockSize));
assert_param(IS_SDIO_TRANSFER_DIR(SDIO_DataInitStruct->SDIO_TransferDir));
assert_param(IS_SDIO_TRANSFER_MODE(SDIO_DataInitStruct->SDIO_TransferMode));
assert_param(IS_SDIO_DPSM(SDIO_DataInitStruct->SDIO_DPSM));
/*---------------------------- SDIO DTIMER Configuration ---------------------*/
/* Set the SDIO Data TimeOut value */
SDIO->DTIMER = SDIO_DataInitStruct->SDIO_DataTimeOut;
/*---------------------------- SDIO DLEN Configuration -----------------------*/
/* Set the SDIO DataLength value */
SDIO->DLEN = SDIO_DataInitStruct->SDIO_DataLength;
/*---------------------------- SDIO DCTRL Configuration ----------------------*/
/* Get the SDIO DCTRL value */
tmpreg = SDIO->DCTRL;
/* Clear DEN, DTMODE, DTDIR and DBCKSIZE bits */
tmpreg &= DCTRL_CLEAR_MASK;
/* Set DEN bit according to SDIO_DPSM value */
/* Set DTMODE bit according to SDIO_TransferMode value */
/* Set DTDIR bit according to SDIO_TransferDir value */
/* Set DBCKSIZE bits according to SDIO_DataBlockSize value */
tmpreg |= (uint32_t)SDIO_DataInitStruct->SDIO_DataBlockSize | SDIO_DataInitStruct->SDIO_TransferDir
| SDIO_DataInitStruct->SDIO_TransferMode | SDIO_DataInitStruct->SDIO_DPSM;
/* Write to SDIO DCTRL */
SDIO->DCTRL = tmpreg;
}
/**
* @brief Fills each SDIO_DataInitStruct member with its default value.
* @param SDIO_DataInitStruct: pointer to an SDIO_DataInitTypeDef
* structure which will be initialized.
* @retval : None
*/
void SDIO_DataStructInit(SDIO_DataInitTypeDef* SDIO_DataInitStruct)
{
/* SDIO_DataInitStruct members default value */
SDIO_DataInitStruct->SDIO_DataTimeOut = 0xFFFFFFFF;
SDIO_DataInitStruct->SDIO_DataLength = 0x00;
SDIO_DataInitStruct->SDIO_DataBlockSize = SDIO_DataBlockSize_1b;
SDIO_DataInitStruct->SDIO_TransferDir = SDIO_TransferDir_ToCard;
SDIO_DataInitStruct->SDIO_TransferMode = SDIO_TransferMode_Block;
SDIO_DataInitStruct->SDIO_DPSM = SDIO_DPSM_Disable;
}
/**
* @brief Returns number of remaining data bytes to be transferred.
* @param None
* @retval : Number of remaining data bytes to be transferred
*/
uint32_t SDIO_GetDataCounter(void)
{
return SDIO->DCOUNT;
}
/**
* @brief Read one data word from Rx FIFO.
* @param None
* @retval : Data received
*/
uint32_t SDIO_ReadData(void)
{
return SDIO->FIFO;
}
/**
* @brief Write one data word to Tx FIFO.
* @param Data: 32-bit data word to write.
* @retval : None
*/
void SDIO_WriteData(uint32_t Data)
{
SDIO->FIFO = Data;
}
/**
* @brief Returns the number of words left to be written to or read
* from FIFO.
* @param None
* @retval : Remaining number of words.
*/
uint32_t SDIO_GetFIFOCount(void)
{
return SDIO->FIFOCNT;
}
/**
* @brief Starts the SD I/O Read Wait operation.
* @param NewState: new state of the Start SDIO Read Wait operation.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_StartSDIOReadWait(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) DCTRL_RWSTART_BB = (uint32_t) NewState;
}
/**
* @brief Stops the SD I/O Read Wait operation.
* @param NewState: new state of the Stop SDIO Read Wait operation.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_StopSDIOReadWait(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) DCTRL_RWSTOP_BB = (uint32_t) NewState;
}
/**
* @brief Sets one of the two options of inserting read wait interval.
* @param SDIO_ReadWaitMode: SD I/O Read Wait operation mode.
* This parametre can be:
* @arg SDIO_ReadWaitMode_CLK: Read Wait control by stopping SDIOCLK
* @arg SDIO_ReadWaitMode_DATA2: Read Wait control using SDIO_DATA2
* @retval : None
*/
void SDIO_SetSDIOReadWaitMode(uint32_t SDIO_ReadWaitMode)
{
/* Check the parameters */
assert_param(IS_SDIO_READWAIT_MODE(SDIO_ReadWaitMode));
*(__IO uint32_t *) DCTRL_RWMOD_BB = SDIO_ReadWaitMode;
}
/**
* @brief Enables or disables the SD I/O Mode Operation.
* @param NewState: new state of SDIO specific operation.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_SetSDIOOperation(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) DCTRL_SDIOEN_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the SD I/O Mode suspend command sending.
* @param NewState: new state of the SD I/O Mode suspend command.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_SendSDIOSuspendCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CMD_SDIOSUSPEND_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the command completion signal.
* @param NewState: new state of command completion signal.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_CommandCompletionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CMD_ENCMDCOMPL_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the CE-ATA interrupt.
* @param NewState: new state of CE-ATA interrupt.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_CEATAITCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CMD_NIEN_BB = (uint32_t)((~((uint32_t)NewState)) & ((uint32_t)0x1));
}
/**
* @brief Sends CE-ATA command (CMD61).
* @param NewState: new state of CE-ATA command.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SDIO_SendCEATACmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CMD_ATACMD_BB = (uint32_t)NewState;
}
/**
* @brief Checks whether the specified SDIO flag is set or not.
* @param SDIO_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed)
* @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed)
* @arg SDIO_FLAG_CTIMEOUT: Command response timeout
* @arg SDIO_FLAG_DTIMEOUT: Data timeout
* @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error
* @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error
* @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed)
* @arg SDIO_FLAG_CMDSENT: Command sent (no response required)
* @arg SDIO_FLAG_DATAEND: Data end (data counter, SDIDCOUNT, is zero)
* @arg SDIO_FLAG_STBITERR: Start bit not detected on all data signals in wide
* bus mode.
* @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed)
* @arg SDIO_FLAG_CMDACT: Command transfer in progress
* @arg SDIO_FLAG_TXACT: Data transmit in progress
* @arg SDIO_FLAG_RXACT: Data receive in progress
* @arg SDIO_FLAG_TXFIFOHE: Transmit FIFO Half Empty
* @arg SDIO_FLAG_RXFIFOHF: Receive FIFO Half Full
* @arg SDIO_FLAG_TXFIFOF: Transmit FIFO full
* @arg SDIO_FLAG_RXFIFOF: Receive FIFO full
* @arg SDIO_FLAG_TXFIFOE: Transmit FIFO empty
* @arg SDIO_FLAG_RXFIFOE: Receive FIFO empty
* @arg SDIO_FLAG_TXDAVL: Data available in transmit FIFO
* @arg SDIO_FLAG_RXDAVL: Data available in receive FIFO
* @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received
* @arg SDIO_FLAG_CEATAEND: CE-ATA command completion signal received for CMD61
* @retval : The new state of SDIO_FLAG (SET or RESET).
*/
FlagStatus SDIO_GetFlagStatus(uint32_t SDIO_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SDIO_FLAG(SDIO_FLAG));
if ((SDIO->STA & SDIO_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the SDIO's pending flags.
* @param SDIO_FLAG: specifies the flag to clear.
* This parameter can be one or a combination of the following values:
* @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed)
* @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed)
* @arg SDIO_FLAG_CTIMEOUT: Command response timeout
* @arg SDIO_FLAG_DTIMEOUT: Data timeout
* @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error
* @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error
* @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed)
* @arg SDIO_FLAG_CMDSENT: Command sent (no response required)
* @arg SDIO_FLAG_DATAEND: Data end (data counter, SDIDCOUNT, is zero)
* @arg SDIO_FLAG_STBITERR: Start bit not detected on all data signals in wide
* bus mode
* @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed)
* @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received
* @arg SDIO_FLAG_CEATAEND: CE-ATA command completion signal received for CMD61
* @retval : None
*/
void SDIO_ClearFlag(uint32_t SDIO_FLAG)
{
/* Check the parameters */
assert_param(IS_SDIO_CLEAR_FLAG(SDIO_FLAG));
SDIO->ICR = SDIO_FLAG;
}
/**
* @brief Checks whether the specified SDIO interrupt has occurred or not.
* @param SDIO_IT: specifies the SDIO interrupt source to check.
