mirror of
https://github.com/FreeRTOS/FreeRTOS-Kernel.git
synced 2025-08-01 08:54:14 -04:00
+ Update demos that use FreeRTOS+Trace to work with the latest trace recorder library.
+ Fix a few compiler warnings. + Add TickType_t specific critical sections so critical sections are not used when accessing the tick count in cases where the access is atomic (32-bit tick count, 32-bit architecture).
This commit is contained in:
parent
85fb1cc024
commit
f407b70dcc
51 changed files with 1025 additions and 997 deletions
|
@ -105,7 +105,7 @@
|
|||
#define configTIMER_QUEUE_LENGTH 20
|
||||
#define configTIMER_TASK_STACK_DEPTH ( configMINIMAL_STACK_SIZE * 2 )
|
||||
|
||||
#define configMAX_PRIORITIES ( ( UBaseType_t ) 7 )
|
||||
#define configMAX_PRIORITIES ( 7 )
|
||||
#define configMAX_CO_ROUTINE_PRIORITIES ( 2 )
|
||||
|
||||
|
||||
|
@ -157,6 +157,8 @@ take up unnecessary RAM. */
|
|||
|
||||
|
||||
/* Include the FreeRTOS+Trace FreeRTOS trace macro definitions. */
|
||||
#define TRACE_ENTER_CRITICAL_SECTION() portENTER_CRITICAL()
|
||||
#define TRACE_EXIT_CRITICAL_SECTION() portEXIT_CRITICAL()
|
||||
#include "trcKernelPort.h"
|
||||
|
||||
#endif /* FREERTOS_CONFIG_H */
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
/*******************************************************************************
|
||||
* Tracealyzer v2.6.0 Recorder Library
|
||||
* Tracealyzer v2.7.0 Recorder Library
|
||||
* Percepio AB, www.percepio.com
|
||||
*
|
||||
* trcConfig.h
|
||||
*
|
||||
* Configuration parameters for the trace recorder library. Before using the
|
||||
* trace recorder library, please check that the default settings are
|
||||
* appropriate for your system, and if necessary adjust these. Most likely, you
|
||||
* will need to adjust the NTask, NISR, NQueue, NMutex and NSemaphore values to
|
||||
* reflect the number of such objects in your system. These may be
|
||||
* Configuration parameters for the trace recorder library. Before using the
|
||||
* trace recorder library, please check that the default settings are
|
||||
* appropriate for your system, and if necessary adjust these. Most likely, you
|
||||
* will need to adjust the NTask, NISR, NQueue, NMutex and NSemaphore values to
|
||||
* reflect the number of such objects in your system. These may be
|
||||
* over-approximated, although larger values values implies more RAM usage.
|
||||
*
|
||||
* Terms of Use
|
||||
|
@ -16,36 +16,121 @@
|
|||
* use together with Percepio products. You may distribute the recorder library
|
||||
* in its original form, including modifications in trcHardwarePort.c/.h
|
||||
* given that these modification are clearly marked as your own modifications
|
||||
* and documented in the initial comment section of these source files.
|
||||
* This software is the intellectual property of Percepio AB and may not be
|
||||
* sold or in other ways commercially redistributed without explicit written
|
||||
* and documented in the initial comment section of these source files.
|
||||
* This software is the intellectual property of Percepio AB and may not be
|
||||
* sold or in other ways commercially redistributed without explicit written
|
||||
* permission by Percepio AB.
|
||||
*
|
||||
* Disclaimer
|
||||
* The trace tool and recorder library is being delivered to you AS IS and
|
||||
* Percepio AB makes no warranty as to its use or performance. Percepio AB does
|
||||
* not and cannot warrant the performance or results you may obtain by using the
|
||||
* software or documentation. Percepio AB make no warranties, express or
|
||||
* implied, as to noninfringement of third party rights, merchantability, or
|
||||
* fitness for any particular purpose. In no event will Percepio AB, its
|
||||
* technology partners, or distributors be liable to you for any consequential,
|
||||
* incidental or special damages, including any lost profits or lost savings,
|
||||
* even if a representative of Percepio AB has been advised of the possibility
|
||||
* of such damages, or for any claim by any third party. Some jurisdictions do
|
||||
* not allow the exclusion or limitation of incidental, consequential or special
|
||||
* damages, or the exclusion of implied warranties or limitations on how long an
|
||||
* Disclaimer
|
||||
* The trace tool and recorder library is being delivered to you AS IS and
|
||||
* Percepio AB makes no warranty as to its use or performance. Percepio AB does
|
||||
* not and cannot warrant the performance or results you may obtain by using the
|
||||
* software or documentation. Percepio AB make no warranties, express or
|
||||
* implied, as to noninfringement of third party rights, merchantability, or
|
||||
* fitness for any particular purpose. In no event will Percepio AB, its
|
||||
* technology partners, or distributors be liable to you for any consequential,
|
||||
* incidental or special damages, including any lost profits or lost savings,
|
||||
* even if a representative of Percepio AB has been advised of the possibility
|
||||
* of such damages, or for any claim by any third party. Some jurisdictions do
|
||||
* not allow the exclusion or limitation of incidental, consequential or special
|
||||
* damages, or the exclusion of implied warranties or limitations on how long an
|
||||
* implied warranty may last, so the above limitations may not apply to you.
|
||||
*
|
||||
* Copyright Percepio AB, 2013.
|
||||
* Tabs are used for indent in this file (1 tab = 4 spaces)
|
||||
*
|
||||
* Copyright Percepio AB, 2014.
|
||||
* www.percepio.com
|
||||
******************************************************************************/
|
||||
|
||||
#ifndef TRCCONFIG_H
|
||||
#define TRCCONFIG_H
|
||||
|
||||
/******************************************************************************
|
||||
* SELECTED_PORT
|
||||
*
|
||||
* Macro that specifies what hardware port that should be used.
|
||||
* Available ports are:
|
||||
*
|
||||
* Port Name Code Official OS supported
|
||||
* PORT_APPLICATION_DEFINED -2 - -
|
||||
* PORT_NOT_SET -1 - -
|
||||
* PORT_HWIndependent 0 Yes Any
|
||||
* PORT_Win32 1 Yes FreeRTOS on Win32
|
||||
* PORT_Atmel_AT91SAM7 2 No Any
|
||||
* PORT_Atmel_UC3A0 3 No Any
|
||||
* PORT_ARM_CortexM 4 Yes Any
|
||||
* PORT_Renesas_RX600 5 Yes Any
|
||||
* PORT_Microchip_dsPIC_AND_PIC24 6 Yes Any
|
||||
* PORT_TEXAS_INSTRUMENTS_TMS570 7 No Any
|
||||
* PORT_TEXAS_INSTRUMENTS_MSP430 8 No Any
|
||||
* PORT_MICROCHIP_PIC32MX 9 Yes Any
|
||||
* PORT_XILINX_PPC405 10 No FreeRTOS
|
||||
* PORT_XILINX_PPC440 11 No FreeRTOS
|
||||
* PORT_XILINX_MICROBLAZE 12 No Any
|
||||
* PORT_NXP_LPC210X 13 No Any
|
||||
* PORT_MICROCHIP_PIC32MZ 14 Yes Any
|
||||
* PORT_ARM_CORTEX_A9 15 No Any
|
||||
*****************************************************************************/
|
||||
|
||||
#ifndef WIN32
|
||||
// Set the port setting here!
|
||||
#define SELECTED_PORT PORT_NOT_SET
|
||||
|
||||
#if (SELECTED_PORT == PORT_NOT_SET)
|
||||
#error "You need to define SELECTED_PORT here!"
|
||||
#endif
|
||||
#else
|
||||
// For Win32 demo projects this is set automatically
|
||||
#define SELECTED_PORT PORT_Win32
|
||||
#endif
|
||||
|
||||
/******************************************************************************
|
||||
* FREERTOS_VERSION
|
||||
*
|
||||
* Specify what version of FreeRTOS that is used. This is necessary compensate
|
||||
* for renamed symbols in the FreeRTOS kernel (does not build if incorrect).
|
||||
*
|
||||
* FREERTOS_VERSION_7_3_OR_7_4 (= 1) If using FreeRTOS v7.3.0 - v7.4.2
|
||||
* FREERTOS_VERSION_7_5_OR_7_6 (= 2) If using FreeRTOS v7.5.0 - v7.6.0
|
||||
* FREERTOS_VERSION_8_0_OR_LATER (= 3) If using FreeRTOS v8.0.0 or later
|
||||
*****************************************************************************/
|
||||
#define FREERTOS_VERSION FREERTOS_VERSION_8_0_OR_LATER
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_RECORDER_STORE_MODE
|
||||
*
|
||||
* Macro which should be defined as one of:
|
||||
* - TRACE_STORE_MODE_RING_BUFFER
|
||||
* - TRACE_STORE_MODE_STOP_WHEN_FULL
|
||||
* Default is TRACE_STORE_MODE_RING_BUFFER.
|
||||
*
|
||||
* With TRACE_RECORDER_STORE_MODE set to TRACE_STORE_MODE_RING_BUFFER, the
|
||||
* events are stored in a ring buffer, i.e., where the oldest events are
|
||||
* overwritten when the buffer becomes full. This allows you to get the last
|
||||
* events leading up to an interesting state, e.g., an error, without having
|
||||
* to store the whole run since startup.
|
||||
*
|
||||
* When TRACE_RECORDER_STORE_MODE is TRACE_STORE_MODE_STOP_WHEN_FULL, the
|
||||
* recording is stopped when the buffer becomes full. This is useful for
|
||||
* recording events following a specific state, e.g., the startup sequence.
|
||||
*****************************************************************************/
|
||||
#define TRACE_RECORDER_STORE_MODE TRACE_STORE_MODE_RING_BUFFER
|
||||
|
||||
/*******************************************************************************
|
||||
* CONFIGURATION RELATED TO CAPACITY AND ALLOCATION
|
||||
* TRACE_SCHEDULING_ONLY
|
||||
*
|
||||
* Macro which should be defined as an integer value.
|
||||
*
|
||||
* If this setting is enabled (= 1), only scheduling events are recorded.
|
||||
* If disabled (= 0), all events are recorded.
|
||||
*
|
||||
* Users of FreeRTOS+Trace Free Edition only displays scheduling events, so this
|
||||
* option can be used to avoid storing unsupported events.
|
||||
*
|
||||
* Default value is 0 (store all enabled events).
|
||||
*
|
||||
******************************************************************************/
|
||||
#define TRACE_SCHEDULING_ONLY 0
|
||||
|
||||
/*******************************************************************************
|
||||
* EVENT_BUFFER_SIZE
|
||||
|
@ -53,64 +138,312 @@
|
|||
* Macro which should be defined as an integer value.
|
||||
*
|
||||
* This defines the capacity of the event buffer, i.e., the number of records
|
||||
* it may store. Each registered event typically use one record (4 byte), but
|
||||
* vTracePrintF may use multiple records depending on the number of data args.
|
||||
* it may store. Most events use one record (4 byte), although some events
|
||||
* require multiple 4-byte records. You should adjust this to the amount of RAM
|
||||
* available in the target system.
|
||||
*
|
||||
* Default value is 1000, which means that 4000 bytes is allocated for the
|
||||
* event buffer.
|
||||
******************************************************************************/
|
||||
|
||||
#define EVENT_BUFFER_SIZE 4000 /* Adjust wrt. to available RAM */
|
||||
|
||||
#define EVENT_BUFFER_SIZE 15000
|
||||
|
||||
/*******************************************************************************
|
||||
* USE_LINKER_PRAGMA
|
||||
* NTask, NISR, NQueue, NSemaphore, NMutex
|
||||
*
|
||||
* Macro which should be defined as an integer value, default is 0.
|
||||
* A group of macros which should be defined as integer values, zero or larger.
|
||||
*
|
||||
* If this is 1, the header file "recorderdata_linker_pragma.h" is included just
|
||||
* before the declaration of RecorderData (in trcBase.c), i.e., the trace data
|
||||
* structure. This allows the user to specify a pragma with linker options.
|
||||
* These define the capacity of the Object Property Table, i.e., the maximum
|
||||
* number of objects active at any given point, within each object class (e.g.,
|
||||
* task, queue, semaphore, ...).
|
||||
*
|
||||
* Example (for IAR Embedded Workbench and NXP LPC17xx):
|
||||
* #pragma location="AHB_RAM_MEMORY"
|
||||
*
|
||||
* This example instructs the IAR linker to place RecorderData in another RAM
|
||||
* bank, the AHB RAM. This can also be used for other compilers with a similar
|
||||
* pragmas for linker options.
|
||||
*
|
||||
* Note that this only applies if using static allocation, see below.
|
||||
* If tasks or other other objects are deleted in your system, this
|
||||
* setting does not limit the total amount of objects created, only the number
|
||||
* of objects that have been successfully created but not yet deleted.
|
||||
*
|
||||
* Using too small values will cause vTraceError to be called, which stores an
|
||||
* error message in the trace that is shown when opening the trace file.
|
||||
*
|
||||
* It can be wise to start with large values for these constants,
|
||||
* unless you are very confident on these numbers. Then do a recording and
|
||||
* check the actual usage by selecting View menu -> Trace Details ->
|
||||
* Resource Usage -> Object Table.
|
||||
******************************************************************************/
|
||||
#define NTask 100
|
||||
#define NISR 60
|
||||
#define NQueue 60
|
||||
#define NSemaphore 60
|
||||
#define NMutex 60
|
||||
#define NTimer 200
|
||||
#define NEventGroup 60
|
||||
|
||||
#define USE_LINKER_PRAGMA 0
|
||||
/******************************************************************************
|
||||
* INCLUDE_MEMMANG_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* This controls if malloc and free calls should be traced. Set this to zero to
|
||||
* exclude malloc/free calls, or one (1) to include such events in the trace.
|
||||
*
|
||||
* Default value is 1.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_MEMMANG_EVENTS 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_USER_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If this is zero (0) the code for creating User Events is excluded to
|
||||
* reduce code size. User Events are application-generated events, like
|
||||
* "printf" but for the trace log instead of console output. User Events are
|
||||
* much faster than a printf and can therefore be used in timing critical code.
|
||||
* See vTraceUserEvent() and vTracePrintF() in trcUser.h
|
||||
*
|
||||
* Default value is 1.
|
||||
*
|
||||
* Note that User Events are only displayed in Professional Edition.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_USER_EVENTS 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_ISR_TRACING
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If this is zero (0), the code for recording Interrupt Service Routines is
|
||||
* excluded to reduce code size.
|
||||
*
|
||||
* Default value is 1.
|
||||
*
|
||||
* Note, if the kernel has no central interrupt dispatcher, recording ISRs
|
||||
* require that you insert calls to vTraceStoreISRBegin and vTraceStoreISREnd
|
||||
* in your interrupt handlers.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_ISR_TRACING 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_READY_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If one (1), events are recorded when tasks enter scheduling state "ready".
|
||||
* This uses a lot of space in the event buffer, so excluding "ready events"
|
||||
* will allow for longer traces. Including ready events however allows for
|
||||
* showing the initial pending time before tasks enter the execution state, and
|
||||
* for presenting accurate response times.
|
||||
*
|
||||
* Default value is 1.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_READY_EVENTS 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_NEW_TIME_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If this is zero (1), events will be generated whenever the OS clock is
|
||||
* increased.
|
||||
*
|
||||
* Default value is 0.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_NEW_TIME_EVENTS 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_FLOAT_SUPPORT
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If this is zero (0), all references to floating point values are removed,
|
||||
* in case floating point values are not supported by the platform used.
|
||||
* Floating point values are only used in vTracePrintF and its subroutines, to
|
||||
* store float (%f) or double (%lf) arguments.
|
||||
*
|
||||
* vTracePrintF can be used with integer and string arguments in either case.
|
||||
*
|
||||
* Default value is 1.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_FLOAT_SUPPORT 0
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_OBJECT_DELETE
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* This must be enabled (1) if tasks, queues or other
|
||||
* traced kernel objects are deleted at runtime. If no deletes are made, this
|
||||
* can be set to 0 in order to exclude the delete-handling code.
|
||||
*
|
||||
* Default value is 1.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_OBJECT_DELETE 1
|
||||
|
||||
/*******************************************************************************
|
||||
* SYMBOL_TABLE_SIZE
|
||||
*
|
||||
* Macro which should be defined as an integer value.
|
||||
*
|
||||
* This defines the capacity of the symbol table, in bytes. This symbol table
|
||||
* This defines the capacity of the symbol table, in bytes. This symbol table
|
||||
* stores User Events labels and names of deleted tasks, queues, or other kernel
|
||||
* objects. Note that the names of active objects not stored here but in the
|
||||
* Object Table. Thus, if you don't use User Events or delete any kernel
|
||||
* objects you set this to a very low value, e.g. 4, but not zero (0) since
|
||||
* this causes a declaration of a zero-sized array, for which the C compiler
|
||||
* behavior is not standardized and may cause misaligned data.
|
||||
* objects. If you don't use User Events or delete any kernel
|
||||
* objects you set this to a very low value. The minimum recommended value is 4.
|
||||
* A size of zero (0) is not allowed since a zero-sized array may result in a
|
||||
* 32-bit pointer, i.e., using 4 bytes rather than 0.
|
||||
*
|
||||
* Default value is 800.
|
||||
******************************************************************************/
|
||||
#define SYMBOL_TABLE_SIZE 1000
|
||||
#define SYMBOL_TABLE_SIZE 5000
|
||||
|
||||
#if (SYMBOL_TABLE_SIZE == 0)
|
||||
#error "SYMBOL_TABLE_SIZE may not be zero!"
|
||||
#endif
|
||||
|
||||
/******************************************************************************
|
||||
* NameLenTask, NameLenQueue, ...
|
||||
*
|
||||
* Macros that specify the maximum lengths (number of characters) for names of
|
||||
* kernel objects, such as tasks and queues. If longer names are used, they will
|
||||
* be truncated when stored in the recorder.
|
||||
*****************************************************************************/
|
||||
#define NameLenTask 15
|
||||
#define NameLenISR 15
|
||||
#define NameLenQueue 15
|
||||
#define NameLenSemaphore 15
|
||||
#define NameLenMutex 15
|
||||
#define NameLenTimer 15
|
||||
#define NameLenEventGroup 15
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_DATA_ALLOCATION
|
||||
*
|
||||
* This defines how to allocate the recorder data structure, i.e., using a
|
||||
* static declaration or using a dynamic allocation in runtime (malloc).
|
||||
*
|
||||
* Should be one of these two options:
|
||||
* - TRACE_DATA_ALLOCATION_STATIC (default)
|
||||
* - TRACE_DATA_ALLOCATION_DYNAMIC
|
||||
*
|
||||
* Using static allocation has the benefits of compile-time errors if the buffer
|
||||
* is too large (too large constants in trcConfig.h) and no need to call the
|
||||
* initialization routine (xTraceInitTraceData).
|
||||
*
|
||||
* Using dynamic allocation may give more flexibility in some cases.
|
||||
*****************************************************************************/
|
||||
#define TRACE_DATA_ALLOCATION TRACE_DATA_ALLOCATION_STATIC
|
||||
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*** ADVANCED SETTINGS ********************************************************
|
||||
******************************************************************************
|
||||
* The remaining settings are not necessary to modify but allows for optimizing
|
||||
* the recorder setup for your specific needs, e.g., to exclude events that you
|
||||
* are not interested in, in order to get longer traces.
|
||||
*****************************************************************************/
|
||||
|
||||
/******************************************************************************
|
||||
* HEAP_SIZE_BELOW_16M
|
||||
*
|
||||
* An integer constant that can be used to reduce the buffer usage of memory
|
||||
* allocation events (malloc/free). This value should be 1 if the heap size is
|
||||
* below 16 MB (2^24 byte), and you can live with reported addresses showing the
|
||||
* lower 24 bits only. If 0, you get the full 32-bit addresses.
|
||||
*
|
||||
* Default value is 0.
|
||||
******************************************************************************/
|
||||
#define HEAP_SIZE_BELOW_16M 0
|
||||
|
||||
/******************************************************************************
|
||||
* USE_LINKER_PRAGMA
|
||||
*
|
||||
* Macro which should be defined as an integer value, default is 0.
|
||||
*
|
||||
* If this is 1, the header file "recorderdata_linker_pragma.h" is included just
|
||||
* before the declaration of RecorderData (in trcBase.c), i.e., the trace data
|
||||
* structure. This allows the user to specify a pragma with linker options.
|
||||
*
|
||||
* Example (for IAR Embedded Workbench and NXP LPC17xx):
|
||||
* #pragma location="AHB_RAM_MEMORY"
|
||||
*
|
||||
* This example instructs the IAR linker to place RecorderData in another RAM
|
||||
* bank, the AHB RAM. This can also be used for other compilers with a similar
|
||||
* pragmas for linker options.
|
||||
*
|
||||
* Note that this only applies if using static allocation, see below.
|
||||
******************************************************************************/
|
||||
#define USE_LINKER_PRAGMA 0
|
||||
|
||||
/******************************************************************************
|
||||
* USE_IMPLICIT_IFE_RULES
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* Tracealyzer groups the events into actor instances, based on context-switches
|
||||
* and a definition of "Instance Finish Events", or IFEs. These are kernel calls
|
||||
* considered to be the last event in a task instance. Some kernel calls are
|
||||
* considered IFEs by default (e.g., delay functions), but it is also possible
|
||||
* to specify this individually for each task (see vTraceTaskInstanceFinish).
|
||||
*
|
||||
* If USE_IMPLICIT_IFE_RULES is one (1), the default IFEs will be enabled, which
|
||||
* gives a "typical" grouping of events into instances. You can combine this
|
||||
* with calls to vTraceTaskInstanceFinish for specific tasks.
|
||||
*
|
||||
* If USE_IMPLICIT_IFE_RULES is zero (0), the implicit IFEs are disabled and all
|
||||
* events withing each task is then shown as a single instance, unless you call
|
||||
* vTraceTaskInstanceFinish() at suitable locations to mark the IFEs.
|
||||
*****************************************************************************/
|
||||
#define USE_IMPLICIT_IFE_RULES 1
|
||||
|
||||
/******************************************************************************
|
||||
* USE_16BIT_OBJECT_HANDLES
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If set to 0 (zero), the recorder uses 8-bit handles to identify kernel
|
||||
* objects such as tasks and queues. This limits the supported number of
|
||||
* concurrently active objects to 255 of each type (object class).
|
||||
*
|
||||
* If set to 1 (one), the recorder uses 16-bit handles to identify kernel
|
||||
* objects such as tasks and queues. This limits the supported number of
|
||||
* concurrent objects to 65535 of each type (object class). However, since the
|
||||
* object property table is limited to 64 KB, the practical limit is about
|
||||
* 3000 objects in total.