* This parameter can be one of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt
* @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
* bus mode interrupt
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt
* @arg SDIO_IT_RXACT: Data receive in progress interrupt
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
* @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61
* interrupt
* @retval : The new state of SDIO_IT (SET or RESET).
*/
ITStatus SDIO_GetITStatus(uint32_t SDIO_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SDIO_GET_IT(SDIO_IT));
if ((SDIO->STA & SDIO_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the SDIOs interrupt pending bits.
* @param SDIO_IT: specifies the interrupt pending bit to clear.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
* @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt
* @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
* bus mode interrupt
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
* @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61
* @retval : None
*/
void SDIO_ClearITPendingBit(uint32_t SDIO_IT)
{
/* Check the parameters */
assert_param(IS_SDIO_CLEAR_IT(SDIO_IT));
SDIO->ICR = SDIO_IT;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,836 @@
/**
******************************************************************************
* @file stm32f10x_spi.c
* @author MCD Application Team
* @version V3.0.0
* @date 04/06/2009
* @brief This file provides all the SPI firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_spi.h"
#include "stm32f10x_rcc.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup SPI
* @brief SPI driver modules
* @{
*/
/** @defgroup SPI_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Defines
* @{
*/
/* SPI SPE mask */
#define CR1_SPE_Set ((uint16_t)0x0040)
#define CR1_SPE_Reset ((uint16_t)0xFFBF)
/* I2S I2SE mask */
#define I2SCFGR_I2SE_Set ((uint16_t)0x0400)
#define I2SCFGR_I2SE_Reset ((uint16_t)0xFBFF)
/* SPI CRCNext mask */
#define CR1_CRCNext_Set ((uint16_t)0x1000)
/* SPI CRCEN mask */
#define CR1_CRCEN_Set ((uint16_t)0x2000)
#define CR1_CRCEN_Reset ((uint16_t)0xDFFF)
/* SPI SSOE mask */
#define CR2_SSOE_Set ((uint16_t)0x0004)
#define CR2_SSOE_Reset ((uint16_t)0xFFFB)
/* SPI registers Masks */
#define CR1_CLEAR_Mask ((uint16_t)0x3040)
#define I2SCFGR_CLEAR_Mask ((uint16_t)0xF040)
/* SPI or I2S mode selection masks */
#define SPI_Mode_Select ((uint16_t)0xF7FF)
#define I2S_Mode_Select ((uint16_t)0x0800)
/**
* @}
*/
/** @defgroup SPI_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Functions
* @{
*/
/**
* @brief Deinitializes the SPIx peripheral registers to their default
* reset values (Affects also the I2Ss).
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @retval : None
*/
void SPI_I2S_DeInit(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
switch (*(uint32_t*)&SPIx)
{
case SPI1_BASE:
/* Enable SPI1 reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, ENABLE);
/* Release SPI1 from reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, DISABLE);
break;
case SPI2_BASE:
/* Enable SPI2 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, ENABLE);
/* Release SPI2 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, DISABLE);
break;
case SPI3_BASE:
/* Enable SPI3 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, ENABLE);
/* Release SPI3 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, DISABLE);
break;
default:
break;
}
}
/**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the SPI_InitStruct.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
* contains the configuration information for the specified
* SPI peripheral.
* @retval : None
*/
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
{
uint16_t tmpreg = 0;
/* check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Check the SPI parameters */
assert_param(IS_SPI_DIRECTION_MODE(SPI_InitStruct->SPI_Direction));
assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
assert_param(IS_SPI_DATASIZE(SPI_InitStruct->SPI_DataSize));
assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
assert_param(IS_SPI_CRC_POLYNOMIAL(SPI_InitStruct->SPI_CRCPolynomial));
/*---------------------------- SPIx CR1 Configuration ------------------------*/
/* Get the SPIx CR1 value */
tmpreg = SPIx->CR1;
/* Clear BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL and CPHA bits */
tmpreg &= CR1_CLEAR_Mask;
/* Configure SPIx: direction, NSS management, first transmitted bit, BaudRate prescaler
master/salve mode, CPOL and CPHA */
/* Set BIDImode, BIDIOE and RxONLY bits according to SPI_Direction value */
/* Set SSM, SSI and MSTR bits according to SPI_Mode and SPI_NSS values */
/* Set LSBFirst bit according to SPI_FirstBit value */
/* Set BR bits according to SPI_BaudRatePrescaler value */
/* Set CPOL bit according to SPI_CPOL value */
/* Set CPHA bit according to SPI_CPHA value */
tmpreg |= (uint16_t)((uint32_t)SPI_InitStruct->SPI_Direction | SPI_InitStruct->SPI_Mode |
SPI_InitStruct->SPI_DataSize | SPI_InitStruct->SPI_CPOL |
SPI_InitStruct->SPI_CPHA | SPI_InitStruct->SPI_NSS |
SPI_InitStruct->SPI_BaudRatePrescaler | SPI_InitStruct->SPI_FirstBit);
/* Write to SPIx CR1 */
SPIx->CR1 = tmpreg;
/* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
SPIx->I2SCFGR &= SPI_Mode_Select;
/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
/* Write to SPIx CRCPOLY */
SPIx->CRCPR = SPI_InitStruct->SPI_CRCPolynomial;
}
/**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the I2S_InitStruct.
* @param SPIx: where x can be 2 or 3 to select the SPI peripheral
* (configured in I2S mode).
* @param I2S_InitStruct: pointer to an I2S_InitTypeDef structure that
* contains the configuration information for the specified
* SPI peripheral configured in I2S mode.
* @retval : None
*/
void I2S_Init(SPI_TypeDef* SPIx, I2S_InitTypeDef* I2S_InitStruct)
{
uint16_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
uint32_t tmp = 0;
RCC_ClocksTypeDef RCC_Clocks;
/* Check the I2S parameters */
assert_param(IS_SPI_23_PERIPH(SPIx));
assert_param(IS_I2S_MODE(I2S_InitStruct->I2S_Mode));
assert_param(IS_I2S_STANDARD(I2S_InitStruct->I2S_Standard));
assert_param(IS_I2S_DATA_FORMAT(I2S_InitStruct->I2S_DataFormat));
assert_param(IS_I2S_MCLK_OUTPUT(I2S_InitStruct->I2S_MCLKOutput));
assert_param(IS_I2S_AUDIO_FREQ(I2S_InitStruct->I2S_AudioFreq));
assert_param(IS_I2S_CPOL(I2S_InitStruct->I2S_CPOL));
/*----------------------- SPIx I2SCFGR & I2SPR Configuration -----------------*/
/* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
SPIx->I2SCFGR &= I2SCFGR_CLEAR_Mask;
SPIx->I2SPR = 0x0002;
/* Get the I2SCFGR register value */
tmpreg = SPIx->I2SCFGR;
/* If the default value has to be written, reinitialize i2sdiv and i2sodd*/
if(I2S_InitStruct->I2S_AudioFreq == I2S_AudioFreq_Default)
{
i2sodd = (uint16_t)0;
i2sdiv = (uint16_t)2;
}
/* If the requested audio frequency is not the default, compute the prescaler */
else
{
/* Check the frame length (For the Prescaler computing) */
if(I2S_InitStruct->I2S_DataFormat == I2S_DataFormat_16b)
{
/* Packet length is 16 bits */
packetlength = 1;
}
else
{
/* Packet length is 32 bits */
packetlength = 2;
}
/* Get System Clock frequency */
RCC_GetClocksFreq(&RCC_Clocks);
/* Compute the Real divider depending on the MCLK output state with a flaoting point */
if(I2S_InitStruct->I2S_MCLKOutput == I2S_MCLKOutput_Enable)
{
/* MCLK output is enabled */
tmp = (uint16_t)(((10 * RCC_Clocks.SYSCLK_Frequency) / (256 * I2S_InitStruct->I2S_AudioFreq)) + 5);
}
else
{
/* MCLK output is disabled */
tmp = (uint16_t)(((10 * RCC_Clocks.SYSCLK_Frequency) / (32 * packetlength * I2S_InitStruct->I2S_AudioFreq)) + 5);
}
/* Remove the flaoting point */
tmp = tmp/10;
/* Check the parity of the divider */
i2sodd = (uint16_t)(tmp & (uint16_t)0x0001);
/* Compute the i2sdiv prescaler */
i2sdiv = (uint16_t)((tmp - i2sodd) / 2);
/* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
i2sodd = (uint16_t) (i2sodd << 8);
}
/* Test if the divider is 1 or 0 */
if ((i2sdiv < 2) || (i2sdiv > 0xFF))
{
/* Set the default values */
i2sdiv = 2;
i2sodd = 0;
}
/* Write to SPIx I2SPR register the computed value */
SPIx->I2SPR = (uint16_t)(i2sdiv | i2sodd | I2S_InitStruct->I2S_MCLKOutput);
/* Configure the I2S with the SPI_InitStruct values */
tmpreg |= (uint16_t)(I2S_Mode_Select | I2S_InitStruct->I2S_Mode | \
I2S_InitStruct->I2S_Standard | I2S_InitStruct->I2S_DataFormat | \
I2S_InitStruct->I2S_CPOL);
/* Write to SPIx I2SCFGR */
SPIx->I2SCFGR = tmpreg;
}
/**
* @brief Fills each SPI_InitStruct member with its default value.