|
||||
*
|
||||
* Default is 0.
|
||||
*
|
||||
* NOTE: An object with handle above 255 will use an extra 4-byte record in
|
||||
* the event buffer whenever referenced. Moreover, some internal tables in the
|
||||
* recorder gets larger when using 16-bit handles. The additional RAM usage is
|
||||
* 5-10 byte plus 1 byte per kernel object i.e., task, queue, mutex, etc.
|
||||
*****************************************************************************/
|
||||
#define USE_16BIT_OBJECT_HANDLES 0
|
||||
|
||||
/******************************************************************************
|
||||
* USE_TRACE_ASSERT
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is one (1), the TRACE_ASSERT macro will verify that a condition is
|
||||
* true. If the condition is false, vTraceError() will be called.
|
||||
* This is used on several places in the recorder code for sanity checks on
|
||||
* parameters. Can be switched off to reduce CPU usage of the tracing.
|
||||
*****************************************************************************/
|
||||
#define USE_TRACE_ASSERT 1
|
||||
|
||||
/*******************************************************************************
|
||||
* USE_SEPARATE_USER_EVENT_BUFFER
|
||||
*
|
||||
* Macro which should be defined as an integer value.
|
||||
* Default is zero (0).
|
||||
*
|
||||
* This enables and disables the use of the separate user event buffer.
|
||||
* This enables and disables the use of the separate user event buffer. Using
|
||||
* this separate buffer has the benefit of not overwriting the user events with
|
||||
* kernel events (usually generated at a much higher rate), i.e., when using
|
||||
* ring-buffer mode.
|
||||
*
|
||||
* Note: When using the separate user event buffer, you may get an artificial
|
||||
* task instance named "Unknown actor". This is added as a placeholder when the
|
||||
* task instance named "Unknown actor". This is added as a placeholder when the
|
||||
* user event history is longer than the task scheduling history.
|
||||
******************************************************************************/
|
||||
#define USE_SEPARATE_USER_EVENT_BUFFER 0
|
||||
|
@ -125,7 +458,7 @@
|
|||
*
|
||||
* Only in use if USE_SEPARATE_USER_EVENT_BUFFER is set to 1.
|
||||
******************************************************************************/
|
||||
#define USER_EVENT_BUFFER_SIZE 500
|
||||
#define USER_EVENT_BUFFER_SIZE 10
|
||||
|
||||
/*******************************************************************************
|
||||
* USER_EVENT_CHANNELS
|
||||
|
@ -138,393 +471,5 @@
|
|||
******************************************************************************/
|
||||
#define CHANNEL_FORMAT_PAIRS 32
|
||||
|
||||
/*******************************************************************************
|
||||
* NTask, NISR, NQueue, NSemaphore, NMutex
|
||||
*
|
||||
* A group of Macros which should be defined as an integer value of zero (0)
|
||||
* or larger.
|
||||
*
|
||||
* This defines the capacity of the Object Property Table - the maximum number
|
||||
* of objects active at any given point within each object class.
|
||||
*
|
||||
* NOTE: In case objects are deleted and created during runtime, this setting
|
||||
* does not limit the total amount of objects, only the number of concurrently
|
||||
* active objects.
|
||||
*
|
||||
* Using too small values will give an error message through the vTraceError
|
||||
* routine, which makes the error message appear when opening the trace data
|
||||
* in Tracealyzer. If you are using the recorder status monitor task,
|
||||
* any error messages are displayed in console prints, assuming that the
|
||||
* print macro has been defined properly (vConsolePrintMessage).
|
||||
*
|
||||
* It can be wise to start with very large values for these constants,
|
||||
* unless you are very confident on these numbers. Then do a recording and
|
||||
* check the actual usage in Tracealyzer. This is shown by selecting
|
||||
* View -> Trace Details -> Resource Usage -> Object Table
|
||||
*
|
||||
* NOTE 2: Remember to account for all tasks and other objects created by
|
||||
* the kernel, such as the IDLE task, any timer tasks, and any tasks created
|
||||
* by other 3rd party software components, such as communication stacks.
|
||||
* Moreover, one task slot is used to indicate "(startup)", i.e., a fictive
|
||||
* task that represent the time before the scheduler starts.
|
||||
* NTask should thus be at least 2-3 slots larger than your application task count.
|
||||
*
|
||||
******************************************************************************/
|
||||
#define NTask 15
|
||||
#define NISR 15
|
||||
#define NQueue 15
|
||||
#define NSemaphore 15
|
||||
#define NMutex 15
|
||||
#define NTimer 15
|
||||
#define NEventGroup 15
|
||||
|
||||
/* Maximum object name length for each class (includes zero termination) */
|
||||
#define NameLenTask 15
|
||||
#define NameLenISR 15
|
||||
#define NameLenQueue 15
|
||||
#define NameLenSemaphore 15
|
||||
#define NameLenMutex 15
|
||||
#define NameLenTimer 15
|
||||
#define NameLenEventGroup 15
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_DESCRIPTION
|
||||
*
|
||||
* Macro which should be defined as a string.
|
||||
*
|
||||
* This string is stored in the trace and displayed in Tracealyzer. Can be
|
||||
* used to store, e.g., system version or build date. This is also used to store
|
||||
* internal error messages from the recorder, which if occurs overwrites the
|
||||
* value defined here. This may be maximum 256 chars.
|
||||
*****************************************************************************/
|
||||
#define TRACE_DESCRIPTION "Tracealyzer Recorder Test Program"
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_DESCRIPTION_MAX_LENGTH
|
||||
*
|
||||
* The maximum length (including zero termination) for the TRACE_DESCRIPTION
|
||||
* string. Since this string also is used for internal error messages from the
|
||||
* recorder do not make it too short, as this may truncate the error messages.
|
||||
* Default is 80.
|
||||
* Maximum allowed length is 256 - the trace will fail to load if longer.
|
||||
*****************************************************************************/
|
||||
#define TRACE_DESCRIPTION_MAX_LENGTH 80
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_DATA_ALLOCATION
|
||||
*
|
||||
* This defines how to allocate the recorder data structure, i.e., using a
|
||||
* static declaration or using a dynamic allocation in runtime (malloc).
|
||||
*
|
||||
* Should be one of these two options:
|
||||
* - TRACE_DATA_ALLOCATION_STATIC (default)
|
||||
* - TRACE_DATA_ALLOCATION_DYNAMIC
|
||||
*
|
||||
* Using static allocation has the benefits of compile-time errors if the buffer
|
||||
* is too large (too large constants in trcConfig.h) and no need to call the
|
||||
* initialization routine (xTraceInitTraceData).
|
||||
*
|
||||
* Using dynamic allocation may give more flexibility in some cases.
|
||||
*****************************************************************************/
|
||||
|
||||
#define TRACE_DATA_ALLOCATION TRACE_DATA_ALLOCATION_STATIC
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* CONFIGURATION REGARDING WHAT CODE/FEATURES TO INCLUDE
|
||||
*****************************************************************************/
|
||||
|
||||
/******************************************************************************
|
||||
* USE_TRACE_ASSERT
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 0.
|
||||
*
|
||||
* If this is one (1), the TRACE_ASSERT macro will verify that a condition is
|
||||
* true. If the condition is false, vTraceError() will be called.
|
||||
*****************************************************************************/
|
||||
#define USE_TRACE_ASSERT 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_FLOAT_SUPPORT
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is zero (0), all references to floating point values are removed,
|
||||
* in case floating point values are not supported by the platform used.
|
||||
* Floating point values are only used in vTracePrintF and its subroutines, to
|
||||
* store float (%f) or double (%lf) argments.
|
||||
*
|
||||
* Note: vTracePrintF can still be used with integer and string arguments in
|
||||
* either case.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_FLOAT_SUPPORT 0
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_USER_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is zero (0) the code for creating User Events is excluded to
|
||||
* reduce code size. User Events are application-generated events, like
|
||||
* "printf" but for the trace log instead of console output. User Events are
|
||||
* much faster than a printf and can therefore be used in timing critical code.
|
||||
* See vTraceUserEvent() and vTracePrintF() in trcUser.h
|
||||
*
|
||||
* Note that User Events are not displayed in FreeRTOS+Trace Free Edition.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_USER_EVENTS 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_READY_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is zero (0), the code for recording Ready events is
|
||||
* excluded. Note, this will make it impossible to calculate the correct
|
||||
* response times.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_READY_EVENTS 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_NEW_TIME_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 0.
|
||||
*
|
||||
* If this is zero (1), events will be generated whenever the os clock is
|
||||
* increased.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_NEW_TIME_EVENTS 0
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_ISR_TRACING
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is zero (0), the code for recording Interrupt Service Routines is
|
||||
* excluded to reduce code size.
|
||||
*
|
||||
* Note, if the kernel has no central interrupt dispatcher, recording ISRs
|
||||
* require that you insert calls to vTraceStoreISRBegin and vTraceStoreISREnd
|
||||
* in your interrupt handlers.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_ISR_TRACING 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_OBJECT_DELETE
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* This must be enabled (1) if tasks, queues or other
|
||||
* traced kernel objects are deleted at runtime. If no deletes are made, this
|
||||
* can be set to 0 in order to exclude the delete-handling code.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_OBJECT_DELETE 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_MEMMANG_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* This controls if malloc and free calls should be traced. Set this to zero to
|
||||
* exclude malloc/free calls from the tracing.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_MEMMANG_EVENTS 1
|
||||
|
||||
/******************************************************************************
|
||||
* CONFIGURATION RELATED TO BEHAVIOR
|
||||
*****************************************************************************/
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_RECORDER_STORE_MODE
|
||||
*
|
||||
* Macro which should be defined as one of:
|
||||
* - TRACE_STORE_MODE_RING_BUFFER
|
||||
* - TRACE_STORE_MODE_STOP_WHEN_FULL
|
||||
* Default is TRACE_STORE_MODE_RING_BUFFER.
|
||||
*
|
||||
* With TRACE_RECORDER_STORE_MODE set to TRACE_STORE_MODE_RING_BUFFER, the events are
|
||||
* stored in a ring buffer, i.e., where the oldest events are overwritten when
|
||||
* the buffer becomes full. This allows you to get the last events leading up
|
||||
* to an interesting state, e.g., an error, without having a large trace buffer
|
||||
* for string the whole run since startup. In this mode, the recorder can run
|
||||
* "forever" as the buffer never gets full, i.e., in the sense that it always
|
||||
* has room for more events.
|
||||
*
|
||||
* To fetch the trace in mode TRACE_STORE_MODE_RING_BUFFER, you need to first halt the
|
||||
* system using your debugger and then do a RAM dump, or to explicitly stop the
|
||||
* recorder using vTraceStop() and then store/upload the trace data using a
|
||||
* task that you need to provide yourself. The trace data is found in the struct
|
||||
* RecorderData, initialized in trcBase.c.
|
||||
*
|
||||
* Note that, if you upload the trace using a RAM dump, i.e., when the system is
|
||||
* halted on a breakpoint or by a debugger command, there is no need to stop the
|
||||
* recorder first.