* @param SPI_InitStruct : pointer to a SPI_InitTypeDef structure
* which will be initialized.
* @retval : None
*/
void SPI_StructInit(SPI_InitTypeDef* SPI_InitStruct)
{
/*--------------- Reset SPI init structure parameters values -----------------*/
/* Initialize the SPI_Direction member */
SPI_InitStruct->SPI_Direction = SPI_Direction_2Lines_FullDuplex;
/* initialize the SPI_Mode member */
SPI_InitStruct->SPI_Mode = SPI_Mode_Slave;
/* initialize the SPI_DataSize member */
SPI_InitStruct->SPI_DataSize = SPI_DataSize_8b;
/* Initialize the SPI_CPOL member */
SPI_InitStruct->SPI_CPOL = SPI_CPOL_Low;
/* Initialize the SPI_CPHA member */
SPI_InitStruct->SPI_CPHA = SPI_CPHA_1Edge;
/* Initialize the SPI_NSS member */
SPI_InitStruct->SPI_NSS = SPI_NSS_Hard;
/* Initialize the SPI_BaudRatePrescaler member */
SPI_InitStruct->SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
/* Initialize the SPI_FirstBit member */
SPI_InitStruct->SPI_FirstBit = SPI_FirstBit_MSB;
/* Initialize the SPI_CRCPolynomial member */
SPI_InitStruct->SPI_CRCPolynomial = 7;
}
/**
* @brief Fills each I2S_InitStruct member with its default value.
* @param I2S_InitStruct : pointer to a I2S_InitTypeDef structure
* which will be initialized.
* @retval : None
*/
void I2S_StructInit(I2S_InitTypeDef* I2S_InitStruct)
{
/*--------------- Reset I2S init structure parameters values -----------------*/
/* Initialize the I2S_Mode member */
I2S_InitStruct->I2S_Mode = I2S_Mode_SlaveTx;
/* Initialize the I2S_Standard member */
I2S_InitStruct->I2S_Standard = I2S_Standard_Phillips;
/* Initialize the I2S_DataFormat member */
I2S_InitStruct->I2S_DataFormat = I2S_DataFormat_16b;
/* Initialize the I2S_MCLKOutput member */
I2S_InitStruct->I2S_MCLKOutput = I2S_MCLKOutput_Disable;
/* Initialize the I2S_AudioFreq member */
I2S_InitStruct->I2S_AudioFreq = I2S_AudioFreq_Default;
/* Initialize the I2S_CPOL member */
I2S_InitStruct->I2S_CPOL = I2S_CPOL_Low;
}
/**
* @brief Enables or disables the specified SPI peripheral.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param NewState: new state of the SPIx peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI peripheral */
SPIx->CR1 |= CR1_SPE_Set;
}
else
{
/* Disable the selected SPI peripheral */
SPIx->CR1 &= CR1_SPE_Reset;
}
}
/**
* @brief Enables or disables the specified SPI peripheral (in I2S mode).
* @param SPIx: where x can be 2 or 3 to select the SPI peripheral.
* @param NewState: new state of the SPIx peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void I2S_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_23_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI peripheral (in I2S mode) */
SPIx->I2SCFGR |= I2SCFGR_I2SE_Set;
}
else
{
/* Disable the selected SPI peripheral (in I2S mode) */
SPIx->I2SCFGR &= I2SCFGR_I2SE_Reset;
}
}
/**
* @brief Enables or disables the specified SPI/I2S interrupts.
* @param SPIx: where x can be :
* 1, 2 or 3 in SPI mode
* 2 or 3 in I2S mode
* @param SPI_I2S_IT: specifies the SPI/I2S interrupt source to be
* enabled or disabled.
* This parameter can be one of the following values:
* @arg SPI_I2S_IT_TXE: Tx buffer empty interrupt mask
* @arg SPI_I2S_IT_RXNE: Rx buffer not empty interrupt mask
* @arg SPI_I2S_IT_ERR: Error interrupt mask
* @param NewState: new state of the specified SPI/I2S interrupt.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_I2S_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT, FunctionalState NewState)
{
uint16_t itpos = 0, itmask = 0 ;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_SPI_I2S_CONFIG_IT(SPI_I2S_IT));
/* Get the SPI/I2S IT index */
itpos = SPI_I2S_IT >> 4;
/* Set the IT mask */
itmask = (uint16_t)((uint16_t)1 << itpos);
if (NewState != DISABLE)
{
/* Enable the selected SPI/I2S interrupt */
SPIx->CR2 |= itmask;
}
else
{
/* Disable the selected SPI/I2S interrupt */
SPIx->CR2 &= (uint16_t)~itmask;
}
}
/**
* @brief Enables or disables the SPIx/I2Sx DMA interface.
* @param SPIx: where x can be :
* 1, 2 or 3 in SPI mode
* 2 or 3 in I2S mode
* @param SPI_I2S_DMAReq: specifies the SPI/I2S DMA transfer request
* to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg SPI_I2S_DMAReq_Tx: Tx buffer DMA transfer request
* @arg SPI_I2S_DMAReq_Rx: Rx buffer DMA transfer request
* @param NewState: new state of the selected SPI/I2S DMA transfer
* request.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_I2S_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_I2S_DMAReq, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_SPI_I2S_DMAREQ(SPI_I2S_DMAReq));
if (NewState != DISABLE)
{
/* Enable the selected SPI/I2S DMA requests */
SPIx->CR2 |= SPI_I2S_DMAReq;
}
else
{
/* Disable the selected SPI/I2S DMA requests */
SPIx->CR2 &= (uint16_t)~SPI_I2S_DMAReq;
}
}
/**
* @brief Transmits a Data through the SPIx/I2Sx peripheral.
* @param SPIx: where x can be :
* 1, 2 or 3 in SPI mode
* 2 or 3 in I2S mode
* @param Data : Data to be transmitted..
* @retval : None
*/
void SPI_I2S_SendData(SPI_TypeDef* SPIx, uint16_t Data)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Write in the DR register the data to be sent */
SPIx->DR = Data;
}
/**
* @brief Returns the most recent received data by the SPIx/I2Sx peripheral.
* @param SPIx: where x can be :
* 1, 2 or 3 in SPI mode
* 2 or 3 in I2S mode
* @retval : The value of the received data.
*/
uint16_t SPI_I2S_ReceiveData(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Return the data in the DR register */
return SPIx->DR;
}
/**
* @brief Configures internally by software the NSS pin for the selected
* SPI.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param SPI_NSSInternalSoft: specifies the SPI NSS internal state.
* This parameter can be one of the following values:
* @arg SPI_NSSInternalSoft_Set: Set NSS pin internally
* @arg SPI_NSSInternalSoft_Reset: Reset NSS pin internally
* @retval : None
*/
void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* SPIx, uint16_t SPI_NSSInternalSoft)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_NSS_INTERNAL(SPI_NSSInternalSoft));
if (SPI_NSSInternalSoft != SPI_NSSInternalSoft_Reset)
{
/* Set NSS pin internally by software */
SPIx->CR1 |= SPI_NSSInternalSoft_Set;
}
else
{
/* Reset NSS pin internally by software */
SPIx->CR1 &= SPI_NSSInternalSoft_Reset;
}
}
/**
* @brief Enables or disables the SS output for the selected SPI.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param NewState: new state of the SPIx SS output.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_SSOutputCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI SS output */
SPIx->CR2 |= CR2_SSOE_Set;
}
else
{
/* Disable the selected SPI SS output */
SPIx->CR2 &= CR2_SSOE_Reset;
}
}
/**
* @brief Configures the data size for the selected SPI.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param SPI_DataSize: specifies the SPI data size.