|
||||
*
|
||||
* When TRACE_RECORDER_STORE_MODE is TRACE_STORE_MODE_STOP_WHEN_FULL, the recording is
|
||||
* stopped when the buffer becomes full. When the recorder stops itself this way
|
||||
* vTracePortEnd() is called which allows for custom actions, such as triggering
|
||||
* a task that stores the trace buffer, i.e., in case taking a RAM dump
|
||||
* using an on-chip debugger is not possible. In the Windows port, vTracePortEnd
|
||||
* saves the trace to file directly, but this is not recommended in a real-time
|
||||
* system since the scheduler is blocked during the processing of vTracePortEnd.
|
||||
*****************************************************************************/
|
||||
|
||||
#define TRACE_RECORDER_STORE_MODE TRACE_STORE_MODE_RING_BUFFER
|
||||
|
||||
/******************************************************************************
|
||||
* STOP_AFTER_N_EVENTS
|
||||
*
|
||||
* Macro which should be defined as an integer value, or not defined.
|
||||
* Default is -1
|
||||
*
|
||||
* STOP_AFTER_N_EVENTS is intended for tests of the ring buffer mode (when
|
||||
* RECORDER_STORE_MODE is STORE_MODE_RING_BUFFER). It stops the recording when
|
||||
* the specified number of events has been observed. This value can be larger
|
||||
* than the buffer size, to allow for test of the "wrapping around" that occurs
|
||||
* in ring buffer mode . A negative value (or no definition of this macro)
|
||||
* disables this feature.
|
||||
*****************************************************************************/
|
||||
#define STOP_AFTER_N_EVENTS -1
|
||||
|
||||
/******************************************************************************
|
||||
* USE_IMPLICIT_IFE_RULES
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* ### Instance Finish Events (IFE) ###
|
||||
*
|
||||
* For tasks with "infinite" main loops (non-terminating tasks), the concept
|
||||
* of a task instance has no clear definition, it is an application-specific
|
||||
* thing. Tracealyzer allows you to define Instance Finish Events (IFEs),
|
||||
* which marks the point in a cyclic task when the "task instance" ends.
|
||||
* The IFE is a blocking kernel call, typically in the main loop of a task
|
||||
* which typically reads a message queue, waits for a semaphore or performs
|
||||
* an explicit delay.
|
||||
*
|
||||
* If USE_IMPLICIT_IFE_RULES is one (1), the kernel macros (trcKernelPort.h)
|
||||
* will define what kernel calls are considered by default to be IFEs.
|
||||
*
|
||||
* However, Implicit IFEs only applies to blocking kernel calls. If a
|
||||
* service reads a message without blocking, it does not create a new
|
||||
* instance since no blocking occurred.
|
||||
*
|
||||
* Moreover, the actual IFE might sometimes be another blocking call. We
|
||||
* therefore allow for user-defined Explicit IFEs by calling
|
||||
*
|
||||
* vTraceTaskInstanceIsFinished()
|
||||
*
|
||||
* right before the kernel call considered as IFE. This does not create an
|
||||
* additional event but instead stores the service code and object handle
|
||||
* of the IFE call as properties of the task.
|
||||
*
|
||||
* If using Explicit IFEs and the task also calls an Implicit IFE, this may
|
||||
* result in additional incorrect task instances.
|
||||
* This is solved by disabling the Implicit IFEs for the task, by adding
|
||||
* a call to
|
||||
*
|
||||
* vTraceTaskSkipDefaultInstanceFinishedEvents()
|
||||
*
|
||||
* in the very beginning of that task. This allows you to combine Explicit IFEs
|
||||
* for some tasks with Implicit IFEs for the rest of the tasks, if
|
||||
* USE_IMPLICIT_IFE_RULES is 1.
|
||||
*
|
||||
* By setting USE_IMPLICIT_IFE_RULES to zero (0), the implicit IFEs are disabled
|
||||
* for all tasks. Tasks will then be considered to have a single instance only,
|
||||
* covering all execution fragments, unless you define an explicit IFE in each
|
||||
* task by calling vTraceTaskInstanceIsFinished before the blocking call.
|
||||
*****************************************************************************/
|
||||
#define USE_IMPLICIT_IFE_RULES 1
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* USE_16BIT_OBJECT_HANDLES
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 0.
|
||||
*
|
||||
* If set to 0 (zero), the recorder uses 8-bit handles to identify kernel
|
||||
* objects such as tasks and queues. This limits the supported number of
|
||||
* concurrently active objects to 255 of each type (object class).
|
||||
*
|
||||
* If set to 1 (one), the recorder uses 16-bit handles to identify kernel
|
||||
* objects such as tasks and queues. This limits the supported number of
|
||||
* concurrent objects to 65535 of each type (object class). However, since the
|
||||
* object property table is limited to 64 KB, the practical limit is about
|
||||
* 3000 objects in total.
|
||||
*
|
||||
* NOTE: An object with a high ID (> 255) will generate an extra event
|
||||
* (= 4 byte) in the event buffer.
|
||||
*
|
||||
* NOTE: Some internal tables in the recorder gets larger when using 16-bit
|
||||
* handles. The additional RAM usage is 5-10 byte plus 1 byte per kernel object
|
||||
*, i.e., task, queue, semaphore, mutex, etc.
|
||||
*****************************************************************************/
|
||||
#define USE_16BIT_OBJECT_HANDLES 0
|
||||
|
||||
/****** Port Name ******************** Code ** Official ** OS Platform ******
|
||||
* PORT_APPLICATION_DEFINED -2 - -
|
||||
* PORT_NOT_SET -1 - -
|
||||
* PORT_HWIndependent 0 Yes Any
|
||||
* PORT_Win32 1 Yes FreeRTOS Win32
|
||||
* PORT_Atmel_AT91SAM7 2 No Any
|
||||
* PORT_Atmel_UC3A0 3 No Any
|
||||
* PORT_ARM_CortexM 4 Yes Any
|
||||
* PORT_Renesas_RX600 5 Yes Any
|
||||
* PORT_Microchip_dsPIC_AND_PIC24 6 Yes Any
|
||||
* PORT_TEXAS_INSTRUMENTS_TMS570 7 No Any
|
||||
* PORT_TEXAS_INSTRUMENTS_MSP430 8 No Any
|
||||
* PORT_MICROCHIP_PIC32 9 No Any
|
||||
* PORT_XILINX_PPC405 10 No FreeRTOS
|
||||
* PORT_XILINX_PPC440 11 No FreeRTOS
|
||||
* PORT_XILINX_MICROBLAZE 12 No Any
|
||||
* PORT_NXP_LPC210X 13 No Any
|
||||
*****************************************************************************/
|
||||
#define SELECTED_PORT PORT_Win32
|
||||
|
||||
#if (SELECTED_PORT == PORT_NOT_SET)
|
||||
#error "You need to define SELECTED_PORT here!"
|
||||
#endif
|
||||
|
||||
/******************************************************************************
|
||||
* USE_PRIMASK_CS (for Cortex M devices only)
|
||||
*
|
||||
* An integer constant that selects between two options for the critical
|
||||
* sections of the recorder library.
|
||||
*
|
||||
* 0: The default FreeRTOS critical section (BASEPRI) - default setting
|
||||
* 1: Always disable ALL interrupts (using PRIMASK)
|
||||
*
|
||||
* Option 0 uses the standard FreeRTOS macros for critical sections.
|
||||
* However, on Cortex-M devices they only disable interrupts with priorities
|
||||
* below a certain configurable level, while higher priority ISRs remain active.
|
||||
* Such high-priority ISRs may not use the recorder functions in this mode.
|
||||
*
|
||||
* Option 1 allows you to safely call the recorder from any ISR, independent of
|
||||
* the interrupt priority. This mode may however cause higher IRQ latencies
|
||||
* (some microseconds) since ALL configurable interrupts are disabled during
|
||||
* the recorder's critical sections in this mode, using the PRIMASK register.
|
||||
******************************************************************************/
|
||||
#define USE_PRIMASK_CS 0
|
||||
|
||||
/******************************************************************************
|
||||
* HEAP_SIZE_BELOW_16M
|
||||
*
|
||||
* An integer constant that can be used to reduce the buffer usage of memory
|
||||
* allocation events (malloc/free). This value should be 1 if the heap size is
|
||||
* below 16 MB (2^24 byte), and you can live with addresses truncated to the
|
||||
* lower 24 bit. Otherwise set it to 0 to get the full 32-bit addresses.
|
||||
******************************************************************************/
|
||||
#define HEAP_SIZE_BELOW_16M 0
|
||||
|
||||
#endif
|
||||
|
||||
|
|
|
@ -151,14 +151,12 @@
|
|||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcBase.h" />
|
||||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcHooks.h" />
|
||||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcKernel.h" />
|
||||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcKernelPort.h" />
|
||||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcTypes.h" />
|
||||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcUser.h" />
|
||||
<ClInclude Include="FreeRTOSConfig.h" />
|
||||
<ClInclude Include="Trace_Recorder_Configuration\trcConfig.h" />
|
||||
<ClInclude Include="Trace_Recorder_Configuration\trcHardwarePort.h" />
|
||||
</ItemGroup>
|
||||
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
|
||||
<ImportGroup Label="ExtensionTargets">
|
||||
|
|
|
@ -103,9 +103,6 @@
|
|||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcBase.h">
|
||||
<Filter>FreeRTOS+\FreeRTOS+Trace\Include</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcHooks.h">
|
||||
<Filter>FreeRTOS+\FreeRTOS+Trace\Include</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcKernel.h">
|
||||
<Filter>FreeRTOS+\FreeRTOS+Trace\Include</Filter>
|
||||
</ClInclude>
|
||||
|
@ -115,8 +112,5 @@
|
|||
<ClInclude Include="..\..\Source\FreeRTOS-Plus-Trace\Include\trcKernelPort.h">
|
||||
<Filter>FreeRTOS+\FreeRTOS+Trace\Include</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="Trace_Recorder_Configuration\trcHardwarePort.h">
|
||||
<Filter>Demo App Source\Trace Recorder Configuration</Filter>
|
||||
</ClInclude>
|
||||
</ItemGroup>
|
||||
</Project>
|
|
@ -5,14 +5,14 @@
|
|||
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="com.crt.advproject.config.exe.debug.56486929" moduleId="org.eclipse.cdt.core.settings" name="Debug">
|
||||
<externalSettings/>
|
||||
<extensions>
|
||||
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GNU_ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.MakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GNU_ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
</extensions>
|
||||
</storageModule>
|
||||
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
|
||||
|
@ -78,6 +78,7 @@
|
|||
<option id="com.crt.advproject.link.gcc.hdrlib.2006557555" name="Use C library" superClass="com.crt.advproject.link.gcc.hdrlib" value="com.crt.advproject.gcc.link.hdrlib.codered.nohost" valueType="enumerated"/>
|
||||
<option id="gnu.c.link.option.nodeflibs.2072403274" name="Do not use default libraries (-nodefaultlibs)" superClass="gnu.c.link.option.nodeflibs" value="false" valueType="boolean"/>
|
||||
<option id="com.crt.advproject.link.gcc.multicore.slave.1911982348" name="Multicore slave" superClass="com.crt.advproject.link.gcc.multicore.slave"/>
|
||||
<option id="com.crt.advproject.link.gcc.multicore.master.userobjs.502901386" superClass="com.crt.advproject.link.gcc.multicore.master.userobjs" valueType="userObjs"/>
|
||||
<inputType id="cdt.managedbuild.tool.gnu.c.linker.input.1085761099" superClass="cdt.managedbuild.tool.gnu.c.linker.input">
|
||||
<additionalInput kind="additionalinputdependency" paths="$(USER_OBJS)"/>
|
||||
<additionalInput kind="additionalinput" paths="$(LIBS)"/>
|
||||
|
@ -133,7 +134,7 @@
|
|||
<storageModule moduleId="com.crt.config">
|
||||
<projectStorage><?xml version="1.0" encoding="UTF-8"?>
|
||||
<TargetConfig>
|
||||
<Properties property_0="" property_2="LPC1850A_4350A_SPIFI.cfx" property_3="NXP" property_4="LPC1830" property_count="5" version="60000"/>
|
||||
<Properties property_0="" property_2="LPC1850A_4350A_SPIFI.cfx" property_3="NXP" property_4="LPC1830" property_count="5" version="70200"/>
|
||||
<infoList vendor="NXP"><info chip="LPC1830" match_id="0x0" name="LPC1830" resetscript="LPC18LPC43ExternalFLASHBootResetscript.scp" stub="crt_emu_lpc18_43_nxp"><chip><name>LPC1830</name>
|
||||
<family>LPC18xx</family>
|
||||
<vendor>NXP (formerly Philips)</vendor>
|
||||
|
@ -154,10 +155,12 @@
|
|||
<peripheralInstance derived_from="V7M_ITM" id="ITM" location="0xe0000000"/>
|
||||
<peripheralInstance derived_from="SCT" id="SCT" location="0x40000000"/>
|
||||
<peripheralInstance derived_from="GPDMA" id="GPDMA" location="0x40002000"/>
|
||||
<peripheralInstance derived_from="SPIFI" id="SPIFI" location="0x40003000"/>
|
||||
<peripheralInstance derived_from="SDMMC" id="SDMMC" location="0x40004000"/>
|
||||
<peripheralInstance derived_from="EMC" id="EMC" location="0x40005000"/>
|
||||
<peripheralInstance derived_from="USB0" id="USB0" location="0x40006000"/>
|
||||
<peripheralInstance derived_from="USB1" id="USB1" location="0x40007000"/>
|
||||
<peripheralInstance derived_from="EEPROM" id="EEPROM" location="0x4000e000"/>
|
||||
<peripheralInstance derived_from="ETHERNET" id="ETHERNET" location="0x40010000"/>
|
||||
<peripheralInstance derived_from="ATIMER" id="ATIMER" location="0x40040000"/>
|
||||
<peripheralInstance derived_from="REGFILE" id="REGFILE" location="0x40041000"/>
|
||||
|
@ -198,7 +201,6 @@
|
|||
<peripheralInstance derived_from="ADC0" id="ADC0" location="0x400e3000"/>
|
||||
<peripheralInstance derived_from="ADC1" id="ADC1" location="0x400e4000"/>
|
||||
<peripheralInstance derived_from="GPIO-PORT" id="GPIO-PORT" location="0x400f4000"/>
|
||||
<peripheralInstance derived_from="EEPROM" id="EEPROM" location="0x4000e000"/>
|
||||
</chip>
|
||||
<processor><name gcc_name="cortex-m3">Cortex-M3</name>
|
||||
<family>Cortex-M</family>
|
||||
|
|
|
@ -92,7 +92,7 @@ extern uint32_t SystemCoreClock;
|
|||
#define configTICK_RATE_HZ 100
|
||||
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 300 )
|
||||
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 40 * 1024 ) ) /* Has not effect in this demo as the heap is manually pointed to AHB RAM. */
|
||||
#define configMAX_TASK_NAME_LEN ( 12 )
|
||||
#define configMAX_TASK_NAME_LEN ( 9 )
|
||||
#define configIDLE_SHOULD_YIELD 0
|
||||
#define configQUEUE_REGISTRY_SIZE 10
|
||||
#define configUSE_TRACE_FACILITY 1
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
/* The name of this header file is set by the trace recorder code, but the name
|
||||
of the actual header file is used below. */
|
||||
#include "lpc18xx.h"
|
|
@ -1,14 +1,14 @@
|
|||
/*******************************************************************************
|
||||
* Tracealyzer v2.6.0 Recorder Library
|
||||
* Tracealyzer v2.7.0 Recorder Library
|
||||
* Percepio AB, www.percepio.com
|
||||
*
|
||||
* trcConfig.h
|
||||
*
|
||||
* Configuration parameters for the trace recorder library. Before using the
|
||||
* trace recorder library, please check that the default settings are
|
||||
* appropriate for your system, and if necessary adjust these. Most likely, you
|
||||
* will need to adjust the NTask, NISR, NQueue, NMutex and NSemaphore values to
|
||||
* reflect the number of such objects in your system. These may be
|
||||
* Configuration parameters for the trace recorder library. Before using the
|
||||
* trace recorder library, please check that the default settings are
|
||||
* appropriate for your system, and if necessary adjust these. Most likely, you
|
||||
* will need to adjust the NTask, NISR, NQueue, NMutex and NSemaphore values to
|
||||
* reflect the number of such objects in your system. These may be
|
||||
* over-approximated, although larger values values implies more RAM usage.
|
||||
*
|
||||
* Terms of Use
|
||||
|
@ -16,36 +16,121 @@
|
|||
* use together with Percepio products. You may distribute the recorder library
|
||||
* in its original form, including modifications in trcHardwarePort.c/.h
|
||||
* given that these modification are clearly marked as your own modifications
|
||||
* and documented in the initial comment section of these source files.
|
||||
* This software is the intellectual property of Percepio AB and may not be
|
||||
* sold or in other ways commercially redistributed without explicit written
|
||||
* and documented in the initial comment section of these source files.
|
||||
* This software is the intellectual property of Percepio AB and may not be
|
||||
* sold or in other ways commercially redistributed without explicit written
|
||||
* permission by Percepio AB.
|
||||
*
|
||||
* Disclaimer
|
||||
* The trace tool and recorder library is being delivered to you AS IS and
|
||||
* Percepio AB makes no warranty as to its use or performance. Percepio AB does
|
||||
* not and cannot warrant the performance or results you may obtain by using the
|
||||
* software or documentation. Percepio AB make no warranties, express or
|
||||
* implied, as to noninfringement of third party rights, merchantability, or
|
||||
* fitness for any particular purpose. In no event will Percepio AB, its
|
||||
* technology partners, or distributors be liable to you for any consequential,
|
||||
* incidental or special damages, including any lost profits or lost savings,
|
||||
* even if a representative of Percepio AB has been advised of the possibility
|
||||
* of such damages, or for any claim by any third party. Some jurisdictions do
|
||||
* not allow the exclusion or limitation of incidental, consequential or special
|
||||
* damages, or the exclusion of implied warranties or limitations on how long an
|
||||
* Disclaimer
|
||||
* The trace tool and recorder library is being delivered to you AS IS and
|
||||
* Percepio AB makes no warranty as to its use or performance. Percepio AB does
|
||||
* not and cannot warrant the performance or results you may obtain by using the
|
||||
* software or documentation. Percepio AB make no warranties, express or
|
||||
* implied, as to noninfringement of third party rights, merchantability, or
|
||||
* fitness for any particular purpose. In no event will Percepio AB, its
|
||||
* technology partners, or distributors be liable to you for any consequential,
|
||||
* incidental or special damages, including any lost profits or lost savings,
|
||||
* even if a representative of Percepio AB has been advised of the possibility
|
||||
* of such damages, or for any claim by any third party. Some jurisdictions do
|
||||
* not allow the exclusion or limitation of incidental, consequential or special
|
||||
* damages, or the exclusion of implied warranties or limitations on how long an
|
||||
* implied warranty may last, so the above limitations may not apply to you.
|
||||
*
|
||||
* Copyright Percepio AB, 2013.
|
||||
* Tabs are used for indent in this file (1 tab = 4 spaces)
|
||||
*
|
||||
* Copyright Percepio AB, 2014.
|
||||
* www.percepio.com
|
||||
******************************************************************************/
|
||||
|
||||
#ifndef TRCCONFIG_H
|
||||
#define TRCCONFIG_H
|
||||
|
||||
/******************************************************************************
|
||||
* SELECTED_PORT
|
||||
*
|
||||
* Macro that specifies what hardware port that should be used.
|
||||
* Available ports are:
|
||||
*
|
||||
* Port Name Code Official OS supported
|
||||
* PORT_APPLICATION_DEFINED -2 - -
|
||||
* PORT_NOT_SET -1 - -
|
||||
* PORT_HWIndependent 0 Yes Any
|
||||
* PORT_Win32 1 Yes FreeRTOS on Win32
|
||||
* PORT_Atmel_AT91SAM7 2 No Any
|
||||
* PORT_Atmel_UC3A0 3 No Any
|
||||
* PORT_ARM_CortexM 4 Yes Any
|
||||
* PORT_Renesas_RX600 5 Yes Any
|
||||
* PORT_Microchip_dsPIC_AND_PIC24 6 Yes Any
|
||||
* PORT_TEXAS_INSTRUMENTS_TMS570 7 No Any
|
||||
* PORT_TEXAS_INSTRUMENTS_MSP430 8 No Any
|
||||
* PORT_MICROCHIP_PIC32MX 9 Yes Any
|
||||
* PORT_XILINX_PPC405 10 No FreeRTOS
|
||||
* PORT_XILINX_PPC440 11 No FreeRTOS
|
||||
* PORT_XILINX_MICROBLAZE 12 No Any
|
||||
* PORT_NXP_LPC210X 13 No Any
|
||||
* PORT_MICROCHIP_PIC32MZ 14 Yes Any
|
||||
* PORT_ARM_CORTEX_A9 15 No Any
|
||||
*****************************************************************************/
|
||||
|
||||
#ifndef WIN32
|
||||
// Set the port setting here!
|
||||
#define SELECTED_PORT PORT_ARM_CortexM
|
||||
|
||||
#if (SELECTED_PORT == PORT_NOT_SET)
|
||||
#error "You need to define SELECTED_PORT here!"
|
||||
#endif
|
||||
#else
|
||||
// For Win32 demo projects this is set automatically
|
||||
#define SELECTED_PORT PORT_Win32
|
||||
#endif
|
||||
|
||||
/******************************************************************************
|
||||
* FREERTOS_VERSION
|
||||
*
|
||||
* Specify what version of FreeRTOS that is used. This is necessary compensate
|
||||
* for renamed symbols in the FreeRTOS kernel (does not build if incorrect).
|
||||
*
|
||||
* FREERTOS_VERSION_7_3_OR_7_4 (= 1) If using FreeRTOS v7.3.0 - v7.4.2
|
||||
* FREERTOS_VERSION_7_5_OR_7_6 (= 2) If using FreeRTOS v7.5.0 - v7.6.0
|
||||
* FREERTOS_VERSION_8_0_OR_LATER (= 3) If using FreeRTOS v8.0.0 or later
|
||||
*****************************************************************************/
|
||||
#define FREERTOS_VERSION FREERTOS_VERSION_8_0_OR_LATER
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_RECORDER_STORE_MODE
|
||||
*
|
||||
* Macro which should be defined as one of:
|
||||
* - TRACE_STORE_MODE_RING_BUFFER
|
||||
* - TRACE_STORE_MODE_STOP_WHEN_FULL
|
||||
* Default is TRACE_STORE_MODE_RING_BUFFER.
|
||||
*
|
||||
* With TRACE_RECORDER_STORE_MODE set to TRACE_STORE_MODE_RING_BUFFER, the
|
||||
* events are stored in a ring buffer, i.e., where the oldest events are
|
||||
* overwritten when the buffer becomes full. This allows you to get the last
|
||||
* events leading up to an interesting state, e.g., an error, without having
|
||||
* to store the whole run since startup.