* This parameter can be one of the following values:
* @arg SPI_DataSize_16b: Set data frame format to 16bit
* @arg SPI_DataSize_8b: Set data frame format to 8bit
* @retval : None
*/
void SPI_DataSizeConfig(SPI_TypeDef* SPIx, uint16_t SPI_DataSize)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DATASIZE(SPI_DataSize));
/* Clear DFF bit */
SPIx->CR1 &= (uint16_t)~SPI_DataSize_16b;
/* Set new DFF bit value */
SPIx->CR1 |= SPI_DataSize;
}
/**
* @brief Transmit the SPIx CRC value.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @retval : None
*/
void SPI_TransmitCRC(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Enable the selected SPI CRC transmission */
SPIx->CR1 |= CR1_CRCNext_Set;
}
/**
* @brief Enables or disables the CRC value calculation of the
* transfered bytes.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param NewState: new state of the SPIx CRC value calculation.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_CalculateCRC(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI CRC calculation */
SPIx->CR1 |= CR1_CRCEN_Set;
}
else
{
/* Disable the selected SPI CRC calculation */
SPIx->CR1 &= CR1_CRCEN_Reset;
}
}
/**
* @brief Returns the transmit or the receive CRC register value for
* the specified SPI.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param SPI_CRC: specifies the CRC register to be read.
* This parameter can be one of the following values:
* @arg SPI_CRC_Tx: Selects Tx CRC register
* @arg SPI_CRC_Rx: Selects Rx CRC register
* @retval : The selected CRC register value..
*/
uint16_t SPI_GetCRC(SPI_TypeDef* SPIx, uint8_t SPI_CRC)
{
uint16_t crcreg = 0;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_CRC(SPI_CRC));
if (SPI_CRC != SPI_CRC_Rx)
{
/* Get the Tx CRC register */
crcreg = SPIx->TXCRCR;
}
else
{
/* Get the Rx CRC register */
crcreg = SPIx->RXCRCR;
}
/* Return the selected CRC register */
return crcreg;
}
/**
* @brief Returns the CRC Polynomial register value for the specified SPI.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @retval : The CRC Polynomial register value.
*/
uint16_t SPI_GetCRCPolynomial(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Return the CRC polynomial register */
return SPIx->CRCPR;
}
/**
* @brief Selects the data transfer direction in bi-directional mode
* for the specified SPI.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param SPI_Direction: specifies the data transfer direction in
* bi-directional mode.
* This parameter can be one of the following values:
* @arg SPI_Direction_Tx: Selects Tx transmission direction
* @arg SPI_Direction_Rx: Selects Rx receive direction
* @retval : None
*/
void SPI_BiDirectionalLineConfig(SPI_TypeDef* SPIx, uint16_t SPI_Direction)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DIRECTION(SPI_Direction));
if (SPI_Direction == SPI_Direction_Tx)
{
/* Set the Tx only mode */
SPIx->CR1 |= SPI_Direction_Tx;
}
else
{
/* Set the Rx only mode */
SPIx->CR1 &= SPI_Direction_Rx;
}
}
/**
* @brief Checks whether the specified SPI/I2S flag is set or not.
* @param SPIx: where x can be :
* 1, 2 or 3 in SPI mode
* 2 or 3 in I2S mode
* @param SPI_I2S_FLAG: specifies the SPI/I2S flag to check.
* This parameter can be one of the following values:
* @arg SPI_I2S_FLAG_TXE: Transmit buffer empty flag.
* @arg SPI_I2S_FLAG_RXNE: Receive buffer not empty flag.
* @arg SPI_I2S_FLAG_BSY: Busy flag.
* @arg SPI_I2S_FLAG_OVR: Overrun flag.
* @arg SPI_FLAG_MODF: Mode Fault flag.
* @arg SPI_FLAG_CRCERR: CRC Error flag.
* @arg I2S_FLAG_UDR: Underrun Error flag.
* @arg I2S_FLAG_CHSIDE: Channel Side flag.
* @retval : The new state of SPI_I2S_FLAG (SET or RESET).
*/
FlagStatus SPI_I2S_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_I2S_GET_FLAG(SPI_I2S_FLAG));
/* Check the status of the specified SPI/I2S flag */
if ((SPIx->SR & SPI_I2S_FLAG) != (uint16_t)RESET)
{
/* SPI_I2S_FLAG is set */
bitstatus = SET;
}
else
{
/* SPI_I2S_FLAG is reset */
bitstatus = RESET;
}
/* Return the SPI_I2S_FLAG status */
return bitstatus;
}
/**
* @brief Clears the SPIx CRC Error (CRCERR) flag.
* @param SPIx: where x can be :
* 1, 2 or 3 in SPI mode
* @param SPI_I2S_FLAG: specifies the SPI flag to clear.
* This function clears only CRCERR flag.
* @note
* - OVR (OverRun error) flag is cleared by software sequence: a read
* operation to SPI_DR register (SPI_I2S_ReceiveData()) followed by a read
* operation to SPI_SR register (SPI_I2S_GetFlagStatus()).
* - UDR (UnderRun error) flag is cleared by a read operation to
* SPI_SR register (SPI_I2S_GetFlagStatus()).
* - MODF (Mode Fault) flag is cleared by software sequence: a read/write
* operation to SPI_SR register (SPI_I2S_GetFlagStatus()) followed by a
* write operation to SPI_CR1 register (SPI_Cmd() to enable the SPI).
* @retval : None
*/
void SPI_I2S_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_I2S_CLEAR_FLAG(SPI_I2S_FLAG));
/* Clear the selected SPI CRC Error (CRCERR) flag */
SPIx->SR = (uint16_t)~SPI_I2S_FLAG;
}
/**
* @brief Checks whether the specified SPI/I2S interrupt has occurred or not.
* @param SPIx: where x can be :
* 1, 2 or 3 in SPI mode
* 2 or 3 in I2S mode
* @param SPI_I2S_IT: specifies the SPI/I2S interrupt source to check.
* This parameter can be one of the following values:
* @arg SPI_I2S_IT_TXE: Transmit buffer empty interrupt.
* @arg SPI_I2S_IT_RXNE: Receive buffer not empty interrupt.
* @arg SPI_I2S_IT_OVR: Overrun interrupt.
* @arg SPI_IT_MODF: Mode Fault interrupt.
* @arg SPI_IT_CRCERR: CRC Error interrupt.
* @arg I2S_IT_UDR: Underrun Error interrupt.
* @retval : The new state of SPI_I2S_IT (SET or RESET).
*/
ITStatus SPI_I2S_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT)
{
ITStatus bitstatus = RESET;
uint16_t itpos = 0, itmask = 0, enablestatus = 0;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_I2S_GET_IT(SPI_I2S_IT));
/* Get the SPI/I2S IT index */
itpos = (uint16_t)((uint16_t)0x01 << (SPI_I2S_IT & (uint8_t)0x0F));
/* Get the SPI/I2S IT mask */
itmask = SPI_I2S_IT >> 4;
/* Set the IT mask */
itmask = (uint16_t)((uint16_t)0x01 << itmask);
/* Get the SPI_I2S_IT enable bit status */
enablestatus = (SPIx->CR2 & itmask) ;
/* Check the status of the specified SPI/I2S interrupt */
if (((SPIx->SR & itpos) != (uint16_t)RESET) && enablestatus)
{
/* SPI_I2S_IT is set */
bitstatus = SET;
}
else
{
/* SPI_I2S_IT is reset */
bitstatus = RESET;
}
/* Return the SPI_I2S_IT status */
return bitstatus;
}
/**
* @brief Clears the SPIx CRC Error (CRCERR) interrupt pending bit.
* @param SPIx: where x can be :
* 1, 2 or 3 in SPI mode
* @param SPI_I2S_IT: specifies the SPI interrupt pending bit to clear.
* This function clears only CRCERR intetrrupt pending bit.
* @note
* - OVR (OverRun Error) interrupt pending bit is cleared by software
* sequence: a read operation to SPI_DR register (SPI_I2S_ReceiveData())
* followed by a read operation to SPI_SR register (SPI_I2S_GetITStatus()).
* - UDR (UnderRun Error) interrupt pending bit is cleared by a read
* operation to SPI_SR register (SPI_I2S_GetITStatus()).
* - MODF (Mode Fault) interrupt pending bit is cleared by software sequence:
* a read/write operation to SPI_SR register (SPI_I2S_GetITStatus())
* followed by a write operation to SPI_CR1 register (SPI_Cmd() to enable
* the SPI).
* @retval : None
*/
void SPI_I2S_ClearITPendingBit(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT)
{
uint16_t itpos = 0;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_I2S_CLEAR_IT(SPI_I2S_IT));
/* Get the SPI IT index */
itpos = (uint16_t)((uint16_t)0x01 << (SPI_I2S_IT & (uint8_t)0x0F));
/* Clear the selected SPI CRC Error (CRCERR) interrupt pending bit */
SPIx->SR = (uint16_t)~itpos;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,195 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_systick.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the SysTick firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_systick.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ---------------------- SysTick registers bit mask -------------------- */
/* CTRL TICKINT Mask */
#define CTRL_TICKINT_Set ((u32)0x00000002)
#define CTRL_TICKINT_Reset ((u32)0xFFFFFFFD)
/* SysTick Flag Mask */
#define FLAG_Mask ((u8)0x1F)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : SysTick_CLKSourceConfig
* Description : Configures the SysTick clock source.