|
||||
*
|
||||
* When TRACE_RECORDER_STORE_MODE is TRACE_STORE_MODE_STOP_WHEN_FULL, the
|
||||
* recording is stopped when the buffer becomes full. This is useful for
|
||||
* recording events following a specific state, e.g., the startup sequence.
|
||||
*****************************************************************************/
|
||||
#define TRACE_RECORDER_STORE_MODE TRACE_STORE_MODE_RING_BUFFER
|
||||
|
||||
/*******************************************************************************
|
||||
* CONFIGURATION RELATED TO CAPACITY AND ALLOCATION
|
||||
* TRACE_SCHEDULING_ONLY
|
||||
*
|
||||
* Macro which should be defined as an integer value.
|
||||
*
|
||||
* If this setting is enabled (= 1), only scheduling events are recorded.
|
||||
* If disabled (= 0), all events are recorded.
|
||||
*
|
||||
* Users of FreeRTOS+Trace Free Edition only displays scheduling events, so this
|
||||
* option can be used to avoid storing unsupported events.
|
||||
*
|
||||
* Default value is 0 (store all enabled events).
|
||||
*
|
||||
******************************************************************************/
|
||||
#define TRACE_SCHEDULING_ONLY 0
|
||||
|
||||
/*******************************************************************************
|
||||
* EVENT_BUFFER_SIZE
|
||||
|
@ -53,64 +138,312 @@
|
|||
* Macro which should be defined as an integer value.
|
||||
*
|
||||
* This defines the capacity of the event buffer, i.e., the number of records
|
||||
* it may store. Each registered event typically use one record (4 byte), but
|
||||
* vTracePrintF may use multiple records depending on the number of data args.
|
||||
* it may store. Most events use one record (4 byte), although some events
|
||||
* require multiple 4-byte records. You should adjust this to the amount of RAM
|
||||
* available in the target system.
|
||||
*
|
||||
* Default value is 1000, which means that 4000 bytes is allocated for the
|
||||
* event buffer.
|
||||
******************************************************************************/
|
||||
|
||||
#define EVENT_BUFFER_SIZE 10000 /* Adjust wrt. to available RAM */
|
||||
|
||||
#define EVENT_BUFFER_SIZE 1000
|
||||
|
||||
/*******************************************************************************
|
||||
* USE_LINKER_PRAGMA
|
||||
* NTask, NISR, NQueue, NSemaphore, NMutex
|
||||
*
|
||||
* Macro which should be defined as an integer value, default is 0.
|
||||
* A group of macros which should be defined as integer values, zero or larger.
|
||||
*
|
||||
* If this is 1, the header file "recorderdata_linker_pragma.h" is included just
|
||||
* before the declaration of RecorderData (in trcBase.c), i.e., the trace data
|
||||
* structure. This allows the user to specify a pragma with linker options.
|
||||
* These define the capacity of the Object Property Table, i.e., the maximum
|
||||
* number of objects active at any given point, within each object class (e.g.,
|
||||
* task, queue, semaphore, ...).
|
||||
*
|
||||
* Example (for IAR Embedded Workbench and NXP LPC17xx):
|
||||
* #pragma location="AHB_RAM_MEMORY"
|
||||
*
|
||||
* This example instructs the IAR linker to place RecorderData in another RAM
|
||||
* bank, the AHB RAM. This can also be used for other compilers with a similar
|
||||
* pragmas for linker options.
|
||||
*
|
||||
* Note that this only applies if using static allocation, see below.
|
||||
* If tasks or other other objects are deleted in your system, this
|
||||
* setting does not limit the total amount of objects created, only the number
|
||||
* of objects that have been successfully created but not yet deleted.
|
||||
*
|
||||
* Using too small values will cause vTraceError to be called, which stores an
|
||||
* error message in the trace that is shown when opening the trace file.
|
||||
*
|
||||
* It can be wise to start with large values for these constants,
|
||||
* unless you are very confident on these numbers. Then do a recording and
|
||||
* check the actual usage by selecting View menu -> Trace Details ->
|
||||
* Resource Usage -> Object Table.
|
||||
******************************************************************************/
|
||||
#define NTask 15
|
||||
#define NISR 4
|
||||
#define NQueue 10
|
||||
#define NSemaphore 10
|
||||
#define NMutex 5
|
||||
#define NTimer 10
|
||||
#define NEventGroup 1
|
||||
|
||||
#define USE_LINKER_PRAGMA 0
|
||||
/******************************************************************************
|
||||
* INCLUDE_MEMMANG_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* This controls if malloc and free calls should be traced. Set this to zero to
|
||||
* exclude malloc/free calls, or one (1) to include such events in the trace.
|
||||
*
|
||||
* Default value is 1.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_MEMMANG_EVENTS 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_USER_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If this is zero (0) the code for creating User Events is excluded to
|
||||
* reduce code size. User Events are application-generated events, like
|
||||
* "printf" but for the trace log instead of console output. User Events are
|
||||
* much faster than a printf and can therefore be used in timing critical code.
|
||||
* See vTraceUserEvent() and vTracePrintF() in trcUser.h
|
||||
*
|
||||
* Default value is 1.
|
||||
*
|
||||
* Note that User Events are only displayed in Professional Edition.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_USER_EVENTS 0
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_ISR_TRACING
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If this is zero (0), the code for recording Interrupt Service Routines is
|
||||
* excluded to reduce code size.
|
||||
*
|
||||
* Default value is 1.
|
||||
*
|
||||
* Note, if the kernel has no central interrupt dispatcher, recording ISRs
|
||||
* require that you insert calls to vTraceStoreISRBegin and vTraceStoreISREnd
|
||||
* in your interrupt handlers.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_ISR_TRACING 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_READY_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If one (1), events are recorded when tasks enter scheduling state "ready".
|
||||
* This uses a lot of space in the event buffer, so excluding "ready events"
|
||||
* will allow for longer traces. Including ready events however allows for
|
||||
* showing the initial pending time before tasks enter the execution state, and
|
||||
* for presenting accurate response times.
|
||||
*
|
||||
* Default value is 1.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_READY_EVENTS 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_NEW_TIME_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If this is zero (1), events will be generated whenever the OS clock is
|
||||
* increased.
|
||||
*
|
||||
* Default value is 0.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_NEW_TIME_EVENTS 0
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_FLOAT_SUPPORT
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If this is zero (0), all references to floating point values are removed,
|
||||
* in case floating point values are not supported by the platform used.
|
||||
* Floating point values are only used in vTracePrintF and its subroutines, to
|
||||
* store float (%f) or double (%lf) arguments.
|
||||
*
|
||||
* vTracePrintF can be used with integer and string arguments in either case.
|
||||
*
|
||||
* Default value is 1.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_FLOAT_SUPPORT 0
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_OBJECT_DELETE
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* This must be enabled (1) if tasks, queues or other
|
||||
* traced kernel objects are deleted at runtime. If no deletes are made, this
|
||||
* can be set to 0 in order to exclude the delete-handling code.
|
||||
*
|
||||
* Default value is 1.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_OBJECT_DELETE 1
|
||||
|
||||
/*******************************************************************************
|
||||
* SYMBOL_TABLE_SIZE
|
||||
*
|
||||
* Macro which should be defined as an integer value.
|
||||
*
|
||||
* This defines the capacity of the symbol table, in bytes. This symbol table
|
||||
* This defines the capacity of the symbol table, in bytes. This symbol table
|
||||
* stores User Events labels and names of deleted tasks, queues, or other kernel
|
||||
* objects. Note that the names of active objects not stored here but in the
|
||||
* Object Table. Thus, if you don't use User Events or delete any kernel
|
||||
* objects you set this to a very low value, e.g. 4, but not zero (0) since
|
||||
* this causes a declaration of a zero-sized array, for which the C compiler
|
||||
* behavior is not standardized and may cause misaligned data.
|
||||
* objects. If you don't use User Events or delete any kernel
|
||||
* objects you set this to a very low value. The minimum recommended value is 4.
|
||||
* A size of zero (0) is not allowed since a zero-sized array may result in a
|
||||
* 32-bit pointer, i.e., using 4 bytes rather than 0.
|
||||
*
|
||||
* Default value is 800.
|
||||
******************************************************************************/
|
||||
#define SYMBOL_TABLE_SIZE 1000
|
||||
#define SYMBOL_TABLE_SIZE 5000
|
||||
|
||||
#if (SYMBOL_TABLE_SIZE == 0)
|
||||
#error "SYMBOL_TABLE_SIZE may not be zero!"
|
||||
#endif
|
||||
|
||||
/******************************************************************************
|
||||
* NameLenTask, NameLenQueue, ...
|
||||
*
|
||||
* Macros that specify the maximum lengths (number of characters) for names of
|
||||
* kernel objects, such as tasks and queues. If longer names are used, they will
|
||||
* be truncated when stored in the recorder.
|
||||
*****************************************************************************/
|
||||
#define NameLenTask 15
|
||||
#define NameLenISR 15
|
||||
#define NameLenQueue 15
|
||||
#define NameLenSemaphore 15
|
||||
#define NameLenMutex 15
|
||||
#define NameLenTimer 15
|
||||
#define NameLenEventGroup 15
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_DATA_ALLOCATION
|
||||
*
|
||||
* This defines how to allocate the recorder data structure, i.e., using a
|
||||
* static declaration or using a dynamic allocation in runtime (malloc).
|
||||
*
|
||||
* Should be one of these two options:
|
||||
* - TRACE_DATA_ALLOCATION_STATIC (default)
|
||||
* - TRACE_DATA_ALLOCATION_DYNAMIC
|
||||
*
|
||||
* Using static allocation has the benefits of compile-time errors if the buffer
|
||||
* is too large (too large constants in trcConfig.h) and no need to call the
|
||||
* initialization routine (xTraceInitTraceData).
|
||||
*
|
||||
* Using dynamic allocation may give more flexibility in some cases.
|
||||
*****************************************************************************/
|
||||
#define TRACE_DATA_ALLOCATION TRACE_DATA_ALLOCATION_STATIC
|
||||
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*** ADVANCED SETTINGS ********************************************************
|
||||
******************************************************************************
|
||||
* The remaining settings are not necessary to modify but allows for optimizing
|
||||
* the recorder setup for your specific needs, e.g., to exclude events that you
|
||||
* are not interested in, in order to get longer traces.
|
||||
*****************************************************************************/
|
||||
|
||||
/******************************************************************************
|
||||
* HEAP_SIZE_BELOW_16M
|
||||
*
|
||||
* An integer constant that can be used to reduce the buffer usage of memory
|
||||
* allocation events (malloc/free). This value should be 1 if the heap size is
|
||||
* below 16 MB (2^24 byte), and you can live with reported addresses showing the
|
||||
* lower 24 bits only. If 0, you get the full 32-bit addresses.
|
||||
*
|
||||
* Default value is 0.
|
||||
******************************************************************************/
|
||||
#define HEAP_SIZE_BELOW_16M 0
|
||||
|
||||
/******************************************************************************
|
||||
* USE_LINKER_PRAGMA
|
||||
*
|
||||
* Macro which should be defined as an integer value, default is 0.
|
||||
*
|
||||
* If this is 1, the header file "recorderdata_linker_pragma.h" is included just
|
||||
* before the declaration of RecorderData (in trcBase.c), i.e., the trace data
|
||||
* structure. This allows the user to specify a pragma with linker options.
|
||||
*
|
||||
* Example (for IAR Embedded Workbench and NXP LPC17xx):
|
||||
* #pragma location="AHB_RAM_MEMORY"
|
||||
*
|
||||
* This example instructs the IAR linker to place RecorderData in another RAM
|
||||
* bank, the AHB RAM. This can also be used for other compilers with a similar
|
||||
* pragmas for linker options.
|
||||
*
|
||||
* Note that this only applies if using static allocation, see below.
|
||||
******************************************************************************/
|
||||
#define USE_LINKER_PRAGMA 0
|
||||
|
||||
/******************************************************************************
|
||||
* USE_IMPLICIT_IFE_RULES
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* Tracealyzer groups the events into actor instances, based on context-switches
|
||||
* and a definition of "Instance Finish Events", or IFEs. These are kernel calls
|
||||
* considered to be the last event in a task instance. Some kernel calls are
|
||||
* considered IFEs by default (e.g., delay functions), but it is also possible
|
||||
* to specify this individually for each task (see vTraceTaskInstanceFinish).
|
||||
*
|
||||
* If USE_IMPLICIT_IFE_RULES is one (1), the default IFEs will be enabled, which
|
||||
* gives a "typical" grouping of events into instances. You can combine this
|
||||
* with calls to vTraceTaskInstanceFinish for specific tasks.
|
||||
*
|
||||
* If USE_IMPLICIT_IFE_RULES is zero (0), the implicit IFEs are disabled and all
|
||||
* events withing each task is then shown as a single instance, unless you call
|
||||
* vTraceTaskInstanceFinish() at suitable locations to mark the IFEs.
|
||||
*****************************************************************************/
|
||||
#define USE_IMPLICIT_IFE_RULES 1
|
||||
|
||||
/******************************************************************************
|
||||
* USE_16BIT_OBJECT_HANDLES
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
*
|
||||
* If set to 0 (zero), the recorder uses 8-bit handles to identify kernel
|
||||
* objects such as tasks and queues. This limits the supported number of
|
||||
* concurrently active objects to 255 of each type (object class).
|
||||
*
|
||||
* If set to 1 (one), the recorder uses 16-bit handles to identify kernel
|
||||
* objects such as tasks and queues. This limits the supported number of
|
||||
* concurrent objects to 65535 of each type (object class). However, since the
|
||||
* object property table is limited to 64 KB, the practical limit is about
|
||||
* 3000 objects in total.
|
||||
*
|
||||
* Default is 0.
|
||||
*
|
||||
* NOTE: An object with handle above 255 will use an extra 4-byte record in
|
||||
* the event buffer whenever referenced. Moreover, some internal tables in the
|
||||
* recorder gets larger when using 16-bit handles. The additional RAM usage is
|
||||
* 5-10 byte plus 1 byte per kernel object i.e., task, queue, mutex, etc.
|
||||
*****************************************************************************/
|
||||
#define USE_16BIT_OBJECT_HANDLES 0
|
||||
|
||||
/******************************************************************************
|
||||
* USE_TRACE_ASSERT
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is one (1), the TRACE_ASSERT macro will verify that a condition is
|
||||
* true. If the condition is false, vTraceError() will be called.
|
||||
* This is used on several places in the recorder code for sanity checks on
|
||||
* parameters. Can be switched off to reduce CPU usage of the tracing.
|
||||
*****************************************************************************/
|
||||
#define USE_TRACE_ASSERT 1
|
||||
|
||||
/*******************************************************************************
|
||||
* USE_SEPARATE_USER_EVENT_BUFFER
|
||||
*
|
||||
* Macro which should be defined as an integer value.
|
||||
* Default is zero (0).
|
||||
*
|
||||
* This enables and disables the use of the separate user event buffer.
|
||||
* This enables and disables the use of the separate user event buffer. Using
|
||||
* this separate buffer has the benefit of not overwriting the user events with
|
||||
* kernel events (usually generated at a much higher rate), i.e., when using
|
||||
* ring-buffer mode.
|
||||
*
|
||||
* Note: When using the separate user event buffer, you may get an artificial
|
||||
* task instance named "Unknown actor". This is added as a placeholder when the
|
||||
* task instance named "Unknown actor". This is added as a placeholder when the
|
||||
* user event history is longer than the task scheduling history.
|
||||
******************************************************************************/
|
||||
#define USE_SEPARATE_USER_EVENT_BUFFER 0
|
||||
|
@ -125,7 +458,7 @@
|
|||
*
|
||||
* Only in use if USE_SEPARATE_USER_EVENT_BUFFER is set to 1.
|
||||
******************************************************************************/
|
||||
#define USER_EVENT_BUFFER_SIZE 500
|
||||
#define USER_EVENT_BUFFER_SIZE 10
|
||||
|
||||
/*******************************************************************************
|
||||
* USER_EVENT_CHANNELS
|
||||
|
@ -138,397 +471,5 @@
|
|||
******************************************************************************/
|
||||
#define CHANNEL_FORMAT_PAIRS 32
|
||||
|
||||
/*******************************************************************************
|
||||
* NTask, NISR, NQueue, NSemaphore, NMutex
|
||||
*
|
||||
* A group of Macros which should be defined as an integer value of zero (0)
|
||||
* or larger.
|
||||
*
|
||||
* This defines the capacity of the Object Property Table - the maximum number
|
||||
* of objects active at any given point within each object class.
|
||||
*
|
||||
* NOTE: In case objects are deleted and created during runtime, this setting
|
||||
* does not limit the total amount of objects, only the number of concurrently
|
||||
* active objects.
|
||||
*
|
||||
* Using too small values will give an error message through the vTraceError
|
||||
* routine, which makes the error message appear when opening the trace data
|
||||
* in Tracealyzer. If you are using the recorder status monitor task,
|
||||
* any error messages are displayed in console prints, assuming that the
|
||||
* print macro has been defined properly (vConsolePrintMessage).
|
||||
*
|
||||
* It can be wise to start with very large values for these constants,
|
||||
* unless you are very confident on these numbers. Then do a recording and
|
||||
* check the actual usage in Tracealyzer. This is shown by selecting
|
||||
* View -> Trace Details -> Resource Usage -> Object Table
|
||||
*
|
||||
* NOTE 2: Remember to account for all tasks and other objects created by
|
||||
* the kernel, such as the IDLE task, any timer tasks, and any tasks created
|
||||
* by other 3rd party software components, such as communication stacks.
|
||||
* Moreover, one task slot is used to indicate "(startup)", i.e., a fictive
|
||||
* task that represent the time before the scheduler starts.
|
||||
* NTask should thus be at least 2-3 slots larger than your application task count.
|
||||
*
|
||||
******************************************************************************/
|
||||
#define NTask 15
|
||||
#define NISR 4
|
||||
#define NQueue 10
|
||||
#define NSemaphore 10
|
||||
#define NMutex 5
|
||||
#define NTimer 10
|
||||
#define NEventGroup 1
|
||||
|
||||
/* Maximum object name length for each class (includes zero termination) */
|
||||
#define NameLenTask configMAX_TASK_NAME_LEN
|
||||
#define NameLenISR 10
|
||||
#define NameLenQueue 15
|
||||
#define NameLenSemaphore 15
|
||||
#define NameLenMutex 15
|
||||
#define NameLenTimer 15
|
||||
#define NameLenEventGroup 15
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_DESCRIPTION
|
||||
*
|
||||
* Macro which should be defined as a string.
|
||||
*
|
||||
* This string is stored in the trace and displayed in Tracealyzer. Can be
|
||||
* used to store, e.g., system version or build date. This is also used to store
|
||||
* internal error messages from the recorder, which if occurs overwrites the
|
||||
* value defined here. This may be maximum 256 chars.
|
||||
*****************************************************************************/
|
||||
#define TRACE_DESCRIPTION "FreeRTOS+Trace Demo"
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_DESCRIPTION_MAX_LENGTH
|
||||
*
|
||||
* The maximum length (including zero termination) for the TRACE_DESCRIPTION
|
||||
* string. Since this string also is used for internal error messages from the
|
||||
* recorder do not make it too short, as this may truncate the error messages.
|
||||
* Default is 80.
|
||||
* Maximum allowed length is 256 - the trace will fail to load if longer.
|
||||
*****************************************************************************/
|
||||
#define TRACE_DESCRIPTION_MAX_LENGTH 80
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_DATA_ALLOCATION
|
||||
*
|
||||
* This defines how to allocate the recorder data structure, i.e., using a
|
||||
* static declaration or using a dynamic allocation in runtime (malloc).
|
||||
*
|
||||
* Should be one of these two options:
|
||||
* - TRACE_DATA_ALLOCATION_STATIC (default)
|
||||
* - TRACE_DATA_ALLOCATION_DYNAMIC
|
||||
*
|
||||
* Using static allocation has the benefits of compile-time errors if the buffer
|
||||
* is too large (too large constants in trcConfig.h) and no need to call the
|
||||
* initialization routine (xTraceInitTraceData).
|
||||
*
|
||||
* Using dynamic allocation may give more flexibility in some cases.
|
||||
*****************************************************************************/
|
||||
|
||||
#define TRACE_DATA_ALLOCATION TRACE_DATA_ALLOCATION_STATIC
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* CONFIGURATION REGARDING WHAT CODE/FEATURES TO INCLUDE
|
||||
*****************************************************************************/
|
||||
|
||||
/******************************************************************************
|
||||
* USE_TRACE_ASSERT
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 0.
|
||||
*
|
||||
* If this is one (1), the TRACE_ASSERT macro will verify that a condition is
|
||||
* true. If the condition is false, vTraceError() will be called.
|
||||
*****************************************************************************/
|
||||
#define USE_TRACE_ASSERT 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_FLOAT_SUPPORT
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is zero (0), all references to floating point values are removed,
|
||||
* in case floating point values are not supported by the platform used.
|
||||
* Floating point values are only used in vTracePrintF and its subroutines, to
|
||||
* store float (%f) or double (%lf) argments.
|
||||
*
|
||||
* Note: vTracePrintF can still be used with integer and string arguments in
|
||||
* either case.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_FLOAT_SUPPORT 0
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_USER_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is zero (0) the code for creating User Events is excluded to
|
||||
* reduce code size. User Events are application-generated events, like
|
||||
* "printf" but for the trace log instead of console output. User Events are
|
||||
* much faster than a printf and can therefore be used in timing critical code.
|
||||
* See vTraceUserEvent() and vTracePrintF() in trcUser.h
|
||||
*
|
||||
* Note that User Events are not displayed in FreeRTOS+Trace Free Edition.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_USER_EVENTS 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_READY_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is zero (0), the code for recording Ready events is
|
||||
* excluded. Note, this will make it impossible to calculate the correct
|
||||
* response times.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_READY_EVENTS 1
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_NEW_TIME_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 0.
|
||||
*
|
||||
* If this is zero (1), events will be generated whenever the os clock is
|
||||
* increased.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_NEW_TIME_EVENTS 0
|
||||
|
||||
/*****************************************************************************
|
||||
* INCLUDE_ISR_TRACING
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* If this is zero (0), the code for recording Interrupt Service Routines is
|
||||
* excluded to reduce code size.