* Input : - SysTick_CLKSource: specifies the SysTick clock source.
* This parameter can be one of the following values:
* - SysTick_CLKSource_HCLK_Div8: AHB clock divided by 8
* selected as SysTick clock source.
* - SysTick_CLKSource_HCLK: AHB clock selected as
* SysTick clock source.
* Output : None
* Return : None
*******************************************************************************/
void SysTick_CLKSourceConfig(u32 SysTick_CLKSource)
{
/* Check the parameters */
assert(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));
if (SysTick_CLKSource == SysTick_CLKSource_HCLK)
{
SysTick->CTRL |= SysTick_CLKSource_HCLK;
}
else
{
SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;
}
}
/*******************************************************************************
* Function Name : SysTick_SetReload
* Description : Sets SysTick Reload value.
* Input : - Reload: SysTick Reload new value.
* This parameter must be a number between 1 and 0xFFFFFF.
* Output : None
* Return : None
*******************************************************************************/
void SysTick_SetReload(u32 Reload)
{
/* Check the parameters */
assert(IS_SYSTICK_RELOAD(Reload));
SysTick->LOAD = Reload;
}
/*******************************************************************************
* Function Name : SysTick_CounterCmd
* Description : Enables or disables the SysTick counter.
* Input : - SysTick_Counter: new state of the SysTick counter.
* This parameter can be one of the following values:
* - SysTick_Counter_Disable: Disable counter
* - SysTick_Counter_Enable: Enable counter
* - SysTick_Counter_Clear: Clear counter value to 0
* Output : None
* Return : None
*******************************************************************************/
void SysTick_CounterCmd(u32 SysTick_Counter)
{
/* Check the parameters */
assert(IS_SYSTICK_COUNTER(SysTick_Counter));
if (SysTick_Counter == SysTick_Counter_Clear)
{
SysTick->VAL = SysTick_Counter_Clear;
}
else
{
if (SysTick_Counter == SysTick_Counter_Enable)
{
SysTick->CTRL |= SysTick_Counter_Enable;
}
else
{
SysTick->CTRL &= SysTick_Counter_Disable;
}
}
}
/*******************************************************************************
* Function Name : SysTick_ITConfig
* Description : Enables or disables the SysTick Interrupt.
* Input : - NewState: new state of the SysTick Interrupt.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void SysTick_ITConfig(FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
SysTick->CTRL |= CTRL_TICKINT_Set;
}
else
{
SysTick->CTRL &= CTRL_TICKINT_Reset;
}
}
/*******************************************************************************
* Function Name : SysTick_GetCounter
* Description : Gets SysTick counter value.
* Input : None
* Output : None
* Return : SysTick current value
*******************************************************************************/
u32 SysTick_GetCounter(void)
{
return(SysTick->VAL);
}
/*******************************************************************************
* Function Name : SysTick_GetFlagStatus
* Description : Checks whether the specified SysTick flag is set or not.
* Input : - SysTick_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* - SysTick_FLAG_COUNT
* - SysTick_FLAG_SKEW
* - SysTick_FLAG_NOREF
* Output : None
* Return : None
*******************************************************************************/
FlagStatus SysTick_GetFlagStatus(u8 SysTick_FLAG)
{
u32 tmp = 0;
u32 statusreg = 0;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_SYSTICK_FLAG(SysTick_FLAG));
/* Get the SysTick register index */
tmp = SysTick_FLAG >> 5;
if (tmp == 1) /* The flag to check is in CTRL register */
{
statusreg = SysTick->CTRL;
}
else /* The flag to check is in CALIB register */
{
statusreg = SysTick->CALIB;
}
/* Get the flag position */
tmp = SysTick_FLAG & FLAG_Mask;
if ((statusreg & ((u32)1 << tmp)) != (u32)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,852 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_usart.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the USART firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_usart.h"
#include "stm32f10x_rcc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* USART RUN Mask */
#define CR1_RUN_Set ((u16)0x2000) /* USART Enable Mask */
#define CR1_RUN_Reset ((u16)0xDFFF) /* USART Disable Mask */
#define CR2_Address_Mask ((u16)0xFFF0) /* USART address Mask */
/* USART RWU Mask */
#define CR1_RWU_Set ((u16)0x0002) /* USART mute mode Enable Mask */
#define CR1_RWU_Reset ((u16)0xFFFD) /* USART mute mode Enable Mask */
#define USART_IT_Mask ((u16)0x001F) /* USART Interrupt Mask */
/* USART LIN Mask */
#define CR2_LINE_Set ((u16)0x4000) /* USART LIN Enable Mask */
#define CR2_LINE_Reset ((u16)0xBFFF) /* USART LIN Disable Mask */
#define CR1_SBK_Set ((u16)0x0001) /* USART Break Character send Mask */
/* USART SC Mask */
#define CR3_SCEN_Set ((u16)0x0020) /* USART SC Enable Mask */
#define CR3_SCEN_Reset ((u16)0xFFDF) /* USART SC Disable Mask */
/* USART SC NACK Mask */
#define CR3_NACK_Set ((u16)0x0010) /* USART SC NACK Enable Mask */
#define CR3_NACK_Reset ((u16)0xFFEF) /* USART SC NACK Disable Mask */
/* USART Half-Duplex Mask */
#define CR3_HDSEL_Set ((u16)0x0008) /* USART Half-Duplex Enable Mask */
#define CR3_HDSEL_Reset ((u16)0xFFF7) /* USART Half-Duplex Disable Mask */
/* USART IrDA Mask */
#define CR3_IRLP_Mask ((u16)0xFFFB) /* USART IrDA LowPower mode Mask */
/* USART LIN Break detection */
#define CR3_LBDL_Mask ((u16)0xFFDF) /* USART LIN Break detection Mask */
/* USART WakeUp Method */
#define CR3_WAKE_Mask ((u16)0xF7FF) /* USART WakeUp Method Mask */
/* USART IrDA Mask */
#define CR3_IREN_Set ((u16)0x0002) /* USART IrDA Enable Mask */
#define CR3_IREN_Reset ((u16)0xFFFD) /* USART IrDA Disable Mask */
#define GTPR_LSB_Mask ((u16)0x00FF) /* Guard Time Register LSB Mask */
#define GTPR_MSB_Mask ((u16)0xFF00) /* Guard Time Register MSB Mask */
#define CR1_CLEAR_Mask ((u16)0xE9F3) /* USART CR1 Mask */
#define CR2_CLEAR_Mask ((u16)0xC0FF) /* USART CR2 Mask */
#define CR3_CLEAR_Mask ((u16)0xFCFF) /* USART CR3 Mask */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : USART_DeInit
* Description : Deinitializes the USARTx peripheral registers to their
* default reset values.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* Output : None
* Return : None
*******************************************************************************/
void USART_DeInit(USART_TypeDef* USARTx)
{
switch (*(u32*)&USARTx)
{
case USART1_BASE:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, DISABLE);
break;
case USART2_BASE:
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, DISABLE);
break;
case USART3_BASE:
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, DISABLE);
break;
default:
break;
}
}
/*******************************************************************************
* Function Name : USART_Init
* Description : Initializes the USARTx peripheral according to the specified
* parameters in the USART_InitStruct .
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART peripheral.
* - USART_InitStruct: pointer to a USART_InitTypeDef structure
* that contains the configuration information for the
* specified USART peripheral.
* Output : None
* Return : None
*******************************************************************************/
void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct)
{
u32 tmpreg = 0x00, apbclock = 0x00;
u32 integerdivider = 0x00;
u32 fractionaldivider = 0x00;
RCC_ClocksTypeDef RCC_ClocksStatus;
/* Check the parameters */
assert(IS_USART_WORD_LENGTH(USART_InitStruct->USART_WordLength));
assert(IS_USART_STOPBITS(USART_InitStruct->USART_StopBits));
assert(IS_USART_PARITY(USART_InitStruct->USART_Parity));
assert(IS_USART_HARDWARE_FLOW_CONTROL(USART_InitStruct->USART_HardwareFlowControl));
assert(IS_USART_MODE(USART_InitStruct->USART_Mode));
assert(IS_USART_CLOCK(USART_InitStruct->USART_Clock));
assert(IS_USART_CPOL(USART_InitStruct->USART_CPOL));
assert(IS_USART_CPHA(USART_InitStruct->USART_CPHA));
assert(IS_USART_LASTBIT(USART_InitStruct->USART_LastBit));
/*---------------------------- USART CR2 Configuration -----------------------*/
tmpreg = USARTx->CR2;
/* Clear STOP[13:12], CLKEN, CPOL, CPHA and LBCL bits */
tmpreg &= CR2_CLEAR_Mask;
/* Configure the USART Stop Bits, Clock, CPOL, CPHA and LastBit ------------*/
/* Set STOP[13:12] bits according to USART_Mode value */
/* Set CPOL bit according to USART_CPOL value */
/* Set CPHA bit according to USART_CPHA value */
/* Set LBCL bit according to USART_LastBit value */
tmpreg |= (u32)USART_InitStruct->USART_StopBits | USART_InitStruct->USART_Clock |
USART_InitStruct->USART_CPOL | USART_InitStruct->USART_CPHA |
USART_InitStruct->USART_LastBit;
/* Write to USART CR2 */
USARTx->CR2 = (u16)tmpreg;
/*---------------------------- USART CR1 Configuration -----------------------*/
tmpreg = 0x00;
tmpreg = USARTx->CR1;
/* Clear M, PCE, PS, TE and RE bits */
tmpreg &= CR1_CLEAR_Mask;
/* Configure the USART Word Length, Parity and mode ----------------------- */
/* Set the M bits according to USART_WordLength value */
/* Set PCE and PS bits according to USART_Parity value */
/* Set TE and RE bits according to USART_Mode value */
tmpreg |= (u32)USART_InitStruct->USART_WordLength | USART_InitStruct->USART_Parity |
USART_InitStruct->USART_Mode;
/* Write to USART CR1 */
USARTx->CR1 = (u16)tmpreg;
/*---------------------------- USART CR3 Configuration -----------------------*/
tmpreg = 0x00;
tmpreg = USARTx->CR3;
/* Clear CTSE and RTSE bits */
tmpreg &= CR3_CLEAR_Mask;
/* Configure the USART HFC -------------------------------------------------*/
/* Set CTSE and RTSE bits according to USART_HardwareFlowControl value */
tmpreg |= USART_InitStruct->USART_HardwareFlowControl;
/* Write to USART CR3 */
USARTx->CR3 = (u16)tmpreg;
/*---------------------------- USART BRR Configuration -----------------------*/
tmpreg = 0x00;
/* Configure the USART Baud Rate -------------------------------------------*/
RCC_GetClocksFreq(&RCC_ClocksStatus);
if ((*(u32*)&USARTx) == USART1_BASE)
{
apbclock = RCC_ClocksStatus.PCLK2_Frequency;
}
else
{
apbclock = RCC_ClocksStatus.PCLK1_Frequency;
}
/* Determine the integer part */
integerdivider = ((0x19 * apbclock) / (0x04 * (USART_InitStruct->USART_BaudRate)));
tmpreg = (integerdivider / 0x64) << 0x04;
/* Determine the fractional part */
fractionaldivider = integerdivider - (0x64 * (tmpreg >> 0x04));
tmpreg |= ((((fractionaldivider * 0x10) + 0x32) / 0x64)) & ((u8)0x0F);
/* Write to USART BRR */
USARTx->BRR = (u16)tmpreg;
}
/*******************************************************************************
* Function Name : USART_StructInit
* Description : Fills each USART_InitStruct member with its default value.
* Input : - USART_InitStruct: pointer to a USART_InitTypeDef structure
* which will be initialized.
* Output : None
* Return : None
*******************************************************************************/
void USART_StructInit(USART_InitTypeDef* USART_InitStruct)
{
/* USART_InitStruct members default value */
USART_InitStruct->USART_BaudRate = 0x2580; /* 9600 Baud */
USART_InitStruct->USART_WordLength = USART_WordLength_8b;
USART_InitStruct->USART_StopBits = USART_StopBits_1;
USART_InitStruct->USART_Parity = USART_Parity_No ;
USART_InitStruct->USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStruct->USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_InitStruct->USART_Clock = USART_Clock_Disable;
USART_InitStruct->USART_CPOL = USART_CPOL_Low;
USART_InitStruct->USART_CPHA = USART_CPHA_1Edge;
USART_InitStruct->USART_LastBit = USART_LastBit_Disable;
}
/*******************************************************************************
* Function Name : USART_Cmd
* Description : Enables or disables the specified USART peripheral.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* : - NewState: new state of the USARTx peripheral.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected USART by setting the RUN bit in the CR1 register */
USARTx->CR1 |= CR1_RUN_Set;
}
else
{
/* Disable the selected USART by clearing the RUN bit in the CR1 register */
USARTx->CR1 &= CR1_RUN_Reset;
}
}
/*******************************************************************************
* Function Name : USART_ITConfig
* Description : Enables or disables the specified USART interrupts.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_IT: specifies the USART interrupt sources to be
* enabled or disabled.
* This parameter can be one of the following values:
* - USART_IT_PE
* - USART_IT_TXE
* - USART_IT_TC
* - USART_IT_RXNE
* - USART_IT_IDLE
* - USART_IT_LBD
* - USART_IT_CTS
* - USART_IT_ERR
* - NewState: new state of the specified USARTx interrupts.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_ITConfig(USART_TypeDef* USARTx, u16 USART_IT, FunctionalState NewState)
{
u32 usartreg = 0x00, itpos = 0x00, itmask = 0x00;
u32 address = 0x00;
/* Check the parameters */
assert(IS_USART_CONFIG_IT(USART_IT));
assert(IS_FUNCTIONAL_STATE(NewState));
/* Get the USART register index */
usartreg = (((u8)USART_IT) >> 0x05);
/* Get the interrupt position */
itpos = USART_IT & USART_IT_Mask;
itmask = (((u32)0x01) << itpos);
address = *(u32*)&(USARTx);
if (usartreg == 0x01) /* The IT is in CR1 register */
{
address += 0x0C;
}
else if (usartreg == 0x02) /* The IT is in CR2 register */
{
address += 0x10;
}
else /* The IT is in CR3 register */
{
address += 0x14;
}
if (NewState != DISABLE)
{
*(u32*)address |= itmask;
}
else
{
*(u32*)address &= ~itmask;
}
}
/*******************************************************************************
* Function Name : USART_DMACmd
* Description : Enables or disables the USARTs DMA interface.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_DMAReq: specifies the DMA request.
* This parameter can be any combination of the following values:
* - USART_DMAReq_Tx
* - USART_DMAReq_Rx
* - NewState: new state of the DMA Request sources.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_DMACmd(USART_TypeDef* USARTx, u16 USART_DMAReq, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_USART_DMAREQ(USART_DMAReq));
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the DMA transfer for selected requests by setting the DMAT and/or
DMAR bits in the USART CR3 register */
USARTx->CR3 |= USART_DMAReq;
}
else
{
/* Disable the DMA transfer for selected requests by clearing the DMAT and/or
DMAR bits in the USART CR3 register */
USARTx->CR3 &= (u16)~USART_DMAReq;
}
}
/*******************************************************************************
* Function Name : USART_SetAddress
* Description : Sets the address of the USART node.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_Address: Indicates the address of the USART node.
* Output : None
* Return : None
*******************************************************************************/
void USART_SetAddress(USART_TypeDef* USARTx, u8 USART_Address)
{
/* Check the parameters */
assert(IS_USART_ADDRESS(USART_Address));
/* Clear the USART address */
USARTx->CR2 &= CR2_Address_Mask;
/* Set the USART address node */
USARTx->CR2 |= USART_Address;
}
/*******************************************************************************
* Function Name : USART_WakeUpConfig
* Description : Selects the USART WakeUp method.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_WakeUp: specifies the USART wakeup method.
* This parameter can be one of the following values:
* - USART_WakeUp_IdleLine
* - USART_WakeUp_AddressMark
* Output : None
* Return : None
*******************************************************************************/
void USART_WakeUpConfig(USART_TypeDef* USARTx, u16 USART_WakeUp)
{
/* Check the parameters */
assert(IS_USART_WAKEUP(USART_WakeUp));
USARTx->CR1 &= CR3_WAKE_Mask;
USARTx->CR1 |= USART_WakeUp;
}
/*******************************************************************************
* Function Name : USART_ReceiverWakeUpCmd
* Description : Determines if the USART is in mute mode or not.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - NewState: new state of the USART mode.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_ReceiverWakeUpCmd(USART_TypeDef* USARTx, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the mute mode USART by setting the RWU bit in the CR1 register */
USARTx->CR1 |= CR1_RWU_Set;
}
else
{
/* Disable the mute mode USART by clearing the RWU bit in the CR1 register */
USARTx->CR1 &= CR1_RWU_Reset;
}
}
/*******************************************************************************
* Function Name : USART_LINBreakDetectLengthConfig
* Description : Sets the USART LIN Break detection length.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_LINBreakDetectLength: specifies the LIN break
* detection length.
* This parameter can be one of the following values:
* - USART_LINBreakDetectLength_10b
* - USART_LINBreakDetectLength_11b
* Output : None
* Return : None
*******************************************************************************/
void USART_LINBreakDetectLengthConfig(USART_TypeDef* USARTx, u16 USART_LINBreakDetectLength)
{
/* Check the parameters */
assert(IS_USART_LIN_BREAK_DETECT_LENGTH(USART_LINBreakDetectLength));
USARTx->CR2 &= CR3_LBDL_Mask;
USARTx->CR2 |= USART_LINBreakDetectLength;
}
/*******************************************************************************
* Function Name : USART_LINCmd
* Description : Enables or disables the USARTs LIN mode.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - NewState: new state of the USART LIN mode.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_LINCmd(USART_TypeDef* USARTx, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the LIN mode by setting the LINE bit in the CR2 register */
USARTx->CR2 |= CR2_LINE_Set;
}
else
{
/* Disable the LIN mode by clearing the LINE bit in the CR2 register */
USARTx->CR2 &= CR2_LINE_Reset;
}
}
/*******************************************************************************
* Function Name : USART_SendData
* Description : Transmits signle data through the USARTx peripheral.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - Data: the data to transmit.
* Output : None
* Return : None
*******************************************************************************/
void USART_SendData(USART_TypeDef* USARTx, u16 Data)
{
/* Check the parameters */
assert(IS_USART_DATA(Data));
/* Transmit Data */
USARTx->DR = (Data & (u16)0x01FF);
}
/*******************************************************************************
* Function Name : USART_ReceiveData
* Description : Returns the most recent received data by the USARTx peripheral.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* Output : None
* Return : The received data.
*******************************************************************************/
u16 USART_ReceiveData(USART_TypeDef* USARTx)
{
/* Receive Data */
return (u16)(USARTx->DR & (u16)0x01FF);
}
/*******************************************************************************
* Function Name : USART_SendBreak
* Description : Transmits break characters.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* Output : None
* Return : None
*******************************************************************************/
void USART_SendBreak(USART_TypeDef* USARTx)
{
/* Send break characters */
USARTx->CR1 |= CR1_SBK_Set;
}
/*******************************************************************************
* Function Name : USART_SetGuardTime
* Description : Sets the specified USART guard time.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_GuardTime: specifies the guard time.
* Output : None
* Return : None
*******************************************************************************/
void USART_SetGuardTime(USART_TypeDef* USARTx, u8 USART_GuardTime)
{
/* Clear the USART Guard time */
USARTx->GTPR &= GTPR_LSB_Mask;
/* Set the USART guard time */
USARTx->GTPR |= (u16)((u16)USART_GuardTime << 0x08);
}
/*******************************************************************************
* Function Name : USART_SetPrescaler
* Description : Sets the system clock prescaler.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_Prescaler: specifies the prescaler clock.
* Output : None
* Return : None
*******************************************************************************/
void USART_SetPrescaler(USART_TypeDef* USARTx, u8 USART_Prescaler)
{
/* Clear the USART prescaler */
USARTx->GTPR &= GTPR_MSB_Mask;
/* Set the USART prescaler */
USARTx->GTPR |= USART_Prescaler;
}
/*******************************************************************************
* Function Name : USART_SmartCardCmd
* Description : Enables or disables the USARTs Smart Card mode.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - NewState: new state of the Smart Card mode.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_SmartCardCmd(USART_TypeDef* USARTx, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the SC mode by setting the SCEN bit in the CR3 register */
USARTx->CR3 |= CR3_SCEN_Set;
}
else
{
/* Disable the SC mode by clearing the SCEN bit in the CR3 register */
USARTx->CR3 &= CR3_SCEN_Reset;
}
}
/*******************************************************************************
* Function Name : USART_SmartCardNACKCmd
* Description : Enables or disables NACK transmission.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - NewState: new state of the NACK transmission.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_SmartCardNACKCmd(USART_TypeDef* USARTx, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the NACK transmission by setting the NACK bit in the CR3 register */
USARTx->CR3 |= CR3_NACK_Set;
}
else
{
/* Disable the NACK transmission by clearing the NACK bit in the CR3 register */
USARTx->CR3 &= CR3_NACK_Reset;
}
}
/*******************************************************************************
* Function Name : USART_HalfDuplexCmd
* Description : Enables or disables the USARTs Half Duplex communication.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - NewState: new state of the USART Communication.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_HalfDuplexCmd(USART_TypeDef* USARTx, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
USARTx->CR3 |= CR3_HDSEL_Set;
}
else
{
/* Disable the Half-Duplex mode by clearing the HDSEL bit in the CR3 register */
USARTx->CR3 &= CR3_HDSEL_Reset;
}
}
/*******************************************************************************
* Function Name : USART_IrDAConfig
* Description : Configures the USARTs IrDA interface.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_IrDAMode: specifies the IrDA mode.
* This parameter can be one of the following values:
* - USART_IrDAMode_LowPower
* - USART_IrDAMode_Normal
* Output : None
* Return : None
*******************************************************************************/
void USART_IrDAConfig(USART_TypeDef* USARTx, u16 USART_IrDAMode)
{
/* Check the parameters */
assert(IS_USART_IRDA_MODE(USART_IrDAMode));
USARTx->CR3 &= CR3_IRLP_Mask;
USARTx->CR3 |= USART_IrDAMode;
}
/*******************************************************************************
* Function Name : USART_IrDACmd
* Description : Enables or disables the USARTs IrDA interface.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - NewState: new state of the IrDA mode.
* This parameter can be: ENABLE or DISABLE.
* Output : None
* Return : None
*******************************************************************************/
void USART_IrDACmd(USART_TypeDef* USARTx, FunctionalState NewState)
{
/* Check the parameters */
assert(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the IrDA mode by setting the IREN bit in the CR3 register */
USARTx->CR3 |= CR3_IREN_Set;
}
else
{
/* Disable the IrDA mode by clearing the IREN bit in the CR3 register */
USARTx->CR3 &= CR3_IREN_Reset;
}
}
/*******************************************************************************
* Function Name : USART_GetFlagStatus
* Description : Checks whether the specified USART flag is set or not.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* - USART_FLAG_CTS
* - USART_FLAG_LBD
* - USART_FLAG_TXE
* - USART_FLAG_TC
* - USART_FLAG_RXNE
* - USART_FLAG_IDLE
* - USART_FLAG_ORE
* - USART_FLAG_NE
* - USART_FLAG_FE
* - USART_FLAG_PE
* Output : None
* Return : The new state of USART_FLAG (SET or RESET).
*******************************************************************************/
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, u16 USART_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_USART_FLAG(USART_FLAG));
if ((USARTx->SR & USART_FLAG) != (u16)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : USART_ClearFlag
* Description : Clears the USARTx's pending flags.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_FLAG: specifies the flag to clear.
* This parameter can be any combination of the following values:
* - USART_FLAG_CTS
* - USART_FLAG_LBD
* - USART_FLAG_TXE
* - USART_FLAG_TC
* - USART_FLAG_RXNE
* - USART_FLAG_IDLE
* - USART_FLAG_ORE
* - USART_FLAG_NE
* - USART_FLAG_FE
* - USART_FLAG_PE
* Output : None
* Return : None
*******************************************************************************/
void USART_ClearFlag(USART_TypeDef* USARTx, u16 USART_FLAG)
{
/* Check the parameters */
assert(IS_USART_CLEAR_FLAG(USART_FLAG));
USARTx->SR &= (u16)~USART_FLAG;
}
/*******************************************************************************
* Function Name : USART_GetITStatus
* Description : Checks whether the specified USART interrupt has occurred or not.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_IT: specifies the USART interrupt source to check.
* This parameter can be one of the following values:
* - USART_IT_PE
* - USART_IT_TXE
* - USART_IT_TC
* - USART_IT_RXNE
* - USART_IT_IDLE
* - USART_IT_LBD
* - USART_IT_CTS
* - USART_IT_ORE
* - USART_IT_NE
* - USART_IT_FE
* Output : None
* Return : The new state of USART_IT (SET or RESET).
*******************************************************************************/
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, u16 USART_IT)
{
u32 bitpos = 0x00, itmask = 0x00, usartreg = 0;
ITStatus bitstatus = RESET;
/* Check the parameters */
assert(IS_USART_IT(USART_IT));
/* Get the USART register index */
usartreg = (((u8)USART_IT) >> 0x05);
/* Get the interrupt position */
itmask = USART_IT & USART_IT_Mask;
itmask = (u32)0x01 << itmask;
if (usartreg == 0x01) /* The IT is in CR1 register */
{
itmask &= USARTx->CR1;
}
else if (usartreg == 0x02) /* The IT is in CR2 register */
{
itmask &= USARTx->CR2;
}
else /* The IT is in CR3 register */
{
itmask &= USARTx->CR3;
}
bitpos = USART_IT >> 0x08;
bitpos = (u32)0x01 << bitpos;
bitpos &= USARTx->SR;
if ((itmask != (u16)RESET)&&(bitpos != (u16)RESET))
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/*******************************************************************************
* Function Name : USART_ClearITPendingBit
* Description : Clears the USARTxs interrupt pending bits.
* Input : - USARTx: where x can be 1, 2 or 3 to select the USART
* peripheral.
* - USART_IT: specifies the interrupt pending bit to clear.
* This parameter can be one of the following values:
* - USART_IT_PE
* - USART_IT_TXE
* - USART_IT_TC
* - USART_IT_RXNE
* - USART_IT_IDLE
* - USART_IT_LBD
* - USART_IT_CTS
* - USART_IT_ORE
* - USART_IT_NE
* - USART_IT_FE
* Output : None
* Return : None
*******************************************************************************/
void USART_ClearITPendingBit(USART_TypeDef* USARTx, u16 USART_IT)
{
u32 bitpos = 0x00, itmask = 0x00;
/* Check the parameters */
assert(IS_USART_IT(USART_IT));
bitpos = USART_IT >> 0x08;
itmask = (u32)0x01 << bitpos;
USARTx->SR &= ~itmask;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

View file

@ -0,0 +1,194 @@
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : stm32f10x_wwdg.c
* Author : MCD Application Team
* Date First Issued : 09/29/2006
* Description : This file provides all the WWDG firmware functions.
********************************************************************************
* History:
* 04/02/2007: V0.2
* 02/05/2007: V0.1
* 09/29/2006: V0.01
********************************************************************************
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_wwdg.h"
#include "stm32f10x_rcc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ----------- WWDG registers bit address in the alias region ----------- */
#define WWDG_OFFSET (WWDG_BASE - PERIPH_BASE)
/* Alias word address of EWI bit */
#define CFR_OFFSET (WWDG_OFFSET + 0x04)
#define EWI_BitNumber 0x09
#define CFR_EWI_BB (PERIPH_BB_BASE + (CFR_OFFSET * 32) + (EWI_BitNumber * 4))
/* Alias word address of EWIF bit */
#define SR_OFFSET (WWDG_OFFSET + 0x08)
#define EWIF_BitNumber 0x00
#define SR_EWIF_BB (PERIPH_BB_BASE + (SR_OFFSET * 32) + (EWIF_BitNumber * 4))
/* --------------------- WWDG registers bit mask ------------------------ */
/* CR register bit mask */
#define CR_WDGA_Set ((u32)0x00000080)
/* CFR register bit mask */
#define CFR_WDGTB_Mask ((u32)0xFFFFFE7F)
#define CFR_W_Mask ((u32)0xFFFFFF80)
#define BIT_Mask ((u8)0x7F)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : WWDG_DeInit
* Description : Deinitializes the WWDG peripheral registers to their default
* reset values.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void WWDG_DeInit(void)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_WWDG, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_WWDG, DISABLE);
}
/*******************************************************************************
* Function Name : WWDG_SetPrescaler
* Description : Sets the WWDG Prescaler.
* Input : - WWDG_Prescaler: specifies the WWDG Prescaler.
* This parameter can be one of the following values:
* - WWDG_Prescaler_1: WWDG counter clock = (PCLK1/4096)/1
* - WWDG_Prescaler_2: WWDG counter clock = (PCLK1/4096)/2
* - WWDG_Prescaler_4: WWDG counter clock = (PCLK1/4096)/4
* - WWDG_Prescaler_8: WWDG counter clock = (PCLK1/4096)/8
* Output : None
* Return : None
*******************************************************************************/
void WWDG_SetPrescaler(u32 WWDG_Prescaler)
{
u32 tmpreg = 0;
/* Check the parameters */
assert(IS_WWDG_PRESCALER(WWDG_Prescaler));
/* Clear WDGTB[8:7] bits */
tmpreg = WWDG->CFR & CFR_WDGTB_Mask;
/* Set WDGTB[8:7] bits according to WWDG_Prescaler value */
tmpreg |= WWDG_Prescaler;
/* Store the new value */
WWDG->CFR = tmpreg;
}
/*******************************************************************************
* Function Name : WWDG_SetWindowValue
* Description : Sets the WWDG window value.
* Input : - WindowValue: specifies the window value to be compared to
* the downcounter.
* This parameter value must be lower than 0x80.
* Output : None
* Return : None
*******************************************************************************/
void WWDG_SetWindowValue(u8 WindowValue)
{
u32 tmpreg = 0;
/* Check the parameters */
assert(IS_WWDG_WINDOW_VALUE(WindowValue));
/* Clear W[6:0] bits */
tmpreg = WWDG->CFR & CFR_W_Mask;
/* Set W[6:0] bits according to WindowValue value */
tmpreg |= WindowValue & BIT_Mask;
/* Store the new value */
WWDG->CFR = tmpreg;
}
/*******************************************************************************
* Function Name : WWDG_EnableIT
* Description : Enables the WWDG Early Wakeup interrupt(EWI).
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void WWDG_EnableIT(void)
{
*(vu32 *) CFR_EWI_BB = (u32)ENABLE;
}
/*******************************************************************************
* Function Name : WWDG_SetCounter
* Description : Sets the WWDG counter value.
* Input : - Counter: specifies the watchdog counter value.
* This parameter must be a number between 0x40 and 0x7F.
* Output : None
* Return : None
*******************************************************************************/
void WWDG_SetCounter(u8 Counter)
{
/* Check the parameters */
assert(IS_WWDG_COUNTER(Counter));
/* Write to T[6:0] bits to configure the counter value, no need to do
a read-modify-write; writing a 0 to WDGA bit does nothing */
WWDG->CR = Counter & BIT_Mask;
}
/*******************************************************************************
* Function Name : WWDG_Enable
* Description : Enables WWDG and load the counter value.
* - Counter: specifies the watchdog counter value.
* This parameter must be a number between 0x40 and 0x7F.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void WWDG_Enable(u8 Counter)
{
/* Check the parameters */
assert(IS_WWDG_COUNTER(Counter));
WWDG->CR = CR_WDGA_Set | Counter;
}
/*******************************************************************************
* Function Name : WWDG_GetFlagStatus
* Description : Checks whether the Early Wakeup interrupt flag is set or not.
* Input : None
* Output : None
* Return : The new state of the Early Wakeup interrupt flag (SET or RESET)
*******************************************************************************/
FlagStatus WWDG_GetFlagStatus(void)
{
return (FlagStatus)(*(vu32 *) SR_EWIF_BB);
}
/*******************************************************************************
* Function Name : WWDG_ClearFlag
* Description : Clears Early Wakeup interrupt flag.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void WWDG_ClearFlag(void)
{
WWDG->SR = (u32)RESET;
}
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,58 @@
/******************** (C) COPYRIGHT 2008 STMicroelectronics ********************
* File Name : stm32fxxx_eth_lib.c
* Author : MCD Application Team
* Version : V2.0.2
* Date : 07/11/2008
* Description : This file provides all peripherals pointers initialization.
********************************************************************************
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
#define EXT
#include "stm32f10x_lib.h"
/* Includes ------------------------------------------------------------------*/
#include "stm32fxxx_eth_lib.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
#ifdef ETH_DEBUG
/*******************************************************************************
* Function Name : ethernet_debug
* Description : This function initialize peripherals pointers.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void eth_debug(void)
{
/********************************** ETHERNET **********************************/
#ifdef _ETH_MAC
ETH_MAC = ((ETH_MAC_TypeDef *) ETH_MAC_BASE);
#endif /*_ETH_MAC */
#ifdef _ETH_MMC
ETH_MMC = ((ETH_MMC_TypeDef *) ETH_MMC_BASE);
#endif /*_ETH_MMC */
#ifdef _ETH_PTP
ETH_PTP = ((ETH_PTP_TypeDef *) ETH_PTP_BASE);
#endif /*_ETH_PTP */
#ifdef _ETH_DMA
ETH_DMA = ((ETH_DMA_TypeDef *) ETH_DMA_BASE);
#endif /*_ETH_DMA */
}
#endif /* ETH_DEBUG*/
/******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/