|
||||
*
|
||||
* Note, if the kernel has no central interrupt dispatcher, recording ISRs
|
||||
* require that you insert calls to vTraceStoreISRBegin and vTraceStoreISREnd
|
||||
* in your interrupt handlers.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_ISR_TRACING 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_OBJECT_DELETE
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* This must be enabled (1) if tasks, queues or other
|
||||
* traced kernel objects are deleted at runtime. If no deletes are made, this
|
||||
* can be set to 0 in order to exclude the delete-handling code.
|
||||
*****************************************************************************/
|
||||
#ifdef INCLUDE_OBJECT_DELETE
|
||||
#undef INCLUDE_OBJECT_DELETE
|
||||
#endif
|
||||
|
||||
#define INCLUDE_OBJECT_DELETE 1
|
||||
|
||||
/******************************************************************************
|
||||
* INCLUDE_MEMMANG_EVENTS
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* This controls if malloc and free calls should be traced. Set this to zero to
|
||||
* exclude malloc/free calls from the tracing.
|
||||
*****************************************************************************/
|
||||
#define INCLUDE_MEMMANG_EVENTS 0
|
||||
|
||||
/******************************************************************************
|
||||
* CONFIGURATION RELATED TO BEHAVIOR
|
||||
*****************************************************************************/
|
||||
|
||||
/******************************************************************************
|
||||
* TRACE_RECORDER_STORE_MODE
|
||||
*
|
||||
* Macro which should be defined as one of:
|
||||
* - TRACE_STORE_MODE_RING_BUFFER
|
||||
* - TRACE_STORE_MODE_STOP_WHEN_FULL
|
||||
* Default is TRACE_STORE_MODE_RING_BUFFER.
|
||||
*
|
||||
* With TRACE_RECORDER_STORE_MODE set to TRACE_STORE_MODE_RING_BUFFER, the events are
|
||||
* stored in a ring buffer, i.e., where the oldest events are overwritten when
|
||||
* the buffer becomes full. This allows you to get the last events leading up
|
||||
* to an interesting state, e.g., an error, without having a large trace buffer
|
||||
* for string the whole run since startup. In this mode, the recorder can run
|
||||
* "forever" as the buffer never gets full, i.e., in the sense that it always
|
||||
* has room for more events.
|
||||
*
|
||||
* To fetch the trace in mode TRACE_STORE_MODE_RING_BUFFER, you need to first halt the
|
||||
* system using your debugger and then do a RAM dump, or to explicitly stop the
|
||||
* recorder using vTraceStop() and then store/upload the trace data using a
|
||||
* task that you need to provide yourself. The trace data is found in the struct
|
||||
* RecorderData, initialized in trcBase.c.
|
||||
*
|
||||
* Note that, if you upload the trace using a RAM dump, i.e., when the system is
|
||||
* halted on a breakpoint or by a debugger command, there is no need to stop the
|
||||
* recorder first.
|
||||
*
|
||||
* When TRACE_RECORDER_STORE_MODE is TRACE_STORE_MODE_STOP_WHEN_FULL, the recording is
|
||||
* stopped when the buffer becomes full. When the recorder stops itself this way
|
||||
* vTracePortEnd() is called which allows for custom actions, such as triggering
|
||||
* a task that stores the trace buffer, i.e., in case taking a RAM dump
|
||||
* using an on-chip debugger is not possible. In the Windows port, vTracePortEnd
|
||||
* saves the trace to file directly, but this is not recommended in a real-time
|
||||
* system since the scheduler is blocked during the processing of vTracePortEnd.
|
||||
*****************************************************************************/
|
||||
|
||||
#define TRACE_RECORDER_STORE_MODE TRACE_STORE_MODE_RING_BUFFER
|
||||
|
||||
/******************************************************************************
|
||||
* STOP_AFTER_N_EVENTS
|
||||
*
|
||||
* Macro which should be defined as an integer value, or not defined.
|
||||
* Default is -1
|
||||
*
|
||||
* STOP_AFTER_N_EVENTS is intended for tests of the ring buffer mode (when
|
||||
* RECORDER_STORE_MODE is STORE_MODE_RING_BUFFER). It stops the recording when
|
||||
* the specified number of events has been observed. This value can be larger
|
||||
* than the buffer size, to allow for test of the "wrapping around" that occurs
|
||||
* in ring buffer mode . A negative value (or no definition of this macro)
|
||||
* disables this feature.
|
||||
*****************************************************************************/
|
||||
#define STOP_AFTER_N_EVENTS -1
|
||||
|
||||
/******************************************************************************
|
||||
* USE_IMPLICIT_IFE_RULES
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 1.
|
||||
*
|
||||
* ### Instance Finish Events (IFE) ###
|
||||
*
|
||||
* For tasks with "infinite" main loops (non-terminating tasks), the concept
|
||||
* of a task instance has no clear definition, it is an application-specific
|
||||
* thing. Tracealyzer allows you to define Instance Finish Events (IFEs),
|
||||
* which marks the point in a cyclic task when the "task instance" ends.
|
||||
* The IFE is a blocking kernel call, typically in the main loop of a task
|
||||
* which typically reads a message queue, waits for a semaphore or performs
|
||||
* an explicit delay.
|
||||
*
|
||||
* If USE_IMPLICIT_IFE_RULES is one (1), the kernel macros (trcKernelPort.h)
|
||||
* will define what kernel calls are considered by default to be IFEs.
|
||||
*
|
||||
* However, Implicit IFEs only applies to blocking kernel calls. If a
|
||||
* service reads a message without blocking, it does not create a new
|
||||
* instance since no blocking occurred.
|
||||
*
|
||||
* Moreover, the actual IFE might sometimes be another blocking call. We
|
||||
* therefore allow for user-defined Explicit IFEs by calling
|
||||
*
|
||||
* vTraceTaskInstanceIsFinished()
|
||||
*
|
||||
* right before the kernel call considered as IFE. This does not create an
|
||||
* additional event but instead stores the service code and object handle
|
||||
* of the IFE call as properties of the task.
|
||||
*
|
||||
* If using Explicit IFEs and the task also calls an Implicit IFE, this may
|
||||
* result in additional incorrect task instances.
|
||||
* This is solved by disabling the Implicit IFEs for the task, by adding
|
||||
* a call to
|
||||
*
|
||||
* vTraceTaskSkipDefaultInstanceFinishedEvents()
|
||||
*
|
||||
* in the very beginning of that task. This allows you to combine Explicit IFEs
|
||||
* for some tasks with Implicit IFEs for the rest of the tasks, if
|
||||
* USE_IMPLICIT_IFE_RULES is 1.
|
||||
*
|
||||
* By setting USE_IMPLICIT_IFE_RULES to zero (0), the implicit IFEs are disabled
|
||||
* for all tasks. Tasks will then be considered to have a single instance only,
|
||||
* covering all execution fragments, unless you define an explicit IFE in each
|
||||
* task by calling vTraceTaskInstanceIsFinished before the blocking call.
|
||||
*****************************************************************************/
|
||||
#define USE_IMPLICIT_IFE_RULES 1
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* USE_16BIT_OBJECT_HANDLES
|
||||
*
|
||||
* Macro which should be defined as either zero (0) or one (1).
|
||||
* Default is 0.
|
||||
*
|
||||
* If set to 0 (zero), the recorder uses 8-bit handles to identify kernel
|
||||
* objects such as tasks and queues. This limits the supported number of
|
||||
* concurrently active objects to 255 of each type (object class).
|
||||
*
|
||||
* If set to 1 (one), the recorder uses 16-bit handles to identify kernel
|
||||
* objects such as tasks and queues. This limits the supported number of
|
||||
* concurrent objects to 65535 of each type (object class). However, since the
|
||||
* object property table is limited to 64 KB, the practical limit is about
|
||||
* 3000 objects in total.
|
||||
*
|
||||
* NOTE: An object with a high ID (> 255) will generate an extra event
|
||||
* (= 4 byte) in the event buffer.
|
||||
*
|
||||
* NOTE: Some internal tables in the recorder gets larger when using 16-bit
|
||||
* handles. The additional RAM usage is 5-10 byte plus 1 byte per kernel object
|
||||
*, i.e., task, queue, semaphore, mutex, etc.
|
||||
*****************************************************************************/
|
||||
#define USE_16BIT_OBJECT_HANDLES 0
|
||||
|
||||
/****** Port Name ******************** Code ** Official ** OS Platform ******
|
||||
* PORT_APPLICATION_DEFINED -2 - -
|
||||
* PORT_NOT_SET -1 - -
|
||||
* PORT_HWIndependent 0 Yes Any
|
||||
* PORT_Win32 1 Yes FreeRTOS Win32
|
||||
* PORT_Atmel_AT91SAM7 2 No Any
|
||||
* PORT_Atmel_UC3A0 3 No Any
|
||||
* PORT_ARM_CortexM 4 Yes Any
|
||||
* PORT_Renesas_RX600 5 Yes Any
|
||||
* PORT_Microchip_dsPIC_AND_PIC24 6 Yes Any
|
||||
* PORT_TEXAS_INSTRUMENTS_TMS570 7 No Any
|
||||
* PORT_TEXAS_INSTRUMENTS_MSP430 8 No Any
|
||||
* PORT_MICROCHIP_PIC32 9 No Any
|
||||
* PORT_XILINX_PPC405 10 No FreeRTOS
|
||||
* PORT_XILINX_PPC440 11 No FreeRTOS
|
||||
* PORT_XILINX_MICROBLAZE 12 No Any
|
||||
* PORT_NXP_LPC210X 13 No Any
|
||||
*****************************************************************************/
|
||||
#define SELECTED_PORT PORT_ARM_CortexM
|
||||
|
||||
#if (SELECTED_PORT == PORT_NOT_SET)
|
||||
#error "You need to define SELECTED_PORT here!"
|
||||
#endif
|
||||
|
||||
/******************************************************************************
|
||||
* USE_PRIMASK_CS (for Cortex M devices only)
|
||||
*
|
||||
* An integer constant that selects between two options for the critical
|
||||
* sections of the recorder library.
|
||||
*
|
||||
* 0: The default FreeRTOS critical section (BASEPRI) - default setting
|
||||
* 1: Always disable ALL interrupts (using PRIMASK)
|
||||
*
|
||||
* Option 0 uses the standard FreeRTOS macros for critical sections.
|
||||
* However, on Cortex-M devices they only disable interrupts with priorities
|
||||
* below a certain configurable level, while higher priority ISRs remain active.
|
||||
* Such high-priority ISRs may not use the recorder functions in this mode.
|
||||
*
|
||||
* Option 1 allows you to safely call the recorder from any ISR, independent of
|
||||
* the interrupt priority. This mode may however cause higher IRQ latencies
|
||||
* (some microseconds) since ALL configurable interrupts are disabled during
|
||||
* the recorder's critical sections in this mode, using the PRIMASK register.
|
||||
******************************************************************************/
|
||||
#define USE_PRIMASK_CS 0
|
||||
|
||||
/******************************************************************************
|
||||
* HEAP_SIZE_BELOW_16M
|
||||
*
|
||||
* An integer constant that can be used to reduce the buffer usage of memory
|
||||
* allocation events (malloc/free). This value should be 1 if the heap size is
|
||||
* below 16 MB (2^24 byte), and you can live with addresses truncated to the
|
||||
* lower 24 bit. Otherwise set it to 0 to get the full 32-bit addresses.
|
||||
******************************************************************************/
|
||||
#define HEAP_SIZE_BELOW_16M 0
|
||||
|
||||
#endif
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue