+
+/// @cond 0
+/**INDENT-OFF**/
+#ifdef __cplusplus
+extern "C" {
+#endif
+/**INDENT-ON**/
+/// @endcond
+
+#undef errno
+extern int errno;
+extern int _end;
+
+extern caddr_t _sbrk(int incr);
+extern int link(char *old, char *new);
+extern int _close(int file);
+extern int _fstat(int file, struct stat *st);
+extern int _isatty(int file);
+extern int _lseek(int file, int ptr, int dir);
+extern void _exit(int status);
+extern void _kill(int pid, int sig);
+extern int _getpid(void);
+
+extern caddr_t _sbrk(int incr)
+{
+ static unsigned char *heap = NULL;
+ unsigned char *prev_heap;
+
+ if (heap == NULL) {
+ heap = (unsigned char *)&_end;
+ }
+ prev_heap = heap;
+
+ heap += incr;
+
+ return (caddr_t) prev_heap;
+}
+
+extern int link(char *old, char *new)
+{
+ ( void ) old;
+ ( void ) new;
+ return -1;
+}
+
+extern int _close(int file)
+{
+ ( void ) file;
+ return -1;
+}
+
+extern int _fstat(int file, struct stat *st)
+{
+ ( void ) file;
+ ( void ) st;
+ st->st_mode = S_IFCHR;
+
+ return 0;
+}
+
+extern int _isatty(int file)
+{
+ ( void ) file;
+ return 1;
+}
+
+extern int _lseek(int file, int ptr, int dir)
+{
+ ( void ) file;
+ ( void ) ptr;
+ ( void ) dir;
+ return 0;
+}
+
+extern void _exit(int status)
+{
+ printf("Exiting with status %d.\n", status);
+
+ for (;;);
+}
+
+extern void _kill(int pid, int sig)
+{
+ ( void ) pid;
+ ( void ) sig;
+ return;
+}
+
+extern int _getpid(void)
+{
+ return -1;
+}
+
+/// @cond 0
+/**INDENT-OFF**/
+#ifdef __cplusplus
+}
+#endif
+/**INDENT-ON**/
+/// @endcond
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/arm_math.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/arm_math.h
new file mode 100644
index 000000000..b01681c63
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/arm_math.h
@@ -0,0 +1,7057 @@
+/* ----------------------------------------------------------------------
+ * Copyright (C) 2010-2011 ARM Limited. All rights reserved.
+ *
+ * $Date: 15. July 2011
+ * $Revision: V1.0.10
+ *
+ * Project: CMSIS DSP Library
+ * Title: arm_math.h
+ *
+ * Description: Public header file for CMSIS DSP Library
+ *
+ * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+ *
+ * Version 1.0.10 2011/7/15
+ * Big Endian support added and Merged M0 and M3/M4 Source code.
+ *
+ * Version 1.0.3 2010/11/29
+ * Re-organized the CMSIS folders and updated documentation.
+ *
+ * Version 1.0.2 2010/11/11
+ * Documentation updated.
+ *
+ * Version 1.0.1 2010/10/05
+ * Production release and review comments incorporated.
+ *
+ * Version 1.0.0 2010/09/20
+ * Production release and review comments incorporated.
+ * -------------------------------------------------------------------- */
+
+/**
+ \mainpage CMSIS DSP Software Library
+ *
+ * Introduction
+ *
+ * This user manual describes the CMSIS DSP software library,
+ * a suite of common signal processing functions for use on Cortex-M processor based devices.
+ *
+ * The library is divided into a number of modules each covering a specific category:
+ * - Basic math functions
+ * - Fast math functions
+ * - Complex math functions
+ * - Filters
+ * - Matrix functions
+ * - Transforms
+ * - Motor control functions
+ * - Statistical functions
+ * - Support functions
+ * - Interpolation functions
+ *
+ * The library has separate functions for operating on 8-bit integers, 16-bit integers,
+ * 32-bit integer and 32-bit floating-point values.
+ *
+ * Processor Support
+ *
+ * The library is completely written in C and is fully CMSIS compliant.
+ * High performance is achieved through maximum use of Cortex-M4 intrinsics.
+ *
+ * The supplied library source code also builds and runs on the Cortex-M3 and Cortex-M0 processor,
+ * with the DSP intrinsics being emulated through software.
+ *
+ *
+ * Toolchain Support
+ *
+ * The library has been developed and tested with MDK-ARM version 4.21.
+ * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
+ *
+ * Using the Library
+ *
+ * The library installer contains prebuilt versions of the libraries in the Lib
folder.
+ * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
+ * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
+ * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
+ * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
+ * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
+ * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
+ *
+ * The library functions are declared in the public file arm_math.h
which is placed in the Include
folder.
+ * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
+ * public header file arm_math.h
for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+ * Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or
+ * ARM_MATH_CM0 depending on the target processor in the application.
+ *
+ * Examples
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Building the Library
+ *
+ * The library installer contains project files to re build libraries on MDK Tool chain in the CMSIS\\DSP_Lib\\Source\\ARM
folder.
+ * - arm_cortexM0b_math.uvproj
+ * - arm_cortexM0l_math.uvproj
+ * - arm_cortexM3b_math.uvproj
+ * - arm_cortexM3l_math.uvproj
+ * - arm_cortexM4b_math.uvproj
+ * - arm_cortexM4l_math.uvproj
+ * - arm_cortexM4bf_math.uvproj
+ * - arm_cortexM4lf_math.uvproj
+ *
+ * Each library project have differant pre-processor macros.
+ *
+ * ARM_MATH_CMx:
+ * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
+ * and ARM_MATH_CM0 for building library on cortex-M0 target.
+ *
+ * ARM_MATH_BIG_ENDIAN:
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * ARM_MATH_MATRIX_CHECK:
+ * Define macro for checking on the input and output sizes of matrices
+ *
+ * ARM_MATH_ROUNDING:
+ * Define macro for rounding on support functions
+ *
+ * __FPU_PRESENT:
+ * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
+ *
+ *
+ * The project can be built by opening the appropriate project in MDK-ARM 4.21 chain and defining the optional pre processor MACROs detailed above.
+ *
+ * Copyright Notice
+ *
+ * Copyright (C) 2010 ARM Limited. All rights reserved.
+ */
+
+
+/**
+ * @defgroup groupMath Basic Math Functions
+ */
+
+/**
+ * @defgroup groupFastMath Fast Math Functions
+ * This set of functions provides a fast approximation to sine, cosine, and square root.
+ * As compared to most of the other functions in the CMSIS math library, the fast math functions
+ * operate on individual values and not arrays.
+ * There are separate functions for Q15, Q31, and floating-point data.
+ *
+ */
+
+/**
+ * @defgroup groupCmplxMath Complex Math Functions
+ * This set of functions operates on complex data vectors.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * In the API functions, the number of samples in a complex array refers
+ * to the number of complex values; the array contains twice this number of
+ * real values.
+ */
+
+/**
+ * @defgroup groupFilters Filtering Functions
+ */
+
+/**
+ * @defgroup groupMatrix Matrix Functions
+ *
+ * This set of functions provides basic matrix math operations.
+ * The functions operate on matrix data structures. For example,
+ * the type
+ * definition for the floating-point matrix structure is shown
+ * below:
+ *
+ * typedef struct
+ * {
+ * uint16_t numRows; // number of rows of the matrix.
+ * uint16_t numCols; // number of columns of the matrix.
+ * float32_t *pData; // points to the data of the matrix.
+ * } arm_matrix_instance_f32;
+ *
+ * There are similar definitions for Q15 and Q31 data types.
+ *
+ * The structure specifies the size of the matrix and then points to
+ * an array of data. The array is of size numRows X numCols
+ * and the values are arranged in row order. That is, the
+ * matrix element (i, j) is stored at:
+ *
+ * pData[i*numCols + j]
+ *
+ *
+ * \par Init Functions
+ * There is an associated initialization function for each type of matrix
+ * data structure.
+ * The initialization function sets the values of the internal structure fields.
+ * Refer to the function arm_mat_init_f32()
, arm_mat_init_q31()
+ * and arm_mat_init_q15()
for floating-point, Q31 and Q15 types, respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure. For example:
+ *
+ * arm_matrix_instance_f32 S = {nRows, nColumns, pData};
+ * arm_matrix_instance_q31 S = {nRows, nColumns, pData};
+ * arm_matrix_instance_q15 S = {nRows, nColumns, pData};
+ *
+ * where nRows
specifies the number of rows, nColumns
+ * specifies the number of columns, and pData
points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices. For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns. If the size check fails the functions return:
+ *
+ * ARM_MATH_SIZE_MISMATCH
+ *
+ * Otherwise the functions return
+ *
+ * ARM_MATH_SUCCESS
+ *
+ * There is some overhead associated with this matrix size checking.
+ * The matrix size checking is enabled via the \#define
+ *
+ * ARM_MATH_MATRIX_CHECK
+ *
+ * within the library project settings. By default this macro is defined
+ * and size checking is enabled. By changing the project settings and
+ * undefining this macro size checking is eliminated and the functions
+ * run a bit faster. With size checking disabled the functions always
+ * return ARM_MATH_SUCCESS
.
+ */
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+/**
+ * @defgroup groupExamples Examples
+ */
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
+
+#if defined (ARM_MATH_CM4)
+ #include "core_cm4.h"
+#elif defined (ARM_MATH_CM3)
+ #include "core_cm3.h"
+#elif defined (ARM_MATH_CM0)
+ #include "core_cm0.h"
+#else
+#include "ARMCM4.h"
+#warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
+#endif
+
+#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
+#include "string.h"
+ #include "math.h"
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+ /**
+ * @brief Macros required for reciprocal calculation in Normalized LMS
+ */
+
+#define DELTA_Q31 (0x100)
+#define DELTA_Q15 0x5
+#define INDEX_MASK 0x0000003F
+#define PI 3.14159265358979f
+
+ /**
+ * @brief Macros required for SINE and COSINE Fast math approximations
+ */
+
+#define TABLE_SIZE 256
+#define TABLE_SPACING_Q31 0x800000
+#define TABLE_SPACING_Q15 0x80
+
+ /**
+ * @brief Macros required for SINE and COSINE Controller functions
+ */
+ /* 1.31(q31) Fixed value of 2/360 */
+ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING 0xB60B61
+
+
+ /**
+ * @brief Error status returned by some functions in the library.
+ */
+
+ typedef enum
+ {
+ ARM_MATH_SUCCESS = 0, /**< No error */
+ ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
+ ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
+ ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
+ ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
+ ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
+ ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
+ } arm_status;
+
+ /**
+ * @brief 8-bit fractional data type in 1.7 format.
+ */
+ typedef int8_t q7_t;
+
+ /**
+ * @brief 16-bit fractional data type in 1.15 format.
+ */
+ typedef int16_t q15_t;
+
+ /**
+ * @brief 32-bit fractional data type in 1.31 format.
+ */
+ typedef int32_t q31_t;
+
+ /**
+ * @brief 64-bit fractional data type in 1.63 format.
+ */
+ typedef int64_t q63_t;
+
+ /**
+ * @brief 32-bit floating-point type definition.
+ */
+ typedef float float32_t;
+
+ /**
+ * @brief 64-bit floating-point type definition.
+ */
+ typedef double float64_t;
+
+ /**
+ * @brief definition to read/write two 16 bit values.
+ */
+#define __SIMD32(addr) (*(int32_t **) & (addr))
+
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
+ /**
+ * @brief definition to pack two 16 bit values.
+ */
+#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+
+#endif
+
+
+ /**
+ * @brief definition to pack four 8 bit values.
+ */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#else
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+
+#endif
+
+
+ /**
+ * @brief Clips Q63 to Q31 values.
+ */
+ __STATIC_INLINE q31_t clip_q63_to_q31(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+ }
+
+ /**
+ * @brief Clips Q63 to Q15 values.
+ */
+ __STATIC_INLINE q15_t clip_q63_to_q15(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+ }
+
+ /**
+ * @brief Clips Q31 to Q7 values.
+ */
+ __STATIC_INLINE q7_t clip_q31_to_q7(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+ ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+ }
+
+ /**
+ * @brief Clips Q31 to Q15 values.
+ */
+ __STATIC_INLINE q15_t clip_q31_to_q15(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+ }
+
+ /**
+ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+ */
+
+ __STATIC_INLINE q63_t mult32x64(
+ q63_t x,
+ q31_t y)
+ {
+ return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+ (((q63_t) (x >> 32) * y)));
+ }
+
+
+#if defined (ARM_MATH_CM0) && defined ( __CC_ARM )
+#define __CLZ __clz
+#endif
+
+#if defined (ARM_MATH_CM0) && defined ( __TASKING__ )
+/* No need to redefine __CLZ */
+#endif
+
+#if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) )
+
+ __STATIC_INLINE uint32_t __CLZ(q31_t data);
+
+
+ __STATIC_INLINE uint32_t __CLZ(q31_t data)
+ {
+ uint32_t count = 0;
+ uint32_t mask = 0x80000000;
+
+ while((data & mask) == 0)
+ {
+ count += 1u;
+ mask = mask >> 1u;
+ }
+
+ return(count);
+
+ }
+
+#endif
+
+ /**
+ * @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type.
+ */
+
+ __STATIC_INLINE uint32_t arm_recip_q31(
+ q31_t in,
+ q31_t * dst,
+ q31_t * pRecipTable)
+ {
+
+ uint32_t out, tempVal;
+ uint32_t index, i;
+ uint32_t signBits;
+
+ if(in > 0)
+ {
+ signBits = __CLZ(in) - 1;
+ }
+ else
+ {
+ signBits = __CLZ(-in) - 1;
+ }
+
+ /* Convert input sample to 1.31 format */
+ in = in << signBits;
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t) (in >> 24u);
+ index = (index & INDEX_MASK);
+
+ /* 1.31 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0u; i < 2u; i++)
+ {
+ tempVal = (q31_t) (((q63_t) in * out) >> 31u);
+ tempVal = 0x7FFFFFFF - tempVal;
+ /* 1.31 with exp 1 */
+ //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
+ out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1u);
+
+ }
+
+ /**
+ * @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type.
+ */
+ __STATIC_INLINE uint32_t arm_recip_q15(
+ q15_t in,
+ q15_t * dst,
+ q15_t * pRecipTable)
+ {
+
+ uint32_t out = 0, tempVal = 0;
+ uint32_t index = 0, i = 0;
+ uint32_t signBits = 0;
+
+ if(in > 0)
+ {
+ signBits = __CLZ(in) - 17;
+ }
+ else
+ {
+ signBits = __CLZ(-in) - 17;
+ }
+
+ /* Convert input sample to 1.15 format */
+ in = in << signBits;
+
+ /* calculation of index for initial approximated Val */
+ index = in >> 8;
+ index = (index & INDEX_MASK);
+
+ /* 1.15 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0; i < 2; i++)
+ {
+ tempVal = (q15_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFF - tempVal;
+ /* 1.15 with exp 1 */
+ out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1);
+
+ }
+
+
+ /*
+ * @brief C custom defined intrinisic function for only M0 processors
+ */
+#if defined(ARM_MATH_CM0)
+
+ __STATIC_INLINE q31_t __SSAT(
+ q31_t x,
+ uint32_t y)
+ {
+ int32_t posMax, negMin;
+ uint32_t i;
+
+ posMax = 1;
+ for (i = 0; i < (y - 1); i++)
+ {
+ posMax = posMax * 2;
+ }
+
+ if(x > 0)
+ {
+ posMax = (posMax - 1);
+
+ if(x > posMax)
+ {
+ x = posMax;
+ }
+ }
+ else
+ {
+ negMin = -posMax;
+
+ if(x < negMin)
+ {
+ x = negMin;
+ }
+ }
+ return (x);
+
+
+ }
+
+#endif /* end of ARM_MATH_CM0 */
+
+
+
+ /*
+ * @brief C custom defined intrinsic function for M3 and M0 processors
+ */
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
+
+ /*
+ * @brief C custom defined QADD8 for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __QADD8(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q7_t r, s, t, u;
+
+ r = (char) x;
+ s = (char) y;
+
+ r = __SSAT((q31_t) (r + s), 8);
+ s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
+ t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
+ u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
+
+ sum = (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
+ (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined QSUB8 for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __QSUB8(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s, t, u;
+
+ r = (char) x;
+ s = (char) y;
+
+ r = __SSAT((r - s), 8);
+ s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
+ t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
+ u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
+
+ sum =
+ (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & 0x000000FF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __QADD16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = __SSAT(r + s, 16);
+ s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined SHADD16 for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SHADD16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) + (s >> 1));
+ s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined QSUB16 for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __QSUB16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = __SSAT(r - s, 16);
+ s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHSUB16 for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SHSUB16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t diff;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) - (s >> 1));
+ s = (((x >> 17) - (y >> 17)) << 16);
+
+ diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return diff;
+ }
+
+ /*
+ * @brief C custom defined QASX for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __QASX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum = 0;
+
+ sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) +
+ clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16)));
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHASX for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SHASX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) - (y >> 17));
+ s = (((x >> 17) + (s >> 1)) << 16);
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+
+ /*
+ * @brief C custom defined QSAX for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __QSAX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum = 0;
+
+ sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) +
+ clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16)));
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHSAX for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SHSAX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) + (y >> 17));
+ s = (((x >> 17) - (s >> 1)) << 16);
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SMUSDX for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SMUSDX(
+ q31_t x,
+ q31_t y)
+ {
+
+ return ((q31_t)(((short) x * (short) (y >> 16)) -
+ ((short) (x >> 16) * (short) y)));
+ }
+
+ /*
+ * @brief C custom defined SMUADX for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SMUADX(
+ q31_t x,
+ q31_t y)
+ {
+
+ return ((q31_t)(((short) x * (short) (y >> 16)) +
+ ((short) (x >> 16) * (short) y)));
+ }
+
+ /*
+ * @brief C custom defined QADD for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __QADD(
+ q31_t x,
+ q31_t y)
+ {
+ return clip_q63_to_q31((q63_t) x + y);
+ }
+
+ /*
+ * @brief C custom defined QSUB for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __QSUB(
+ q31_t x,
+ q31_t y)
+ {
+ return clip_q63_to_q31((q63_t) x - y);
+ }
+
+ /*
+ * @brief C custom defined SMLAD for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SMLAD(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
+ ((short) x * (short) y));
+ }
+
+ /*
+ * @brief C custom defined SMLADX for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SMLADX(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y)) +
+ ((short) x * (short) (y >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMLSDX for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SMLSDX(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum - ((short) (x >> 16) * (short) (y)) +
+ ((short) x * (short) (y >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMLALD for M3 and M0 processors
+ */
+ __STATIC_INLINE q63_t __SMLALD(
+ q31_t x,
+ q31_t y,
+ q63_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
+ ((short) x * (short) y));
+ }
+
+ /*
+ * @brief C custom defined SMLALDX for M3 and M0 processors
+ */
+ __STATIC_INLINE q63_t __SMLALDX(
+ q31_t x,
+ q31_t y,
+ q63_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) y)) +
+ ((short) x * (short) (y >> 16));
+ }
+
+ /*
+ * @brief C custom defined SMUAD for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SMUAD(
+ q31_t x,
+ q31_t y)
+ {
+
+ return (((x >> 16) * (y >> 16)) +
+ (((x << 16) >> 16) * ((y << 16) >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMUSD for M3 and M0 processors
+ */
+ __STATIC_INLINE q31_t __SMUSD(
+ q31_t x,
+ q31_t y)
+ {
+
+ return (-((x >> 16) * (y >> 16)) +
+ (((x << 16) >> 16) * ((y << 16) >> 16)));
+ }
+
+
+
+
+#endif /* (ARM_MATH_CM3) || defined (ARM_MATH_CM0) */
+
+
+ /**
+ * @brief Instance structure for the Q7 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q7 FIR filter.
+ * @param[in] *S points to an instance of the Q7 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
+ * @return none
+ */
+ void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] *S points to an instance of the Q15 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
+ * numTaps
is not a supported value.
+ */
+
+ arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR filter.
+ * @param[in] *S points to an instance of the Q31 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return none.
+ */
+ void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] *S points to an instance of the floating-point FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return none.
+ */
+ void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_casd_df1_inst_q15;
+
+
+ /**
+ * @brief Instance structure for the Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_casd_df1_inst_q31;
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+
+
+ } arm_biquad_casd_df1_inst_f32;
+
+
+
+ /**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift);
+
+
+ /**
+ * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 Biquad cascade filter
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift);
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float32_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q15 matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q15_t *pData; /**< points to the data of the matrix. */
+
+ } arm_matrix_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q31_t *pData; /**< points to the data of the matrix. */
+
+ } arm_matrix_instance_q31;
+
+
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @param[in] *pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] *pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix scaling.
+ * @param[in] *pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix scaling.
+ * @param[in] *pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Q31 matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t *pData);
+
+ /**
+ * @brief Q15 matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t *pData);
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t *pData);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 PID Control.
+ */
+ typedef struct
+ {
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ #ifdef ARM_MATH_CM0
+ q15_t A1;
+ q15_t A2;
+ #else
+ q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+ #endif
+ q15_t state[3]; /**< The state array of length 3. */
+ q15_t Kp; /**< The proportional gain. */
+ q15_t Ki; /**< The integral gain. */
+ q15_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 PID Control.
+ */
+ typedef struct
+ {
+ q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ q31_t A2; /**< The derived gain, A2 = Kd . */
+ q31_t state[3]; /**< The state array of length 3. */
+ q31_t Kp; /**< The proportional gain. */
+ q31_t Ki; /**< The integral gain. */
+ q31_t Kd; /**< The derivative gain. */
+
+ } arm_pid_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point PID Control.
+ */
+ typedef struct
+ {
+ float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ float32_t A2; /**< The derived gain, A2 = Kd . */
+ float32_t state[3]; /**< The state array of length 3. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_f32;
+
+
+
+ /**
+ * @brief Initialization function for the floating-point PID Control.
+ * @param[in,out] *S points to an instance of the PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_f32(
+ arm_pid_instance_f32 * S,
+ int32_t resetStateFlag);
+
+ /**
+ * @brief Reset function for the floating-point PID Control.
+ * @param[in,out] *S is an instance of the floating-point PID Control structure
+ * @return none
+ */
+ void arm_pid_reset_f32(
+ arm_pid_instance_f32 * S);
+
+
+ /**
+ * @brief Initialization function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_q31(
+ arm_pid_instance_q31 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q31 PID Control structure
+ * @return none
+ */
+
+ void arm_pid_reset_q31(
+ arm_pid_instance_q31 * S);
+
+ /**
+ * @brief Initialization function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_q15(
+ arm_pid_instance_q15 * S,
+ int32_t resetStateFlag);
+
+ /**
+ * @brief Reset function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the q15 PID Control structure
+ * @return none
+ */
+ void arm_pid_reset_q15(
+ arm_pid_instance_q15 * S);
+
+
+ /**
+ * @brief Instance structure for the floating-point Linear Interpolate function.
+ */
+ typedef struct
+ {
+ uint32_t nValues; /**< nValues */
+ float32_t x1; /**< x1 */
+ float32_t xSpacing; /**< xSpacing */
+ float32_t *pYData; /**< pointer to the table of Y values */
+ } arm_linear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ float32_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q31_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q15_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q7_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q7;
+
+
+ /**
+ * @brief Q7 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f32;
+
+ /**
+ * @brief Processing function for the Q15 CFFT/CIFFT.
+ * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure.
+ * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
+ * @return none.
+ */
+
+ void arm_cfft_radix4_q15(
+ const arm_cfft_radix4_instance_q15 * S,
+ q15_t * pSrc);
+
+ /**
+ * @brief Initialization function for the Q15 CFFT/CIFFT.
+ * @param[in,out] *S points to an instance of the Q15 CFFT/CIFFT structure.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen
is not a supported value.
+ */
+
+ arm_status arm_cfft_radix4_init_q15(
+ arm_cfft_radix4_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Processing function for the Q31 CFFT/CIFFT.
+ * @param[in] *S points to an instance of the Q31 CFFT/CIFFT structure.
+ * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
+ * @return none.
+ */
+
+ void arm_cfft_radix4_q31(
+ const arm_cfft_radix4_instance_q31 * S,
+ q31_t * pSrc);
+
+ /**
+ * @brief Initialization function for the Q31 CFFT/CIFFT.
+ * @param[in,out] *S points to an instance of the Q31 CFFT/CIFFT structure.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen
is not a supported value.
+ */
+
+ arm_status arm_cfft_radix4_init_q31(
+ arm_cfft_radix4_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Processing function for the floating-point CFFT/CIFFT.
+ * @param[in] *S points to an instance of the floating-point CFFT/CIFFT structure.
+ * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
+ * @return none.
+ */
+
+ void arm_cfft_radix4_f32(
+ const arm_cfft_radix4_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Initialization function for the floating-point CFFT/CIFFT.
+ * @param[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen
is not a supported value.
+ */
+
+ arm_status arm_cfft_radix4_init_f32(
+ arm_cfft_radix4_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+
+
+ /*----------------------------------------------------------------------
+ * Internal functions prototypes FFT function
+ ----------------------------------------------------------------------*/
+
+ /**
+ * @brief Core function for the floating-point CFFT butterfly process.
+ * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef points to the twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_f32(
+ float32_t * pSrc,
+ uint16_t fftLen,
+ float32_t * pCoef,
+ uint16_t twidCoefModifier);
+
+ /**
+ * @brief Core function for the floating-point CIFFT butterfly process.
+ * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @param[in] onebyfftLen value of 1/fftLen.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_inverse_f32(
+ float32_t * pSrc,
+ uint16_t fftLen,
+ float32_t * pCoef,
+ uint16_t twidCoefModifier,
+ float32_t onebyfftLen);
+
+ /**
+ * @brief In-place bit reversal function.
+ * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
+ * @param[in] fftSize length of the FFT.
+ * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table.
+ * @param[in] *pBitRevTab points to the bit reversal table.
+ * @return none.
+ */
+
+ void arm_bitreversal_f32(
+ float32_t *pSrc,
+ uint16_t fftSize,
+ uint16_t bitRevFactor,
+ uint16_t *pBitRevTab);
+
+ /**
+ * @brief Core function for the Q31 CFFT butterfly process.
+ * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_q31(
+ q31_t *pSrc,
+ uint32_t fftLen,
+ q31_t *pCoef,
+ uint32_t twidCoefModifier);
+
+ /**
+ * @brief Core function for the Q31 CIFFT butterfly process.
+ * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_inverse_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ q31_t * pCoef,
+ uint32_t twidCoefModifier);
+
+ /**
+ * @brief In-place bit reversal function.
+ * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
+ * @param[in] *pBitRevTab points to bit reversal table.
+ * @return none.
+ */
+
+ void arm_bitreversal_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ uint16_t bitRevFactor,
+ uint16_t *pBitRevTab);
+
+ /**
+ * @brief Core function for the Q15 CFFT butterfly process.
+ * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef16 points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_q15(
+ q15_t *pSrc16,
+ uint32_t fftLen,
+ q15_t *pCoef16,
+ uint32_t twidCoefModifier);
+
+ /**
+ * @brief Core function for the Q15 CIFFT butterfly process.
+ * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef16 points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_inverse_q15(
+ q15_t *pSrc16,
+ uint32_t fftLen,
+ q15_t *pCoef16,
+ uint32_t twidCoefModifier);
+
+ /**
+ * @brief In-place bit reversal function.
+ * @param[in, out] *pSrc points to the in-place buffer of Q15 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
+ * @param[in] *pBitRevTab points to bit reversal table.
+ * @return none.
+ */
+
+ void arm_bitreversal_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ uint16_t bitRevFactor,
+ uint16_t *pBitRevTab);
+
+ /**
+ * @brief Instance structure for the Q15 RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint32_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint32_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint16_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_f32;
+
+ /**
+ * @brief Processing function for the Q15 RFFT/RIFFT.
+ * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
+ * @param[in] *pSrc points to the input buffer.
+ * @param[out] *pDst points to the output buffer.
+ * @return none.
+ */
+
+ void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst);
+
+ /**
+ * @brief Initialization function for the Q15 RFFT/RIFFT.
+ * @param[in, out] *S points to an instance of the Q15 RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of the Q15 CFFT/CIFFT structure.
+ * @param[in] fftLenReal length of the FFT.
+ * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal
is not a supported value.
+ */
+
+ arm_status arm_rfft_init_q15(
+ arm_rfft_instance_q15 * S,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ /**
+ * @brief Processing function for the Q31 RFFT/RIFFT.
+ * @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure.
+ * @param[in] *pSrc points to the input buffer.
+ * @param[out] *pDst points to the output buffer.
+ * @return none.
+ */
+
+ void arm_rfft_q31(
+ const arm_rfft_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst);
+
+ /**
+ * @brief Initialization function for the Q31 RFFT/RIFFT.
+ * @param[in, out] *S points to an instance of the Q31 RFFT/RIFFT structure.
+ * @param[in, out] *S_CFFT points to an instance of the Q31 CFFT/CIFFT structure.
+ * @param[in] fftLenReal length of the FFT.
+ * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal
is not a supported value.
+ */
+
+ arm_status arm_rfft_init_q31(
+ arm_rfft_instance_q31 * S,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ /**
+ * @brief Initialization function for the floating-point RFFT/RIFFT.
+ * @param[in,out] *S points to an instance of the floating-point RFFT/RIFFT structure.
+ * @param[in,out] *S_CFFT points to an instance of the floating-point CFFT/CIFFT structure.
+ * @param[in] fftLenReal length of the FFT.
+ * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal
is not a supported value.
+ */
+
+ arm_status arm_rfft_init_f32(
+ arm_rfft_instance_f32 * S,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ /**
+ * @brief Processing function for the floating-point RFFT/RIFFT.
+ * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure.
+ * @param[in] *pSrc points to the input buffer.
+ * @param[out] *pDst points to the output buffer.
+ * @return none.
+ */
+
+ void arm_rfft_f32(
+ const arm_rfft_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ float32_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_f32;
+
+ /**
+ * @brief Initialization function for the floating-point DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_f32(
+ arm_dct4_instance_f32 * S,
+ arm_rfft_instance_f32 * S_RFFT,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ float32_t normalize);
+
+ /**
+ * @brief Processing function for the floating-point DCT4/IDCT4.
+ * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_f32(
+ const arm_dct4_instance_f32 * S,
+ float32_t * pState,
+ float32_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ q31_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q31;
+
+ /**
+ * @brief Initialization function for the Q31 DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_q31(
+ arm_dct4_instance_q31 * S,
+ arm_rfft_instance_q31 * S_RFFT,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q31_t normalize);
+
+ /**
+ * @brief Processing function for the Q31 DCT4/IDCT4.
+ * @param[in] *S points to an instance of the Q31 DCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_q31(
+ const arm_dct4_instance_q31 * S,
+ q31_t * pState,
+ q31_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ q15_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q15;
+
+ /**
+ * @brief Initialization function for the Q15 DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N
is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_q15(
+ arm_dct4_instance_q15 * S,
+ arm_rfft_instance_q15 * S_RFFT,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q15_t normalize);
+
+ /**
+ * @brief Processing function for the Q15 DCT4/IDCT4.
+ * @param[in] *S points to an instance of the Q15 DCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_q15(
+ const arm_dct4_instance_q15 * S,
+ q15_t * pState,
+ q15_t * pInlineBuffer);
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_f32(
+ float32_t * pSrc,
+ float32_t scale,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q7 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q7(
+ q7_t * pSrc,
+ q7_t scaleFract,
+ int8_t shift,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q15 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q15(
+ q15_t * pSrc,
+ q15_t scaleFract,
+ int8_t shift,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q31 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q31(
+ q31_t * pSrc,
+ q31_t scaleFract,
+ int8_t shift,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * result);
+
+ /**
+ * @brief Dot product of Q7 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * result);
+
+ /**
+ * @brief Dot product of Q15 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+ /**
+ * @brief Dot product of Q31 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+ /**
+ * @brief Shifts the elements of a Q7 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q7(
+ q7_t * pSrc,
+ int8_t shiftBits,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Shifts the elements of a Q15 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q15(
+ q15_t * pSrc,
+ int8_t shiftBits,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Shifts the elements of a Q31 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q31(
+ q31_t * pSrc,
+ int8_t shiftBits,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_f32(
+ float32_t * pSrc,
+ float32_t offset,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q7 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q7(
+ q7_t * pSrc,
+ q7_t offset,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q15 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q15(
+ q15_t * pSrc,
+ q15_t offset,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q31 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q31(
+ q31_t * pSrc,
+ q31_t offset,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q7 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q15 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q31 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q7 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q15 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q31 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_f32(
+ float32_t value,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q7 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q7(
+ q7_t value,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q15 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q15(
+ q15_t value,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q31 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q31(
+ q31_t value,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+ /**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+
+ } arm_fir_decimate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+
+ } arm_fir_decimate_instance_f32;
+
+
+
+ /**
+ * @brief Processing function for the floating-point FIR decimator.
+ * @param[in] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR decimator.
+ * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_fast_q31(
+ arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+
+ arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ } arm_fir_interpolate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+
+ arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+ */
+
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+ /**
+ * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift);
+
+
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] *S points to an instance of the filter data structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ */
+
+ void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_f32;
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_f32;
+
+ /**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t *pkCoeffs,
+ float32_t *pvCoeffs,
+ float32_t *pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t *pkCoeffs,
+ q31_t *pvCoeffs,
+ q31_t *pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t *pkCoeffs,
+ q15_t *pvCoeffs,
+ q15_t *pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the floating-point LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } arm_lms_instance_f32;
+
+ /**
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+
+ } arm_lms_instance_q31;
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t *pCoeffs,
+ q31_t *pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+ /**
+ * @brief Instance structure for the floating-point normalized LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_f32;
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q31_t *recipTable; /**< points to the reciprocal initial value table. */
+ q31_t energy; /**< saves previous frame energy. */
+ q31_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q31;
+
+ /**
+ * @brief Processing function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+ /**
+ * @brief Instance structure for the Q15 normalized LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q15;
+
+ /**
+ * @brief Processing function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+ /**
+ * @brief Correlation of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q7 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q7;
+
+ /**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t *pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /*
+ * @brief Floating-point sin_cos function.
+ * @param[in] theta input value in degrees
+ * @param[out] *pSinVal points to the processed sine output.
+ * @param[out] *pCosVal points to the processed cos output.
+ * @return none.
+ */
+
+ void arm_sin_cos_f32(
+ float32_t theta,
+ float32_t *pSinVal,
+ float32_t *pCcosVal);
+
+ /*
+ * @brief Q31 sin_cos function.
+ * @param[in] theta scaled input value in degrees
+ * @param[out] *pSinVal points to the processed sine output.
+ * @param[out] *pCosVal points to the processed cosine output.
+ * @return none.
+ */
+
+ void arm_sin_cos_q31(
+ q31_t theta,
+ q31_t *pSinVal,
+ q31_t *pCosVal);
+
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup PID PID Motor Control
+ *
+ * A Proportional Integral Derivative (PID) controller is a generic feedback control
+ * loop mechanism widely used in industrial control systems.
+ * A PID controller is the most commonly used type of feedback controller.
+ *
+ * This set of functions implements (PID) controllers
+ * for Q15, Q31, and floating-point data types. The functions operate on a single sample
+ * of data and each call to the function returns a single processed value.
+ * S
points to an instance of the PID control data structure. in
+ * is the input sample value. The functions return the output value.
+ *
+ * \par Algorithm:
+ *
+ * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
+ * A0 = Kp + Ki + Kd
+ * A1 = (-Kp ) - (2 * Kd )
+ * A2 = Kd
+ *
+ * \par
+ * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
+ *
+ * \par
+ * \image html PID.gif "Proportional Integral Derivative Controller"
+ *
+ * \par
+ * The PID controller calculates an "error" value as the difference between
+ * the measured output and the reference input.
+ * The controller attempts to minimize the error by adjusting the process control inputs.
+ * The proportional value determines the reaction to the current error,
+ * the integral value determines the reaction based on the sum of recent errors,
+ * and the derivative value determines the reaction based on the rate at which the error has been changing.
+ *
+ * \par Instance Structure
+ * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
+ * A separate instance structure must be defined for each PID Controller.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Reset Functions
+ * There is also an associated reset function for each data type which clears the state array.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
+ * - Zeros out the values in the state buffer.
+ *
+ * \par
+ * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the PID Controller functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup PID
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point PID Control.
+ * @param[in,out] *S is an instance of the floating-point PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ */
+
+
+ __STATIC_INLINE float32_t arm_pid_f32(
+ arm_pid_instance_f32 * S,
+ float32_t in)
+ {
+ float32_t out;
+
+ /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
+ out = (S->A0 * in) +
+ (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+ /**
+ * @brief Process function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q31 PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
+ * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
+ */
+
+ __STATIC_INLINE q31_t arm_pid_q31(
+ arm_pid_instance_q31 * S,
+ q31_t in)
+ {
+ q63_t acc;
+ q31_t out;
+
+ /* acc = A0 * x[n] */
+ acc = (q63_t) S->A0 * in;
+
+ /* acc += A1 * x[n-1] */
+ acc += (q63_t) S->A1 * S->state[0];
+
+ /* acc += A2 * x[n-2] */
+ acc += (q63_t) S->A2 * S->state[1];
+
+ /* convert output to 1.31 format to add y[n-1] */
+ out = (q31_t) (acc >> 31u);
+
+ /* out += y[n-1] */
+ out += S->state[2];
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+ /**
+ * @brief Process function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ */
+
+ __STATIC_INLINE q15_t arm_pid_q15(
+ arm_pid_instance_q15 * S,
+ q15_t in)
+ {
+ q63_t acc;
+ q15_t out;
+
+ /* Implementation of PID controller */
+
+ #ifdef ARM_MATH_CM0
+
+ /* acc = A0 * x[n] */
+ acc = ((q31_t) S->A0 )* in ;
+
+ #else
+
+ /* acc = A0 * x[n] */
+ acc = (q31_t) __SMUAD(S->A0, in);
+
+ #endif
+
+ #ifdef ARM_MATH_CM0
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc += (q31_t) S->A1 * S->state[0] ;
+ acc += (q31_t) S->A2 * S->state[1] ;
+
+ #else
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc = __SMLALD(S->A1, (q31_t)__SIMD32(S->state), acc);
+
+ #endif
+
+ /* acc += y[n-1] */
+ acc += (q31_t) S->state[2] << 15;
+
+ /* saturate the output */
+ out = (q15_t) (__SSAT((acc >> 15), 16));
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+ /**
+ * @} end of PID group
+ */
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] *src points to the instance of the input floating-point matrix structure.
+ * @param[out] *dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+
+ arm_status arm_mat_inverse_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * dst);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+
+ /**
+ * @defgroup clarke Vector Clarke Transform
+ * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
+ * Generally the Clarke transform uses three-phase currents Ia, Ib and Ic
to calculate currents
+ * in the two-phase orthogonal stator axis Ialpha
and Ibeta
.
+ * When Ialpha
is superposed with Ia
as shown in the figure below
+ * \image html clarke.gif Stator current space vector and its components in (a,b).
+ * and Ia + Ib + Ic = 0
, in this condition Ialpha
and Ibeta
+ * can be calculated using only Ia
and Ib
.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeFormula.gif
+ * where Ia
and Ib
are the instantaneous stator phases and
+ * pIalpha
and pIbeta
are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup clarke
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point Clarke transform
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none.
+ */
+
+ __STATIC_INLINE void arm_clarke_f32(
+ float32_t Ia,
+ float32_t Ib,
+ float32_t * pIalpha,
+ float32_t * pIbeta)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+ *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
+
+ }
+
+ /**
+ * @brief Clarke transform for Q31 version
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+
+ __STATIC_INLINE void arm_clarke_q31(
+ q31_t Ia,
+ q31_t Ib,
+ q31_t * pIalpha,
+ q31_t * pIbeta)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+ /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+ /* pIbeta is calculated by adding the intermediate products */
+ *pIbeta = __QADD(product1, product2);
+ }
+
+ /**
+ * @} end of clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q31 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_q31(
+ q7_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_clarke Vector Inverse Clarke Transform
+ * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeInvFormula.gif
+ * where pIa
and pIb
are the instantaneous stator phases and
+ * Ialpha
and Ibeta
are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_clarke
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Clarke transform
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] *pIa points to output three-phase coordinate a
+ * @param[out] *pIb points to output three-phase coordinate b
+ * @return none.
+ */
+
+
+ __STATIC_INLINE void arm_inv_clarke_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pIa,
+ float32_t * pIb)
+ {
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+ *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
+
+ }
+
+ /**
+ * @brief Inverse Clarke transform for Q31 version
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] *pIa points to output three-phase coordinate a
+ * @param[out] *pIb points to output three-phase coordinate b
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the subtraction, hence there is no risk of overflow.
+ */
+
+ __STATIC_INLINE void arm_inv_clarke_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pIa,
+ q31_t * pIb)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+ /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+ /* pIb is calculated by subtracting the products */
+ *pIb = __QSUB(product2, product1);
+
+ }
+
+ /**
+ * @} end of inv_clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q15 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_q15(
+ q7_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup park Vector Park Transform
+ *
+ * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+ * The Park transform can be used to realize the transformation of the Ialpha
and the Ibeta
currents
+ * from the stationary to the moving reference frame and control the spatial relationship between
+ * the stator vector current and rotor flux vector.
+ * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+ * current vector and the relationship from the two reference frames:
+ * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkFormula.gif
+ * where Ialpha
and Ibeta
are the stator vector components,
+ * pId
and pIq
are rotor vector components and cosVal
and sinVal
are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Park transform
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] *pId points to output rotor reference frame d
+ * @param[out] *pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * The function implements the forward Park transform.
+ *
+ */
+
+ __STATIC_INLINE void arm_park_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pId,
+ float32_t * pIq,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+ *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+ *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+
+ }
+
+ /**
+ * @brief Park transform for Q31 version
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] *pId points to output rotor reference frame d
+ * @param[out] *pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition and subtraction, hence there is no risk of overflow.
+ */
+
+
+ __STATIC_INLINE void arm_park_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pId,
+ q31_t * pIq,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Ialpha * cosVal) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * sinVal) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Ialpha * sinVal) */
+ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * cosVal) */
+ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+ /* Calculate pId by adding the two intermediate products 1 and 2 */
+ *pId = __QADD(product1, product2);
+
+ /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+ *pIq = __QSUB(product4, product3);
+ }
+
+ /**
+ * @} end of park group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_float(
+ q7_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_park Vector Inverse Park transform
+ * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkInvFormula.gif
+ * where pIalpha
and pIbeta
are the stator vector components,
+ * Id
and Iq
are rotor vector components and cosVal
and sinVal
are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Park transform
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ */
+
+ __STATIC_INLINE void arm_inv_park_f32(
+ float32_t Id,
+ float32_t Iq,
+ float32_t * pIalpha,
+ float32_t * pIbeta,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+ *pIalpha = Id * cosVal - Iq * sinVal;
+
+ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+ *pIbeta = Id * sinVal + Iq * cosVal;
+
+ }
+
+
+ /**
+ * @brief Inverse Park transform for Q31 version
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+
+
+ __STATIC_INLINE void arm_inv_park_q31(
+ q31_t Id,
+ q31_t Iq,
+ q31_t * pIalpha,
+ q31_t * pIbeta,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Id * cosVal) */
+ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * sinVal) */
+ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Id * sinVal) */
+ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * cosVal) */
+ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+ /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+ *pIalpha = __QSUB(product1, product2);
+
+ /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+ *pIbeta = __QADD(product4, product3);
+
+ }
+
+ /**
+ * @} end of Inverse park group
+ */
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_float(
+ q31_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup LinearInterpolate Linear Interpolation
+ *
+ * Linear interpolation is a method of curve fitting using linear polynomials.
+ * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
+ *
+ * \par
+ * \image html LinearInterp.gif "Linear interpolation"
+ *
+ * \par
+ * A Linear Interpolate function calculates an output value(y), for the input(x)
+ * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
+ *
+ * \par Algorithm:
+ *
+ * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
+ * where x0, x1 are nearest values of input x
+ * y0, y1 are nearest values to output y
+ *
+ *
+ * \par
+ * This set of functions implements Linear interpolation process
+ * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
+ * sample of data and each call to the function returns a single processed value.
+ * S
points to an instance of the Linear Interpolate function data structure.
+ * x
is the input sample value. The functions returns the output value.
+ *
+ * \par
+ * if x is outside of the table boundary, Linear interpolation returns first value of the table
+ * if x is below input range and returns last value of table if x is above range.
+ */
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+
+ __STATIC_INLINE float32_t arm_linear_interp_f32(
+ arm_linear_interp_instance_f32 * S,
+ float32_t x)
+ {
+
+ float32_t y;
+ float32_t x0, x1; /* Nearest input values */
+ float32_t y0, y1; /* Nearest output values */
+ float32_t xSpacing = S->xSpacing; /* spacing between input values */
+ int32_t i; /* Index variable */
+ float32_t *pYData = S->pYData; /* pointer to output table */
+
+ /* Calculation of index */
+ i = (x - S->x1) / xSpacing;
+
+ if(i < 0)
+ {
+ /* Iniatilize output for below specified range as least output value of table */
+ y = pYData[0];
+ }
+ else if(i >= S->nValues)
+ {
+ /* Iniatilize output for above specified range as last output value of table */
+ y = pYData[S->nValues-1];
+ }
+ else
+ {
+ /* Calculation of nearest input values */
+ x0 = S->x1 + i * xSpacing;
+ x1 = S->x1 + (i +1) * xSpacing;
+
+ /* Read of nearest output values */
+ y0 = pYData[i];
+ y1 = pYData[i + 1];
+
+ /* Calculation of output */
+ y = y0 + (x - x0) * ((y1 - y0)/(x1-x0));
+
+ }
+
+ /* returns output value */
+ return (y);
+ }
+
+ /**
+ *
+ * @brief Process function for the Q31 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+
+
+ __STATIC_INLINE q31_t arm_linear_interp_q31(q31_t *pYData,
+ q31_t x, uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q31_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20);
+
+ if(index >= (nValues - 1))
+ {
+ return(pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return(pYData[0]);
+ }
+ else
+ {
+
+ /* 20 bits for the fractional part */
+ /* shift left by 11 to keep fract in 1.31 format */
+ fract = (x & 0x000FFFFF) << 11;
+
+ /* Read two nearest output values from the index in 1.31(q31) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract) and y is in 2.30 format */
+ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
+
+ /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
+ y += ((q31_t) (((q63_t) y1 * fract) >> 32));
+
+ /* Convert y to 1.31 format */
+ return (y << 1u);
+
+ }
+
+ }
+
+ /**
+ *
+ * @brief Process function for the Q15 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+
+
+ __STATIC_INLINE q15_t arm_linear_interp_q15(q15_t *pYData, q31_t x, uint32_t nValues)
+ {
+ q63_t y; /* output */
+ q15_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20u);
+
+ if(index >= (nValues - 1))
+ {
+ return(pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return(pYData[0]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract) and y is in 13.35 format */
+ y = ((q63_t) y0 * (0xFFFFF - fract));
+
+ /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
+ y += ((q63_t) y1 * (fract));
+
+ /* convert y to 1.15 format */
+ return (y >> 20);
+ }
+
+
+ }
+
+ /**
+ *
+ * @brief Process function for the Q7 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ */
+
+
+ __STATIC_INLINE q7_t arm_linear_interp_q7(q7_t *pYData, q31_t x, uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q7_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20u);
+
+
+ if(index >= (nValues - 1))
+ {
+ return(pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return(pYData[0]);
+ }
+ else
+ {
+
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index and are in 1.7(q7) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
+ y = ((y0 * (0xFFFFF - fract)));
+
+ /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
+ y += (y1 * fract);
+
+ /* convert y to 1.7(q7) format */
+ return (y >> 20u);
+
+ }
+
+ }
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return sin(x).
+ */
+
+ float32_t arm_sin_f32(
+ float32_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+
+ q31_t arm_sin_q31(
+ q31_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+
+ q15_t arm_sin_q15(
+ q15_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return cos(x).
+ */
+
+ float32_t arm_cos_f32(
+ float32_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+
+ q31_t arm_cos_q31(
+ q31_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+
+ q15_t arm_cos_q15(
+ q15_t x);
+
+
+ /**
+ * @ingroup groupFastMath
+ */
+
+
+ /**
+ * @defgroup SQRT Square Root
+ *
+ * Computes the square root of a number.
+ * There are separate functions for Q15, Q31, and floating-point data types.
+ * The square root function is computed using the Newton-Raphson algorithm.
+ * This is an iterative algorithm of the form:
+ *
+ * x1 = x0 - f(x0)/f'(x0)
+ *
+ * where x1
is the current estimate,
+ * x0
is the previous estimate and
+ * f'(x0)
is the derivative of f()
evaluated at x0
.
+ * For the square root function, the algorithm reduces to:
+ *
+ * x0 = in/2 [initial guess]
+ * x1 = 1/2 * ( x0 + in / x0) [each iteration]
+ *
+ */
+
+
+ /**
+ * @addtogroup SQRT
+ * @{
+ */
+
+ /**
+ * @brief Floating-point square root function.
+ * @param[in] in input value.
+ * @param[out] *pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+
+ __STATIC_INLINE arm_status arm_sqrt_f32(
+ float32_t in, float32_t *pOut)
+ {
+ if(in > 0)
+ {
+
+// #if __FPU_USED
+ #if (__FPU_USED == 1) && defined ( __CC_ARM )
+ *pOut = __sqrtf(in);
+ #elif (__FPU_USED == 1) && defined ( __TMS_740 )
+ *pOut = __builtin_sqrtf(in);
+ #else
+ *pOut = sqrtf(in);
+ #endif
+
+ return (ARM_MATH_SUCCESS);
+ }
+ else
+ {
+ *pOut = 0.0f;
+ return (ARM_MATH_ARGUMENT_ERROR);
+ }
+
+ }
+
+
+ /**
+ * @brief Q31 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
+ * @param[out] *pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q31(
+ q31_t in, q31_t *pOut);
+
+ /**
+ * @brief Q15 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
+ * @param[out] *pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q15(
+ q15_t in, q15_t *pOut);
+
+ /**
+ * @} end of SQRT group
+ */
+
+
+
+
+
+
+ /**
+ * @brief floating-point Circular write function.
+ */
+
+ __STATIC_INLINE void arm_circularWrite_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const int32_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief floating-point Circular Read function.
+ */
+ __STATIC_INLINE void arm_circularRead_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ int32_t * dst,
+ int32_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (int32_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+ /**
+ * @brief Q15 Circular write function.
+ */
+
+ __STATIC_INLINE void arm_circularWrite_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q15_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief Q15 Circular Read function.
+ */
+ __STATIC_INLINE void arm_circularRead_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q15_t * dst,
+ q15_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (q15_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular write function.
+ */
+
+ __STATIC_INLINE void arm_circularWrite_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q7_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = wOffset;
+ }
+
+
+
+ /**
+ * @brief Q7 Circular Read function.
+ */
+ __STATIC_INLINE void arm_circularRead_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q7_t * dst,
+ q7_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (q7_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Sum of the squares of the elements of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_power_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Mean value of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_mean_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+ /**
+ * @brief Mean value of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Mean value of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+ void arm_mean_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_var_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_rms_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output value.
+ * @return none.
+ */
+
+ void arm_std_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+ /**
+ * @brief Floating-point complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t numSamples,
+ q31_t * realResult,
+ q31_t * imagResult);
+
+ /**
+ * @brief Q31 complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t numSamples,
+ q63_t * realResult,
+ q63_t * imagResult);
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] *realResult real part of the result returned here
+ * @param[out] *imagResult imaginary part of the result returned here
+ * @return none.
+ */
+
+ void arm_cmplx_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t numSamples,
+ float32_t * realResult,
+ float32_t * imagResult);
+
+ /**
+ * @brief Q15 complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_q15(
+ q15_t * pSrcCmplx,
+ q15_t * pSrcReal,
+ q15_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_q31(
+ q31_t * pSrcCmplx,
+ q31_t * pSrcReal,
+ q31_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] *pSrcCmplx points to the complex input vector
+ * @param[in] *pSrcReal points to the real input vector
+ * @param[out] *pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_real_f32(
+ float32_t * pSrcCmplx,
+ float32_t * pSrcReal,
+ float32_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Minimum value of a Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+ /**
+ * @brief Minimum value of a Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[in] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of a Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[out] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+ void arm_min_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] *pResult is output pointer
+ * @param[out] *pIndex is the array index of the minimum value in the input buffer.
+ * @return none.
+ */
+
+ void arm_min_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q7 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q15 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a Q31 vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] *pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] *pResult maximum value returned here
+ * @param[out] *pIndex index of maximum value returned here
+ * @return none.
+ */
+
+ void arm_max_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Q15 complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_mult_cmplx_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q31 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none.
+ */
+ void arm_float_to_q31(
+ float32_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q15 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none
+ */
+ void arm_float_to_q15(
+ float32_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q7 vector.
+ * @param[in] *pSrc points to the floating-point input vector
+ * @param[out] *pDst points to the Q7 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none
+ */
+ void arm_float_to_q7(
+ float32_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q15 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_q15(
+ q31_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_q7(
+ q31_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Converts the elements of the Q15 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_float(
+ q15_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q31 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_q31(
+ q15_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q7 vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q15_to_q7(
+ q15_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup BilinearInterpolate Bilinear Interpolation
+ *
+ * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
+ * The underlying function f(x, y)
is sampled on a regular grid and the interpolation process
+ * determines values between the grid points.
+ * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
+ * Bilinear interpolation is often used in image processing to rescale images.
+ * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
+ *
+ * Algorithm
+ * \par
+ * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
+ * For floating-point, the instance structure is defined as:
+ *
+ * typedef struct
+ * {
+ * uint16_t numRows;
+ * uint16_t numCols;
+ * float32_t *pData;
+ * } arm_bilinear_interp_instance_f32;
+ *
+ *
+ * \par
+ * where numRows
specifies the number of rows in the table;
+ * numCols
specifies the number of columns in the table;
+ * and pData
points to an array of size numRows*numCols
values.
+ * The data table pTable
is organized in row order and the supplied data values fall on integer indexes.
+ * That is, table element (x,y) is located at pTable[x + y*numCols]
where x and y are integers.
+ *
+ * \par
+ * Let (x, y)
specify the desired interpolation point. Then define:
+ *
+ * XF = floor(x)
+ * YF = floor(y)
+ *
+ * \par
+ * The interpolated output point is computed as:
+ *
+ * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
+ * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
+ * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
+ * + f(XF+1, YF+1) * (x-XF)*(y-YF)
+ *
+ * Note that the coordinates (x, y) contain integer and fractional components.
+ * The integer components specify which portion of the table to use while the
+ * fractional components control the interpolation processor.
+ *
+ * \par
+ * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
+ */
+
+ /**
+ * @addtogroup BilinearInterpolate
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point bilinear interpolation.
+ * @param[in,out] *S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate.
+ * @param[in] Y interpolation coordinate.
+ * @return out interpolated value.
+ */
+
+
+ __STATIC_INLINE float32_t arm_bilinear_interp_f32(
+ const arm_bilinear_interp_instance_f32 * S,
+ float32_t X,
+ float32_t Y)
+ {
+ float32_t out;
+ float32_t f00, f01, f10, f11;
+ float32_t *pData = S->pData;
+ int32_t xIndex, yIndex, index;
+ float32_t xdiff, ydiff;
+ float32_t b1, b2, b3, b4;
+
+ xIndex = (int32_t) X;
+ yIndex = (int32_t) Y;
+
+ /* Care taken for table outside boundary */
+ /* Returns zero output when values are outside table boundary */
+ if(xIndex < 0 || xIndex > (S->numRows-1) || yIndex < 0 || yIndex > ( S->numCols-1))
+ {
+ return(0);
+ }
+
+ /* Calculation of index for two nearest points in X-direction */
+ index = (xIndex - 1) + (yIndex-1) * S->numCols ;
+
+
+ /* Read two nearest points in X-direction */
+ f00 = pData[index];
+ f01 = pData[index + 1];
+
+ /* Calculation of index for two nearest points in Y-direction */
+ index = (xIndex-1) + (yIndex) * S->numCols;
+
+
+ /* Read two nearest points in Y-direction */
+ f10 = pData[index];
+ f11 = pData[index + 1];
+
+ /* Calculation of intermediate values */
+ b1 = f00;
+ b2 = f01 - f00;
+ b3 = f10 - f00;
+ b4 = f00 - f01 - f10 + f11;
+
+ /* Calculation of fractional part in X */
+ xdiff = X - xIndex;
+
+ /* Calculation of fractional part in Y */
+ ydiff = Y - yIndex;
+
+ /* Calculation of bi-linear interpolated output */
+ out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
+
+ /* return to application */
+ return (out);
+
+ }
+
+ /**
+ *
+ * @brief Q31 bilinear interpolation.
+ * @param[in,out] *S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+
+ __STATIC_INLINE q31_t arm_bilinear_interp_q31(
+ arm_bilinear_interp_instance_q31 * S,
+ q31_t X,
+ q31_t Y)
+ {
+ q31_t out; /* Temporary output */
+ q31_t acc = 0; /* output */
+ q31_t xfract, yfract; /* X, Y fractional parts */
+ q31_t x1, x2, y1, y2; /* Nearest output values */
+ int32_t rI, cI; /* Row and column indices */
+ q31_t *pYData = S->pData; /* pointer to output table values */
+ uint32_t nCols = S->numCols; /* num of rows */
+
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ rI = ((X & 0xFFF00000) >> 20u);
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ cI = ((Y & 0xFFF00000) >> 20u);
+
+ /* Care taken for table outside boundary */
+ /* Returns zero output when values are outside table boundary */
+ if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1))
+ {
+ return(0);
+ }
+
+ /* 20 bits for the fractional part */
+ /* shift left xfract by 11 to keep 1.31 format */
+ xfract = (X & 0x000FFFFF) << 11u;
+
+ /* Read two nearest output values from the index */
+ x1 = pYData[(rI) + nCols * (cI)];
+ x2 = pYData[(rI) + nCols * (cI) + 1u];
+
+ /* 20 bits for the fractional part */
+ /* shift left yfract by 11 to keep 1.31 format */
+ yfract = (Y & 0x000FFFFF) << 11u;
+
+ /* Read two nearest output values from the index */
+ y1 = pYData[(rI) + nCols * (cI + 1)];
+ y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
+
+ /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
+ out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
+ acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
+
+ /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
+ out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
+ acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
+
+ /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
+ out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
+ acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
+
+ /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
+ out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
+ acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
+
+ /* Convert acc to 1.31(q31) format */
+ return (acc << 2u);
+
+ }
+
+ /**
+ * @brief Q15 bilinear interpolation.
+ * @param[in,out] *S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+
+ __STATIC_INLINE q15_t arm_bilinear_interp_q15(
+ arm_bilinear_interp_instance_q15 * S,
+ q31_t X,
+ q31_t Y)
+ {
+ q63_t acc = 0; /* output */
+ q31_t out; /* Temporary output */
+ q15_t x1, x2, y1, y2; /* Nearest output values */
+ q31_t xfract, yfract; /* X, Y fractional parts */
+ int32_t rI, cI; /* Row and column indices */
+ q15_t *pYData = S->pData; /* pointer to output table values */
+ uint32_t nCols = S->numCols; /* num of rows */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ rI = ((X & 0xFFF00000) >> 20);
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ cI = ((Y & 0xFFF00000) >> 20);
+
+ /* Care taken for table outside boundary */
+ /* Returns zero output when values are outside table boundary */
+ if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1))
+ {
+ return(0);
+ }
+
+ /* 20 bits for the fractional part */
+ /* xfract should be in 12.20 format */
+ xfract = (X & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ x1 = pYData[(rI) + nCols * (cI)];
+ x2 = pYData[(rI) + nCols * (cI) + 1u];
+
+
+ /* 20 bits for the fractional part */
+ /* yfract should be in 12.20 format */
+ yfract = (Y & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ y1 = pYData[(rI) + nCols * (cI + 1)];
+ y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
+
+ /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
+
+ /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
+ /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
+ out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
+ acc = ((q63_t) out * (0xFFFFF - yfract));
+
+ /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
+ out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
+ acc += ((q63_t) out * (xfract));
+
+ /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
+ out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
+ acc += ((q63_t) out * (yfract));
+
+ /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
+ out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
+ acc += ((q63_t) out * (yfract));
+
+ /* acc is in 13.51 format and down shift acc by 36 times */
+ /* Convert out to 1.15 format */
+ return (acc >> 36);
+
+ }
+
+ /**
+ * @brief Q7 bilinear interpolation.
+ * @param[in,out] *S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+
+ __STATIC_INLINE q7_t arm_bilinear_interp_q7(
+ arm_bilinear_interp_instance_q7 * S,
+ q31_t X,
+ q31_t Y)
+ {
+ q63_t acc = 0; /* output */
+ q31_t out; /* Temporary output */
+ q31_t xfract, yfract; /* X, Y fractional parts */
+ q7_t x1, x2, y1, y2; /* Nearest output values */
+ int32_t rI, cI; /* Row and column indices */
+ q7_t *pYData = S->pData; /* pointer to output table values */
+ uint32_t nCols = S->numCols; /* num of rows */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ rI = ((X & 0xFFF00000) >> 20);
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ cI = ((Y & 0xFFF00000) >> 20);
+
+ /* Care taken for table outside boundary */
+ /* Returns zero output when values are outside table boundary */
+ if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1))
+ {
+ return(0);
+ }
+
+ /* 20 bits for the fractional part */
+ /* xfract should be in 12.20 format */
+ xfract = (X & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ x1 = pYData[(rI) + nCols * (cI)];
+ x2 = pYData[(rI) + nCols * (cI) + 1u];
+
+
+ /* 20 bits for the fractional part */
+ /* yfract should be in 12.20 format */
+ yfract = (Y & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ y1 = pYData[(rI) + nCols * (cI + 1)];
+ y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
+
+ /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
+ out = ((x1 * (0xFFFFF - xfract)));
+ acc = (((q63_t) out * (0xFFFFF - yfract)));
+
+ /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
+ out = ((x2 * (0xFFFFF - yfract)));
+ acc += (((q63_t) out * (xfract)));
+
+ /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
+ out = ((y1 * (0xFFFFF - xfract)));
+ acc += (((q63_t) out * (yfract)));
+
+ /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
+ out = ((y2 * (yfract)));
+ acc += (((q63_t) out * (xfract)));
+
+ /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
+ return (acc >> 40);
+
+ }
+
+ /**
+ * @} end of BilinearInterpolate group
+ */
+
+
+
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+
+#endif /* _ARM_MATH_H */
+
+
+/**
+ *
+ * End of file.
+ */
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cm4.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cm4.h
new file mode 100644
index 000000000..ef818e4d1
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cm4.h
@@ -0,0 +1,1689 @@
+/**************************************************************************//**
+ * @file core_cm4.h
+ * @brief CMSIS Cortex-M4 Core Peripheral Access Layer Header File
+ * @version V3.00
+ * @date 03. February 2012
+ *
+ * @note
+ * Copyright (C) 2009-2012 ARM Limited. All rights reserved.
+ *
+ * @par
+ * ARM Limited (ARM) is supplying this software for use with Cortex-M
+ * processor based microcontrollers. This file can be freely distributed
+ * within development tools that are supporting such ARM based processors.
+ *
+ * @par
+ * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
+ * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
+ * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
+ * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
+ *
+ ******************************************************************************/
+#if defined ( __ICCARM__ )
+ #pragma system_include /* treat file as system include file for MISRA check */
+#endif
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+#ifndef __CORE_CM4_H_GENERIC
+#define __CORE_CM4_H_GENERIC
+
+/** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
+ CMSIS violates the following MISRA-C:2004 rules:
+
+ \li Required Rule 8.5, object/function definition in header file.
+ Function definitions in header files are used to allow 'inlining'.
+
+ \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.
+ Unions are used for effective representation of core registers.
+
+ \li Advisory Rule 19.7, Function-like macro defined.
+ Function-like macros are used to allow more efficient code.
+ */
+
+
+/*******************************************************************************
+ * CMSIS definitions
+ ******************************************************************************/
+/** \ingroup Cortex_M4
+ @{
+ */
+
+/* CMSIS CM4 definitions */
+#define __CM4_CMSIS_VERSION_MAIN (0x03) /*!< [31:16] CMSIS HAL main version */
+#define __CM4_CMSIS_VERSION_SUB (0x00) /*!< [15:0] CMSIS HAL sub version */
+#define __CM4_CMSIS_VERSION ((__CM4_CMSIS_VERSION_MAIN << 16) | \
+ __CM4_CMSIS_VERSION_SUB ) /*!< CMSIS HAL version number */
+
+#define __CORTEX_M (0x04) /*!< Cortex-M Core */
+
+
+#if defined ( __CC_ARM )
+ #define __ASM __asm /*!< asm keyword for ARM Compiler */
+ #define __INLINE __inline /*!< inline keyword for ARM Compiler */
+ #define __STATIC_INLINE static __inline
+
+#elif defined ( __ICCARM__ )
+ #define __ASM __asm /*!< asm keyword for IAR Compiler */
+ #define __INLINE inline /*!< inline keyword for IAR Compiler. Only available in High optimization mode! */
+ #define __STATIC_INLINE static inline
+
+#elif defined ( __TMS470__ )
+ #define __ASM __asm /*!< asm keyword for TI CCS Compiler */
+ #define __STATIC_INLINE static inline
+
+#elif defined ( __GNUC__ )
+ #define __ASM __asm /*!< asm keyword for GNU Compiler */
+ #define __INLINE inline /*!< inline keyword for GNU Compiler */
+ #define __STATIC_INLINE static inline
+
+#elif defined ( __TASKING__ )
+ #define __ASM __asm /*!< asm keyword for TASKING Compiler */
+ #define __INLINE inline /*!< inline keyword for TASKING Compiler */
+ #define __STATIC_INLINE static inline
+
+#endif
+
+/** __FPU_USED indicates whether an FPU is used or not. For this, __FPU_PRESENT has to be checked prior to making use of FPU specific registers and functions.
+*/
+#if defined ( __CC_ARM )
+ #if defined __TARGET_FPU_VFP
+ #if (__FPU_PRESENT == 1)
+ #define __FPU_USED 1
+ #else
+ #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+ #define __FPU_USED 0
+ #endif
+ #else
+ #define __FPU_USED 0
+ #endif
+
+#elif defined ( __ICCARM__ )
+ #if defined __ARMVFP__
+ #if (__FPU_PRESENT == 1)
+ #define __FPU_USED 1
+ #else
+ #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+ #define __FPU_USED 0
+ #endif
+ #else
+ #define __FPU_USED 0
+ #endif
+
+#elif defined ( __TMS470__ )
+ #if defined __TI_VFP_SUPPORT__
+ #if (__FPU_PRESENT == 1)
+ #define __FPU_USED 1
+ #else
+ #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+ #define __FPU_USED 0
+ #endif
+ #else
+ #define __FPU_USED 0
+ #endif
+
+#elif defined ( __GNUC__ )
+ #if defined (__VFP_FP__) && !defined(__SOFTFP__)
+ #if (__FPU_PRESENT == 1)
+ #define __FPU_USED 1
+ #else
+ #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
+ #define __FPU_USED 0
+ #endif
+ #else
+ #define __FPU_USED 0
+ #endif
+
+#elif defined ( __TASKING__ )
+ /* add preprocessor checks to define __FPU_USED */
+ #define __FPU_USED 0
+#endif
+
+#include /* standard types definitions */
+#include /* Core Instruction Access */
+#include /* Core Function Access */
+#include /* Compiler specific SIMD Intrinsics */
+
+#endif /* __CORE_CM4_H_GENERIC */
+
+#ifndef __CMSIS_GENERIC
+
+#ifndef __CORE_CM4_H_DEPENDANT
+#define __CORE_CM4_H_DEPENDANT
+
+/* check device defines and use defaults */
+#if defined __CHECK_DEVICE_DEFINES
+ #ifndef __CM4_REV
+ #define __CM4_REV 0x0000
+ #warning "__CM4_REV not defined in device header file; using default!"
+ #endif
+
+ #ifndef __FPU_PRESENT
+ #define __FPU_PRESENT 0
+ #warning "__FPU_PRESENT not defined in device header file; using default!"
+ #endif
+
+ #ifndef __MPU_PRESENT
+ #define __MPU_PRESENT 0
+ #warning "__MPU_PRESENT not defined in device header file; using default!"
+ #endif
+
+ #ifndef __NVIC_PRIO_BITS
+ #define __NVIC_PRIO_BITS 4
+ #warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
+ #endif
+
+ #ifndef __Vendor_SysTickConfig
+ #define __Vendor_SysTickConfig 0
+ #warning "__Vendor_SysTickConfig not defined in device header file; using default!"
+ #endif
+#endif
+
+/* IO definitions (access restrictions to peripheral registers) */
+/**
+ \defgroup CMSIS_glob_defs CMSIS Global Defines
+
+ IO Type Qualifiers are used
+ \li to specify the access to peripheral variables.
+ \li for automatic generation of peripheral register debug information.
+*/
+#ifdef __cplusplus
+ #define __I volatile /*!< Defines 'read only' permissions */
+#else
+ #define __I volatile const /*!< Defines 'read only' permissions */
+#endif
+#define __O volatile /*!< Defines 'write only' permissions */
+#define __IO volatile /*!< Defines 'read / write' permissions */
+
+/*@} end of group Cortex_M4 */
+
+
+
+/*******************************************************************************
+ * Register Abstraction
+ Core Register contain:
+ - Core Register
+ - Core NVIC Register
+ - Core SCB Register
+ - Core SysTick Register
+ - Core Debug Register
+ - Core MPU Register
+ - Core FPU Register
+ ******************************************************************************/
+/** \defgroup CMSIS_core_register Defines and Type Definitions
+ \brief Type definitions and defines for Cortex-M processor based devices.
+*/
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_CORE Status and Control Registers
+ \brief Core Register type definitions.
+ @{
+ */
+
+/** \brief Union type to access the Application Program Status Register (APSR).
+ */
+typedef union
+{
+ struct
+ {
+#if (__CORTEX_M != 0x04)
+ uint32_t _reserved0:27; /*!< bit: 0..26 Reserved */
+#else
+ uint32_t _reserved0:16; /*!< bit: 0..15 Reserved */
+ uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */
+ uint32_t _reserved1:7; /*!< bit: 20..26 Reserved */
+#endif
+ uint32_t Q:1; /*!< bit: 27 Saturation condition flag */
+ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
+ uint32_t C:1; /*!< bit: 29 Carry condition code flag */
+ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
+ uint32_t N:1; /*!< bit: 31 Negative condition code flag */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} APSR_Type;
+
+
+/** \brief Union type to access the Interrupt Program Status Register (IPSR).
+ */
+typedef union
+{
+ struct
+ {
+ uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
+ uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} IPSR_Type;
+
+
+/** \brief Union type to access the Special-Purpose Program Status Registers (xPSR).
+ */
+typedef union
+{
+ struct
+ {
+ uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
+#if (__CORTEX_M != 0x04)
+ uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
+#else
+ uint32_t _reserved0:7; /*!< bit: 9..15 Reserved */
+ uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */
+ uint32_t _reserved1:4; /*!< bit: 20..23 Reserved */
+#endif
+ uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
+ uint32_t IT:2; /*!< bit: 25..26 saved IT state (read 0) */
+ uint32_t Q:1; /*!< bit: 27 Saturation condition flag */
+ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
+ uint32_t C:1; /*!< bit: 29 Carry condition code flag */
+ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
+ uint32_t N:1; /*!< bit: 31 Negative condition code flag */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} xPSR_Type;
+
+
+/** \brief Union type to access the Control Registers (CONTROL).
+ */
+typedef union
+{
+ struct
+ {
+ uint32_t nPRIV:1; /*!< bit: 0 Execution privilege in Thread mode */
+ uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
+ uint32_t FPCA:1; /*!< bit: 2 FP extension active flag */
+ uint32_t _reserved0:29; /*!< bit: 3..31 Reserved */
+ } b; /*!< Structure used for bit access */
+ uint32_t w; /*!< Type used for word access */
+} CONTROL_Type;
+
+/*@} end of group CMSIS_CORE */
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
+ \brief Type definitions for the NVIC Registers
+ @{
+ */
+
+/** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
+ */
+typedef struct
+{
+ __IO uint32_t ISER[8]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
+ uint32_t RESERVED0[24];
+ __IO uint32_t ICER[8]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
+ uint32_t RSERVED1[24];
+ __IO uint32_t ISPR[8]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
+ uint32_t RESERVED2[24];
+ __IO uint32_t ICPR[8]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
+ uint32_t RESERVED3[24];
+ __IO uint32_t IABR[8]; /*!< Offset: 0x200 (R/W) Interrupt Active bit Register */
+ uint32_t RESERVED4[56];
+ __IO uint8_t IP[240]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register (8Bit wide) */
+ uint32_t RESERVED5[644];
+ __O uint32_t STIR; /*!< Offset: 0xE00 ( /W) Software Trigger Interrupt Register */
+} NVIC_Type;
+
+/* Software Triggered Interrupt Register Definitions */
+#define NVIC_STIR_INTID_Pos 0 /*!< STIR: INTLINESNUM Position */
+#define NVIC_STIR_INTID_Msk (0x1FFUL << NVIC_STIR_INTID_Pos) /*!< STIR: INTLINESNUM Mask */
+
+/*@} end of group CMSIS_NVIC */
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_SCB System Control Block (SCB)
+ \brief Type definitions for the System Control Block Registers
+ @{
+ */
+
+/** \brief Structure type to access the System Control Block (SCB).
+ */
+typedef struct
+{
+ __I uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
+ __IO uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
+ __IO uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */
+ __IO uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
+ __IO uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
+ __IO uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
+ __IO uint8_t SHP[12]; /*!< Offset: 0x018 (R/W) System Handlers Priority Registers (4-7, 8-11, 12-15) */
+ __IO uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
+ __IO uint32_t CFSR; /*!< Offset: 0x028 (R/W) Configurable Fault Status Register */
+ __IO uint32_t HFSR; /*!< Offset: 0x02C (R/W) HardFault Status Register */
+ __IO uint32_t DFSR; /*!< Offset: 0x030 (R/W) Debug Fault Status Register */
+ __IO uint32_t MMFAR; /*!< Offset: 0x034 (R/W) MemManage Fault Address Register */
+ __IO uint32_t BFAR; /*!< Offset: 0x038 (R/W) BusFault Address Register */
+ __IO uint32_t AFSR; /*!< Offset: 0x03C (R/W) Auxiliary Fault Status Register */
+ __I uint32_t PFR[2]; /*!< Offset: 0x040 (R/ ) Processor Feature Register */
+ __I uint32_t DFR; /*!< Offset: 0x048 (R/ ) Debug Feature Register */
+ __I uint32_t ADR; /*!< Offset: 0x04C (R/ ) Auxiliary Feature Register */
+ __I uint32_t MMFR[4]; /*!< Offset: 0x050 (R/ ) Memory Model Feature Register */
+ __I uint32_t ISAR[5]; /*!< Offset: 0x060 (R/ ) Instruction Set Attributes Register */
+ uint32_t RESERVED0[5];
+ __IO uint32_t CPACR; /*!< Offset: 0x088 (R/W) Coprocessor Access Control Register */
+} SCB_Type;
+
+/* SCB CPUID Register Definitions */
+#define SCB_CPUID_IMPLEMENTER_Pos 24 /*!< SCB CPUID: IMPLEMENTER Position */
+#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
+
+#define SCB_CPUID_VARIANT_Pos 20 /*!< SCB CPUID: VARIANT Position */
+#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
+
+#define SCB_CPUID_ARCHITECTURE_Pos 16 /*!< SCB CPUID: ARCHITECTURE Position */
+#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
+
+#define SCB_CPUID_PARTNO_Pos 4 /*!< SCB CPUID: PARTNO Position */
+#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
+
+#define SCB_CPUID_REVISION_Pos 0 /*!< SCB CPUID: REVISION Position */
+#define SCB_CPUID_REVISION_Msk (0xFUL << SCB_CPUID_REVISION_Pos) /*!< SCB CPUID: REVISION Mask */
+
+/* SCB Interrupt Control State Register Definitions */
+#define SCB_ICSR_NMIPENDSET_Pos 31 /*!< SCB ICSR: NMIPENDSET Position */
+#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
+
+#define SCB_ICSR_PENDSVSET_Pos 28 /*!< SCB ICSR: PENDSVSET Position */
+#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
+
+#define SCB_ICSR_PENDSVCLR_Pos 27 /*!< SCB ICSR: PENDSVCLR Position */
+#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
+
+#define SCB_ICSR_PENDSTSET_Pos 26 /*!< SCB ICSR: PENDSTSET Position */
+#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
+
+#define SCB_ICSR_PENDSTCLR_Pos 25 /*!< SCB ICSR: PENDSTCLR Position */
+#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
+
+#define SCB_ICSR_ISRPREEMPT_Pos 23 /*!< SCB ICSR: ISRPREEMPT Position */
+#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
+
+#define SCB_ICSR_ISRPENDING_Pos 22 /*!< SCB ICSR: ISRPENDING Position */
+#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
+
+#define SCB_ICSR_VECTPENDING_Pos 12 /*!< SCB ICSR: VECTPENDING Position */
+#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
+
+#define SCB_ICSR_RETTOBASE_Pos 11 /*!< SCB ICSR: RETTOBASE Position */
+#define SCB_ICSR_RETTOBASE_Msk (1UL << SCB_ICSR_RETTOBASE_Pos) /*!< SCB ICSR: RETTOBASE Mask */
+
+#define SCB_ICSR_VECTACTIVE_Pos 0 /*!< SCB ICSR: VECTACTIVE Position */
+#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL << SCB_ICSR_VECTACTIVE_Pos) /*!< SCB ICSR: VECTACTIVE Mask */
+
+/* SCB Vector Table Offset Register Definitions */
+#define SCB_VTOR_TBLOFF_Pos 7 /*!< SCB VTOR: TBLOFF Position */
+#define SCB_VTOR_TBLOFF_Msk (0x1FFFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */
+
+/* SCB Application Interrupt and Reset Control Register Definitions */
+#define SCB_AIRCR_VECTKEY_Pos 16 /*!< SCB AIRCR: VECTKEY Position */
+#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
+
+#define SCB_AIRCR_VECTKEYSTAT_Pos 16 /*!< SCB AIRCR: VECTKEYSTAT Position */
+#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
+
+#define SCB_AIRCR_ENDIANESS_Pos 15 /*!< SCB AIRCR: ENDIANESS Position */
+#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
+
+#define SCB_AIRCR_PRIGROUP_Pos 8 /*!< SCB AIRCR: PRIGROUP Position */
+#define SCB_AIRCR_PRIGROUP_Msk (7UL << SCB_AIRCR_PRIGROUP_Pos) /*!< SCB AIRCR: PRIGROUP Mask */
+
+#define SCB_AIRCR_SYSRESETREQ_Pos 2 /*!< SCB AIRCR: SYSRESETREQ Position */
+#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
+
+#define SCB_AIRCR_VECTCLRACTIVE_Pos 1 /*!< SCB AIRCR: VECTCLRACTIVE Position */
+#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
+
+#define SCB_AIRCR_VECTRESET_Pos 0 /*!< SCB AIRCR: VECTRESET Position */
+#define SCB_AIRCR_VECTRESET_Msk (1UL << SCB_AIRCR_VECTRESET_Pos) /*!< SCB AIRCR: VECTRESET Mask */
+
+/* SCB System Control Register Definitions */
+#define SCB_SCR_SEVONPEND_Pos 4 /*!< SCB SCR: SEVONPEND Position */
+#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
+
+#define SCB_SCR_SLEEPDEEP_Pos 2 /*!< SCB SCR: SLEEPDEEP Position */
+#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
+
+#define SCB_SCR_SLEEPONEXIT_Pos 1 /*!< SCB SCR: SLEEPONEXIT Position */
+#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
+
+/* SCB Configuration Control Register Definitions */
+#define SCB_CCR_STKALIGN_Pos 9 /*!< SCB CCR: STKALIGN Position */
+#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
+
+#define SCB_CCR_BFHFNMIGN_Pos 8 /*!< SCB CCR: BFHFNMIGN Position */
+#define SCB_CCR_BFHFNMIGN_Msk (1UL << SCB_CCR_BFHFNMIGN_Pos) /*!< SCB CCR: BFHFNMIGN Mask */
+
+#define SCB_CCR_DIV_0_TRP_Pos 4 /*!< SCB CCR: DIV_0_TRP Position */
+#define SCB_CCR_DIV_0_TRP_Msk (1UL << SCB_CCR_DIV_0_TRP_Pos) /*!< SCB CCR: DIV_0_TRP Mask */
+
+#define SCB_CCR_UNALIGN_TRP_Pos 3 /*!< SCB CCR: UNALIGN_TRP Position */
+#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
+
+#define SCB_CCR_USERSETMPEND_Pos 1 /*!< SCB CCR: USERSETMPEND Position */
+#define SCB_CCR_USERSETMPEND_Msk (1UL << SCB_CCR_USERSETMPEND_Pos) /*!< SCB CCR: USERSETMPEND Mask */
+
+#define SCB_CCR_NONBASETHRDENA_Pos 0 /*!< SCB CCR: NONBASETHRDENA Position */
+#define SCB_CCR_NONBASETHRDENA_Msk (1UL << SCB_CCR_NONBASETHRDENA_Pos) /*!< SCB CCR: NONBASETHRDENA Mask */
+
+/* SCB System Handler Control and State Register Definitions */
+#define SCB_SHCSR_USGFAULTENA_Pos 18 /*!< SCB SHCSR: USGFAULTENA Position */
+#define SCB_SHCSR_USGFAULTENA_Msk (1UL << SCB_SHCSR_USGFAULTENA_Pos) /*!< SCB SHCSR: USGFAULTENA Mask */
+
+#define SCB_SHCSR_BUSFAULTENA_Pos 17 /*!< SCB SHCSR: BUSFAULTENA Position */
+#define SCB_SHCSR_BUSFAULTENA_Msk (1UL << SCB_SHCSR_BUSFAULTENA_Pos) /*!< SCB SHCSR: BUSFAULTENA Mask */
+
+#define SCB_SHCSR_MEMFAULTENA_Pos 16 /*!< SCB SHCSR: MEMFAULTENA Position */
+#define SCB_SHCSR_MEMFAULTENA_Msk (1UL << SCB_SHCSR_MEMFAULTENA_Pos) /*!< SCB SHCSR: MEMFAULTENA Mask */
+
+#define SCB_SHCSR_SVCALLPENDED_Pos 15 /*!< SCB SHCSR: SVCALLPENDED Position */
+#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
+
+#define SCB_SHCSR_BUSFAULTPENDED_Pos 14 /*!< SCB SHCSR: BUSFAULTPENDED Position */
+#define SCB_SHCSR_BUSFAULTPENDED_Msk (1UL << SCB_SHCSR_BUSFAULTPENDED_Pos) /*!< SCB SHCSR: BUSFAULTPENDED Mask */
+
+#define SCB_SHCSR_MEMFAULTPENDED_Pos 13 /*!< SCB SHCSR: MEMFAULTPENDED Position */
+#define SCB_SHCSR_MEMFAULTPENDED_Msk (1UL << SCB_SHCSR_MEMFAULTPENDED_Pos) /*!< SCB SHCSR: MEMFAULTPENDED Mask */
+
+#define SCB_SHCSR_USGFAULTPENDED_Pos 12 /*!< SCB SHCSR: USGFAULTPENDED Position */
+#define SCB_SHCSR_USGFAULTPENDED_Msk (1UL << SCB_SHCSR_USGFAULTPENDED_Pos) /*!< SCB SHCSR: USGFAULTPENDED Mask */
+
+#define SCB_SHCSR_SYSTICKACT_Pos 11 /*!< SCB SHCSR: SYSTICKACT Position */
+#define SCB_SHCSR_SYSTICKACT_Msk (1UL << SCB_SHCSR_SYSTICKACT_Pos) /*!< SCB SHCSR: SYSTICKACT Mask */
+
+#define SCB_SHCSR_PENDSVACT_Pos 10 /*!< SCB SHCSR: PENDSVACT Position */
+#define SCB_SHCSR_PENDSVACT_Msk (1UL << SCB_SHCSR_PENDSVACT_Pos) /*!< SCB SHCSR: PENDSVACT Mask */
+
+#define SCB_SHCSR_MONITORACT_Pos 8 /*!< SCB SHCSR: MONITORACT Position */
+#define SCB_SHCSR_MONITORACT_Msk (1UL << SCB_SHCSR_MONITORACT_Pos) /*!< SCB SHCSR: MONITORACT Mask */
+
+#define SCB_SHCSR_SVCALLACT_Pos 7 /*!< SCB SHCSR: SVCALLACT Position */
+#define SCB_SHCSR_SVCALLACT_Msk (1UL << SCB_SHCSR_SVCALLACT_Pos) /*!< SCB SHCSR: SVCALLACT Mask */
+
+#define SCB_SHCSR_USGFAULTACT_Pos 3 /*!< SCB SHCSR: USGFAULTACT Position */
+#define SCB_SHCSR_USGFAULTACT_Msk (1UL << SCB_SHCSR_USGFAULTACT_Pos) /*!< SCB SHCSR: USGFAULTACT Mask */
+
+#define SCB_SHCSR_BUSFAULTACT_Pos 1 /*!< SCB SHCSR: BUSFAULTACT Position */
+#define SCB_SHCSR_BUSFAULTACT_Msk (1UL << SCB_SHCSR_BUSFAULTACT_Pos) /*!< SCB SHCSR: BUSFAULTACT Mask */
+
+#define SCB_SHCSR_MEMFAULTACT_Pos 0 /*!< SCB SHCSR: MEMFAULTACT Position */
+#define SCB_SHCSR_MEMFAULTACT_Msk (1UL << SCB_SHCSR_MEMFAULTACT_Pos) /*!< SCB SHCSR: MEMFAULTACT Mask */
+
+/* SCB Configurable Fault Status Registers Definitions */
+#define SCB_CFSR_USGFAULTSR_Pos 16 /*!< SCB CFSR: Usage Fault Status Register Position */
+#define SCB_CFSR_USGFAULTSR_Msk (0xFFFFUL << SCB_CFSR_USGFAULTSR_Pos) /*!< SCB CFSR: Usage Fault Status Register Mask */
+
+#define SCB_CFSR_BUSFAULTSR_Pos 8 /*!< SCB CFSR: Bus Fault Status Register Position */
+#define SCB_CFSR_BUSFAULTSR_Msk (0xFFUL << SCB_CFSR_BUSFAULTSR_Pos) /*!< SCB CFSR: Bus Fault Status Register Mask */
+
+#define SCB_CFSR_MEMFAULTSR_Pos 0 /*!< SCB CFSR: Memory Manage Fault Status Register Position */
+#define SCB_CFSR_MEMFAULTSR_Msk (0xFFUL << SCB_CFSR_MEMFAULTSR_Pos) /*!< SCB CFSR: Memory Manage Fault Status Register Mask */
+
+/* SCB Hard Fault Status Registers Definitions */
+#define SCB_HFSR_DEBUGEVT_Pos 31 /*!< SCB HFSR: DEBUGEVT Position */
+#define SCB_HFSR_DEBUGEVT_Msk (1UL << SCB_HFSR_DEBUGEVT_Pos) /*!< SCB HFSR: DEBUGEVT Mask */
+
+#define SCB_HFSR_FORCED_Pos 30 /*!< SCB HFSR: FORCED Position */
+#define SCB_HFSR_FORCED_Msk (1UL << SCB_HFSR_FORCED_Pos) /*!< SCB HFSR: FORCED Mask */
+
+#define SCB_HFSR_VECTTBL_Pos 1 /*!< SCB HFSR: VECTTBL Position */
+#define SCB_HFSR_VECTTBL_Msk (1UL << SCB_HFSR_VECTTBL_Pos) /*!< SCB HFSR: VECTTBL Mask */
+
+/* SCB Debug Fault Status Register Definitions */
+#define SCB_DFSR_EXTERNAL_Pos 4 /*!< SCB DFSR: EXTERNAL Position */
+#define SCB_DFSR_EXTERNAL_Msk (1UL << SCB_DFSR_EXTERNAL_Pos) /*!< SCB DFSR: EXTERNAL Mask */
+
+#define SCB_DFSR_VCATCH_Pos 3 /*!< SCB DFSR: VCATCH Position */
+#define SCB_DFSR_VCATCH_Msk (1UL << SCB_DFSR_VCATCH_Pos) /*!< SCB DFSR: VCATCH Mask */
+
+#define SCB_DFSR_DWTTRAP_Pos 2 /*!< SCB DFSR: DWTTRAP Position */
+#define SCB_DFSR_DWTTRAP_Msk (1UL << SCB_DFSR_DWTTRAP_Pos) /*!< SCB DFSR: DWTTRAP Mask */
+
+#define SCB_DFSR_BKPT_Pos 1 /*!< SCB DFSR: BKPT Position */
+#define SCB_DFSR_BKPT_Msk (1UL << SCB_DFSR_BKPT_Pos) /*!< SCB DFSR: BKPT Mask */
+
+#define SCB_DFSR_HALTED_Pos 0 /*!< SCB DFSR: HALTED Position */
+#define SCB_DFSR_HALTED_Msk (1UL << SCB_DFSR_HALTED_Pos) /*!< SCB DFSR: HALTED Mask */
+
+/*@} end of group CMSIS_SCB */
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
+ \brief Type definitions for the System Control and ID Register not in the SCB
+ @{
+ */
+
+/** \brief Structure type to access the System Control and ID Register not in the SCB.
+ */
+typedef struct
+{
+ uint32_t RESERVED0[1];
+ __I uint32_t ICTR; /*!< Offset: 0x004 (R/ ) Interrupt Controller Type Register */
+ __IO uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */
+} SCnSCB_Type;
+
+/* Interrupt Controller Type Register Definitions */
+#define SCnSCB_ICTR_INTLINESNUM_Pos 0 /*!< ICTR: INTLINESNUM Position */
+#define SCnSCB_ICTR_INTLINESNUM_Msk (0xFUL << SCnSCB_ICTR_INTLINESNUM_Pos) /*!< ICTR: INTLINESNUM Mask */
+
+/* Auxiliary Control Register Definitions */
+#define SCnSCB_ACTLR_DISOOFP_Pos 9 /*!< ACTLR: DISOOFP Position */
+#define SCnSCB_ACTLR_DISOOFP_Msk (1UL << SCnSCB_ACTLR_DISOOFP_Pos) /*!< ACTLR: DISOOFP Mask */
+
+#define SCnSCB_ACTLR_DISFPCA_Pos 8 /*!< ACTLR: DISFPCA Position */
+#define SCnSCB_ACTLR_DISFPCA_Msk (1UL << SCnSCB_ACTLR_DISFPCA_Pos) /*!< ACTLR: DISFPCA Mask */
+
+#define SCnSCB_ACTLR_DISFOLD_Pos 2 /*!< ACTLR: DISFOLD Position */
+#define SCnSCB_ACTLR_DISFOLD_Msk (1UL << SCnSCB_ACTLR_DISFOLD_Pos) /*!< ACTLR: DISFOLD Mask */
+
+#define SCnSCB_ACTLR_DISDEFWBUF_Pos 1 /*!< ACTLR: DISDEFWBUF Position */
+#define SCnSCB_ACTLR_DISDEFWBUF_Msk (1UL << SCnSCB_ACTLR_DISDEFWBUF_Pos) /*!< ACTLR: DISDEFWBUF Mask */
+
+#define SCnSCB_ACTLR_DISMCYCINT_Pos 0 /*!< ACTLR: DISMCYCINT Position */
+#define SCnSCB_ACTLR_DISMCYCINT_Msk (1UL << SCnSCB_ACTLR_DISMCYCINT_Pos) /*!< ACTLR: DISMCYCINT Mask */
+
+/*@} end of group CMSIS_SCnotSCB */
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_SysTick System Tick Timer (SysTick)
+ \brief Type definitions for the System Timer Registers.
+ @{
+ */
+
+/** \brief Structure type to access the System Timer (SysTick).
+ */
+typedef struct
+{
+ __IO uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
+ __IO uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
+ __IO uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
+ __I uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
+} SysTick_Type;
+
+/* SysTick Control / Status Register Definitions */
+#define SysTick_CTRL_COUNTFLAG_Pos 16 /*!< SysTick CTRL: COUNTFLAG Position */
+#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
+
+#define SysTick_CTRL_CLKSOURCE_Pos 2 /*!< SysTick CTRL: CLKSOURCE Position */
+#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
+
+#define SysTick_CTRL_TICKINT_Pos 1 /*!< SysTick CTRL: TICKINT Position */
+#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
+
+#define SysTick_CTRL_ENABLE_Pos 0 /*!< SysTick CTRL: ENABLE Position */
+#define SysTick_CTRL_ENABLE_Msk (1UL << SysTick_CTRL_ENABLE_Pos) /*!< SysTick CTRL: ENABLE Mask */
+
+/* SysTick Reload Register Definitions */
+#define SysTick_LOAD_RELOAD_Pos 0 /*!< SysTick LOAD: RELOAD Position */
+#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL << SysTick_LOAD_RELOAD_Pos) /*!< SysTick LOAD: RELOAD Mask */
+
+/* SysTick Current Register Definitions */
+#define SysTick_VAL_CURRENT_Pos 0 /*!< SysTick VAL: CURRENT Position */
+#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos) /*!< SysTick VAL: CURRENT Mask */
+
+/* SysTick Calibration Register Definitions */
+#define SysTick_CALIB_NOREF_Pos 31 /*!< SysTick CALIB: NOREF Position */
+#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
+
+#define SysTick_CALIB_SKEW_Pos 30 /*!< SysTick CALIB: SKEW Position */
+#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
+
+#define SysTick_CALIB_TENMS_Pos 0 /*!< SysTick CALIB: TENMS Position */
+#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos) /*!< SysTick CALIB: TENMS Mask */
+
+/*@} end of group CMSIS_SysTick */
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_ITM Instrumentation Trace Macrocell (ITM)
+ \brief Type definitions for the Instrumentation Trace Macrocell (ITM)
+ @{
+ */
+
+/** \brief Structure type to access the Instrumentation Trace Macrocell Register (ITM).
+ */
+typedef struct
+{
+ __O union
+ {
+ __O uint8_t u8; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 8-bit */
+ __O uint16_t u16; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 16-bit */
+ __O uint32_t u32; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 32-bit */
+ } PORT [32]; /*!< Offset: 0x000 ( /W) ITM Stimulus Port Registers */
+ uint32_t RESERVED0[864];
+ __IO uint32_t TER; /*!< Offset: 0xE00 (R/W) ITM Trace Enable Register */
+ uint32_t RESERVED1[15];
+ __IO uint32_t TPR; /*!< Offset: 0xE40 (R/W) ITM Trace Privilege Register */
+ uint32_t RESERVED2[15];
+ __IO uint32_t TCR; /*!< Offset: 0xE80 (R/W) ITM Trace Control Register */
+} ITM_Type;
+
+/* ITM Trace Privilege Register Definitions */
+#define ITM_TPR_PRIVMASK_Pos 0 /*!< ITM TPR: PRIVMASK Position */
+#define ITM_TPR_PRIVMASK_Msk (0xFUL << ITM_TPR_PRIVMASK_Pos) /*!< ITM TPR: PRIVMASK Mask */
+
+/* ITM Trace Control Register Definitions */
+#define ITM_TCR_BUSY_Pos 23 /*!< ITM TCR: BUSY Position */
+#define ITM_TCR_BUSY_Msk (1UL << ITM_TCR_BUSY_Pos) /*!< ITM TCR: BUSY Mask */
+
+#define ITM_TCR_TraceBusID_Pos 16 /*!< ITM TCR: ATBID Position */
+#define ITM_TCR_TraceBusID_Msk (0x7FUL << ITM_TCR_TraceBusID_Pos) /*!< ITM TCR: ATBID Mask */
+
+#define ITM_TCR_GTSFREQ_Pos 10 /*!< ITM TCR: Global timestamp frequency Position */
+#define ITM_TCR_GTSFREQ_Msk (3UL << ITM_TCR_GTSFREQ_Pos) /*!< ITM TCR: Global timestamp frequency Mask */
+
+#define ITM_TCR_TSPrescale_Pos 8 /*!< ITM TCR: TSPrescale Position */
+#define ITM_TCR_TSPrescale_Msk (3UL << ITM_TCR_TSPrescale_Pos) /*!< ITM TCR: TSPrescale Mask */
+
+#define ITM_TCR_SWOENA_Pos 4 /*!< ITM TCR: SWOENA Position */
+#define ITM_TCR_SWOENA_Msk (1UL << ITM_TCR_SWOENA_Pos) /*!< ITM TCR: SWOENA Mask */
+
+#define ITM_TCR_TXENA_Pos 3 /*!< ITM TCR: TXENA Position */
+#define ITM_TCR_TXENA_Msk (1UL << ITM_TCR_TXENA_Pos) /*!< ITM TCR: TXENA Mask */
+
+#define ITM_TCR_SYNCENA_Pos 2 /*!< ITM TCR: SYNCENA Position */
+#define ITM_TCR_SYNCENA_Msk (1UL << ITM_TCR_SYNCENA_Pos) /*!< ITM TCR: SYNCENA Mask */
+
+#define ITM_TCR_TSENA_Pos 1 /*!< ITM TCR: TSENA Position */
+#define ITM_TCR_TSENA_Msk (1UL << ITM_TCR_TSENA_Pos) /*!< ITM TCR: TSENA Mask */
+
+#define ITM_TCR_ITMENA_Pos 0 /*!< ITM TCR: ITM Enable bit Position */
+#define ITM_TCR_ITMENA_Msk (1UL << ITM_TCR_ITMENA_Pos) /*!< ITM TCR: ITM Enable bit Mask */
+
+/*@}*/ /* end of group CMSIS_ITM */
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_DWT Data Watchpoint and Trace (DWT)
+ \brief Type definitions for the Data Watchpoint and Trace (DWT)
+ @{
+ */
+
+/** \brief Structure type to access the Data Watchpoint and Trace Register (DWT).
+ */
+typedef struct
+{
+ __IO uint32_t CTRL; /*!< Offset: 0x000 (R/W) Control Register */
+ __IO uint32_t CYCCNT; /*!< Offset: 0x004 (R/W) Cycle Count Register */
+ __IO uint32_t CPICNT; /*!< Offset: 0x008 (R/W) CPI Count Register */
+ __IO uint32_t EXCCNT; /*!< Offset: 0x00C (R/W) Exception Overhead Count Register */
+ __IO uint32_t SLEEPCNT; /*!< Offset: 0x010 (R/W) Sleep Count Register */
+ __IO uint32_t LSUCNT; /*!< Offset: 0x014 (R/W) LSU Count Register */
+ __IO uint32_t FOLDCNT; /*!< Offset: 0x018 (R/W) Folded-instruction Count Register */
+ __I uint32_t PCSR; /*!< Offset: 0x01C (R/ ) Program Counter Sample Register */
+ __IO uint32_t COMP0; /*!< Offset: 0x020 (R/W) Comparator Register 0 */
+ __IO uint32_t MASK0; /*!< Offset: 0x024 (R/W) Mask Register 0 */
+ __IO uint32_t FUNCTION0; /*!< Offset: 0x028 (R/W) Function Register 0 */
+ uint32_t RESERVED0[1];
+ __IO uint32_t COMP1; /*!< Offset: 0x030 (R/W) Comparator Register 1 */
+ __IO uint32_t MASK1; /*!< Offset: 0x034 (R/W) Mask Register 1 */
+ __IO uint32_t FUNCTION1; /*!< Offset: 0x038 (R/W) Function Register 1 */
+ uint32_t RESERVED1[1];
+ __IO uint32_t COMP2; /*!< Offset: 0x040 (R/W) Comparator Register 2 */
+ __IO uint32_t MASK2; /*!< Offset: 0x044 (R/W) Mask Register 2 */
+ __IO uint32_t FUNCTION2; /*!< Offset: 0x048 (R/W) Function Register 2 */
+ uint32_t RESERVED2[1];
+ __IO uint32_t COMP3; /*!< Offset: 0x050 (R/W) Comparator Register 3 */
+ __IO uint32_t MASK3; /*!< Offset: 0x054 (R/W) Mask Register 3 */
+ __IO uint32_t FUNCTION3; /*!< Offset: 0x058 (R/W) Function Register 3 */
+} DWT_Type;
+
+/* DWT Control Register Definitions */
+#define DWT_CTRL_NUMCOMP_Pos 28 /*!< DWT CTRL: NUMCOMP Position */
+#define DWT_CTRL_NUMCOMP_Msk (0xFUL << DWT_CTRL_NUMCOMP_Pos) /*!< DWT CTRL: NUMCOMP Mask */
+
+#define DWT_CTRL_NOTRCPKT_Pos 27 /*!< DWT CTRL: NOTRCPKT Position */
+#define DWT_CTRL_NOTRCPKT_Msk (0x1UL << DWT_CTRL_NOTRCPKT_Pos) /*!< DWT CTRL: NOTRCPKT Mask */
+
+#define DWT_CTRL_NOEXTTRIG_Pos 26 /*!< DWT CTRL: NOEXTTRIG Position */
+#define DWT_CTRL_NOEXTTRIG_Msk (0x1UL << DWT_CTRL_NOEXTTRIG_Pos) /*!< DWT CTRL: NOEXTTRIG Mask */
+
+#define DWT_CTRL_NOCYCCNT_Pos 25 /*!< DWT CTRL: NOCYCCNT Position */
+#define DWT_CTRL_NOCYCCNT_Msk (0x1UL << DWT_CTRL_NOCYCCNT_Pos) /*!< DWT CTRL: NOCYCCNT Mask */
+
+#define DWT_CTRL_NOPRFCNT_Pos 24 /*!< DWT CTRL: NOPRFCNT Position */
+#define DWT_CTRL_NOPRFCNT_Msk (0x1UL << DWT_CTRL_NOPRFCNT_Pos) /*!< DWT CTRL: NOPRFCNT Mask */
+
+#define DWT_CTRL_CYCEVTENA_Pos 22 /*!< DWT CTRL: CYCEVTENA Position */
+#define DWT_CTRL_CYCEVTENA_Msk (0x1UL << DWT_CTRL_CYCEVTENA_Pos) /*!< DWT CTRL: CYCEVTENA Mask */
+
+#define DWT_CTRL_FOLDEVTENA_Pos 21 /*!< DWT CTRL: FOLDEVTENA Position */
+#define DWT_CTRL_FOLDEVTENA_Msk (0x1UL << DWT_CTRL_FOLDEVTENA_Pos) /*!< DWT CTRL: FOLDEVTENA Mask */
+
+#define DWT_CTRL_LSUEVTENA_Pos 20 /*!< DWT CTRL: LSUEVTENA Position */
+#define DWT_CTRL_LSUEVTENA_Msk (0x1UL << DWT_CTRL_LSUEVTENA_Pos) /*!< DWT CTRL: LSUEVTENA Mask */
+
+#define DWT_CTRL_SLEEPEVTENA_Pos 19 /*!< DWT CTRL: SLEEPEVTENA Position */
+#define DWT_CTRL_SLEEPEVTENA_Msk (0x1UL << DWT_CTRL_SLEEPEVTENA_Pos) /*!< DWT CTRL: SLEEPEVTENA Mask */
+
+#define DWT_CTRL_EXCEVTENA_Pos 18 /*!< DWT CTRL: EXCEVTENA Position */
+#define DWT_CTRL_EXCEVTENA_Msk (0x1UL << DWT_CTRL_EXCEVTENA_Pos) /*!< DWT CTRL: EXCEVTENA Mask */
+
+#define DWT_CTRL_CPIEVTENA_Pos 17 /*!< DWT CTRL: CPIEVTENA Position */
+#define DWT_CTRL_CPIEVTENA_Msk (0x1UL << DWT_CTRL_CPIEVTENA_Pos) /*!< DWT CTRL: CPIEVTENA Mask */
+
+#define DWT_CTRL_EXCTRCENA_Pos 16 /*!< DWT CTRL: EXCTRCENA Position */
+#define DWT_CTRL_EXCTRCENA_Msk (0x1UL << DWT_CTRL_EXCTRCENA_Pos) /*!< DWT CTRL: EXCTRCENA Mask */
+
+#define DWT_CTRL_PCSAMPLENA_Pos 12 /*!< DWT CTRL: PCSAMPLENA Position */
+#define DWT_CTRL_PCSAMPLENA_Msk (0x1UL << DWT_CTRL_PCSAMPLENA_Pos) /*!< DWT CTRL: PCSAMPLENA Mask */
+
+#define DWT_CTRL_SYNCTAP_Pos 10 /*!< DWT CTRL: SYNCTAP Position */
+#define DWT_CTRL_SYNCTAP_Msk (0x3UL << DWT_CTRL_SYNCTAP_Pos) /*!< DWT CTRL: SYNCTAP Mask */
+
+#define DWT_CTRL_CYCTAP_Pos 9 /*!< DWT CTRL: CYCTAP Position */
+#define DWT_CTRL_CYCTAP_Msk (0x1UL << DWT_CTRL_CYCTAP_Pos) /*!< DWT CTRL: CYCTAP Mask */
+
+#define DWT_CTRL_POSTINIT_Pos 5 /*!< DWT CTRL: POSTINIT Position */
+#define DWT_CTRL_POSTINIT_Msk (0xFUL << DWT_CTRL_POSTINIT_Pos) /*!< DWT CTRL: POSTINIT Mask */
+
+#define DWT_CTRL_POSTPRESET_Pos 1 /*!< DWT CTRL: POSTPRESET Position */
+#define DWT_CTRL_POSTPRESET_Msk (0xFUL << DWT_CTRL_POSTPRESET_Pos) /*!< DWT CTRL: POSTPRESET Mask */
+
+#define DWT_CTRL_CYCCNTENA_Pos 0 /*!< DWT CTRL: CYCCNTENA Position */
+#define DWT_CTRL_CYCCNTENA_Msk (0x1UL << DWT_CTRL_CYCCNTENA_Pos) /*!< DWT CTRL: CYCCNTENA Mask */
+
+/* DWT CPI Count Register Definitions */
+#define DWT_CPICNT_CPICNT_Pos 0 /*!< DWT CPICNT: CPICNT Position */
+#define DWT_CPICNT_CPICNT_Msk (0xFFUL << DWT_CPICNT_CPICNT_Pos) /*!< DWT CPICNT: CPICNT Mask */
+
+/* DWT Exception Overhead Count Register Definitions */
+#define DWT_EXCCNT_EXCCNT_Pos 0 /*!< DWT EXCCNT: EXCCNT Position */
+#define DWT_EXCCNT_EXCCNT_Msk (0xFFUL << DWT_EXCCNT_EXCCNT_Pos) /*!< DWT EXCCNT: EXCCNT Mask */
+
+/* DWT Sleep Count Register Definitions */
+#define DWT_SLEEPCNT_SLEEPCNT_Pos 0 /*!< DWT SLEEPCNT: SLEEPCNT Position */
+#define DWT_SLEEPCNT_SLEEPCNT_Msk (0xFFUL << DWT_SLEEPCNT_SLEEPCNT_Pos) /*!< DWT SLEEPCNT: SLEEPCNT Mask */
+
+/* DWT LSU Count Register Definitions */
+#define DWT_LSUCNT_LSUCNT_Pos 0 /*!< DWT LSUCNT: LSUCNT Position */
+#define DWT_LSUCNT_LSUCNT_Msk (0xFFUL << DWT_LSUCNT_LSUCNT_Pos) /*!< DWT LSUCNT: LSUCNT Mask */
+
+/* DWT Folded-instruction Count Register Definitions */
+#define DWT_FOLDCNT_FOLDCNT_Pos 0 /*!< DWT FOLDCNT: FOLDCNT Position */
+#define DWT_FOLDCNT_FOLDCNT_Msk (0xFFUL << DWT_FOLDCNT_FOLDCNT_Pos) /*!< DWT FOLDCNT: FOLDCNT Mask */
+
+/* DWT Comparator Mask Register Definitions */
+#define DWT_MASK_MASK_Pos 0 /*!< DWT MASK: MASK Position */
+#define DWT_MASK_MASK_Msk (0x1FUL << DWT_MASK_MASK_Pos) /*!< DWT MASK: MASK Mask */
+
+/* DWT Comparator Function Register Definitions */
+#define DWT_FUNCTION_MATCHED_Pos 24 /*!< DWT FUNCTION: MATCHED Position */
+#define DWT_FUNCTION_MATCHED_Msk (0x1UL << DWT_FUNCTION_MATCHED_Pos) /*!< DWT FUNCTION: MATCHED Mask */
+
+#define DWT_FUNCTION_DATAVADDR1_Pos 16 /*!< DWT FUNCTION: DATAVADDR1 Position */
+#define DWT_FUNCTION_DATAVADDR1_Msk (0xFUL << DWT_FUNCTION_DATAVADDR1_Pos) /*!< DWT FUNCTION: DATAVADDR1 Mask */
+
+#define DWT_FUNCTION_DATAVADDR0_Pos 12 /*!< DWT FUNCTION: DATAVADDR0 Position */
+#define DWT_FUNCTION_DATAVADDR0_Msk (0xFUL << DWT_FUNCTION_DATAVADDR0_Pos) /*!< DWT FUNCTION: DATAVADDR0 Mask */
+
+#define DWT_FUNCTION_DATAVSIZE_Pos 10 /*!< DWT FUNCTION: DATAVSIZE Position */
+#define DWT_FUNCTION_DATAVSIZE_Msk (0x3UL << DWT_FUNCTION_DATAVSIZE_Pos) /*!< DWT FUNCTION: DATAVSIZE Mask */
+
+#define DWT_FUNCTION_LNK1ENA_Pos 9 /*!< DWT FUNCTION: LNK1ENA Position */
+#define DWT_FUNCTION_LNK1ENA_Msk (0x1UL << DWT_FUNCTION_LNK1ENA_Pos) /*!< DWT FUNCTION: LNK1ENA Mask */
+
+#define DWT_FUNCTION_DATAVMATCH_Pos 8 /*!< DWT FUNCTION: DATAVMATCH Position */
+#define DWT_FUNCTION_DATAVMATCH_Msk (0x1UL << DWT_FUNCTION_DATAVMATCH_Pos) /*!< DWT FUNCTION: DATAVMATCH Mask */
+
+#define DWT_FUNCTION_CYCMATCH_Pos 7 /*!< DWT FUNCTION: CYCMATCH Position */
+#define DWT_FUNCTION_CYCMATCH_Msk (0x1UL << DWT_FUNCTION_CYCMATCH_Pos) /*!< DWT FUNCTION: CYCMATCH Mask */
+
+#define DWT_FUNCTION_EMITRANGE_Pos 5 /*!< DWT FUNCTION: EMITRANGE Position */
+#define DWT_FUNCTION_EMITRANGE_Msk (0x1UL << DWT_FUNCTION_EMITRANGE_Pos) /*!< DWT FUNCTION: EMITRANGE Mask */
+
+#define DWT_FUNCTION_FUNCTION_Pos 0 /*!< DWT FUNCTION: FUNCTION Position */
+#define DWT_FUNCTION_FUNCTION_Msk (0xFUL << DWT_FUNCTION_FUNCTION_Pos) /*!< DWT FUNCTION: FUNCTION Mask */
+
+/*@}*/ /* end of group CMSIS_DWT */
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_TPI Trace Port Interface (TPI)
+ \brief Type definitions for the Trace Port Interface (TPI)
+ @{
+ */
+
+/** \brief Structure type to access the Trace Port Interface Register (TPI).
+ */
+typedef struct
+{
+ __IO uint32_t SSPSR; /*!< Offset: 0x000 (R/ ) Supported Parallel Port Size Register */
+ __IO uint32_t CSPSR; /*!< Offset: 0x004 (R/W) Current Parallel Port Size Register */
+ uint32_t RESERVED0[2];
+ __IO uint32_t ACPR; /*!< Offset: 0x010 (R/W) Asynchronous Clock Prescaler Register */
+ uint32_t RESERVED1[55];
+ __IO uint32_t SPPR; /*!< Offset: 0x0F0 (R/W) Selected Pin Protocol Register */
+ uint32_t RESERVED2[131];
+ __I uint32_t FFSR; /*!< Offset: 0x300 (R/ ) Formatter and Flush Status Register */
+ __IO uint32_t FFCR; /*!< Offset: 0x304 (R/W) Formatter and Flush Control Register */
+ __I uint32_t FSCR; /*!< Offset: 0x308 (R/ ) Formatter Synchronization Counter Register */
+ uint32_t RESERVED3[759];
+ __I uint32_t TRIGGER; /*!< Offset: 0xEE8 (R/ ) TRIGGER */
+ __I uint32_t FIFO0; /*!< Offset: 0xEEC (R/ ) Integration ETM Data */
+ __I uint32_t ITATBCTR2; /*!< Offset: 0xEF0 (R/ ) ITATBCTR2 */
+ uint32_t RESERVED4[1];
+ __I uint32_t ITATBCTR0; /*!< Offset: 0xEF8 (R/ ) ITATBCTR0 */
+ __I uint32_t FIFO1; /*!< Offset: 0xEFC (R/ ) Integration ITM Data */
+ __IO uint32_t ITCTRL; /*!< Offset: 0xF00 (R/W) Integration Mode Control */
+ uint32_t RESERVED5[39];
+ __IO uint32_t CLAIMSET; /*!< Offset: 0xFA0 (R/W) Claim tag set */
+ __IO uint32_t CLAIMCLR; /*!< Offset: 0xFA4 (R/W) Claim tag clear */
+ uint32_t RESERVED7[8];
+ __I uint32_t DEVID; /*!< Offset: 0xFC8 (R/ ) TPIU_DEVID */
+ __I uint32_t DEVTYPE; /*!< Offset: 0xFCC (R/ ) TPIU_DEVTYPE */
+} TPI_Type;
+
+/* TPI Asynchronous Clock Prescaler Register Definitions */
+#define TPI_ACPR_PRESCALER_Pos 0 /*!< TPI ACPR: PRESCALER Position */
+#define TPI_ACPR_PRESCALER_Msk (0x1FFFUL << TPI_ACPR_PRESCALER_Pos) /*!< TPI ACPR: PRESCALER Mask */
+
+/* TPI Selected Pin Protocol Register Definitions */
+#define TPI_SPPR_TXMODE_Pos 0 /*!< TPI SPPR: TXMODE Position */
+#define TPI_SPPR_TXMODE_Msk (0x3UL << TPI_SPPR_TXMODE_Pos) /*!< TPI SPPR: TXMODE Mask */
+
+/* TPI Formatter and Flush Status Register Definitions */
+#define TPI_FFSR_FtNonStop_Pos 3 /*!< TPI FFSR: FtNonStop Position */
+#define TPI_FFSR_FtNonStop_Msk (0x1UL << TPI_FFSR_FtNonStop_Pos) /*!< TPI FFSR: FtNonStop Mask */
+
+#define TPI_FFSR_TCPresent_Pos 2 /*!< TPI FFSR: TCPresent Position */
+#define TPI_FFSR_TCPresent_Msk (0x1UL << TPI_FFSR_TCPresent_Pos) /*!< TPI FFSR: TCPresent Mask */
+
+#define TPI_FFSR_FtStopped_Pos 1 /*!< TPI FFSR: FtStopped Position */
+#define TPI_FFSR_FtStopped_Msk (0x1UL << TPI_FFSR_FtStopped_Pos) /*!< TPI FFSR: FtStopped Mask */
+
+#define TPI_FFSR_FlInProg_Pos 0 /*!< TPI FFSR: FlInProg Position */
+#define TPI_FFSR_FlInProg_Msk (0x1UL << TPI_FFSR_FlInProg_Pos) /*!< TPI FFSR: FlInProg Mask */
+
+/* TPI Formatter and Flush Control Register Definitions */
+#define TPI_FFCR_TrigIn_Pos 8 /*!< TPI FFCR: TrigIn Position */
+#define TPI_FFCR_TrigIn_Msk (0x1UL << TPI_FFCR_TrigIn_Pos) /*!< TPI FFCR: TrigIn Mask */
+
+#define TPI_FFCR_EnFCont_Pos 1 /*!< TPI FFCR: EnFCont Position */
+#define TPI_FFCR_EnFCont_Msk (0x1UL << TPI_FFCR_EnFCont_Pos) /*!< TPI FFCR: EnFCont Mask */
+
+/* TPI TRIGGER Register Definitions */
+#define TPI_TRIGGER_TRIGGER_Pos 0 /*!< TPI TRIGGER: TRIGGER Position */
+#define TPI_TRIGGER_TRIGGER_Msk (0x1UL << TPI_TRIGGER_TRIGGER_Pos) /*!< TPI TRIGGER: TRIGGER Mask */
+
+/* TPI Integration ETM Data Register Definitions (FIFO0) */
+#define TPI_FIFO0_ITM_ATVALID_Pos 29 /*!< TPI FIFO0: ITM_ATVALID Position */
+#define TPI_FIFO0_ITM_ATVALID_Msk (0x3UL << TPI_FIFO0_ITM_ATVALID_Pos) /*!< TPI FIFO0: ITM_ATVALID Mask */
+
+#define TPI_FIFO0_ITM_bytecount_Pos 27 /*!< TPI FIFO0: ITM_bytecount Position */
+#define TPI_FIFO0_ITM_bytecount_Msk (0x3UL << TPI_FIFO0_ITM_bytecount_Pos) /*!< TPI FIFO0: ITM_bytecount Mask */
+
+#define TPI_FIFO0_ETM_ATVALID_Pos 26 /*!< TPI FIFO0: ETM_ATVALID Position */
+#define TPI_FIFO0_ETM_ATVALID_Msk (0x3UL << TPI_FIFO0_ETM_ATVALID_Pos) /*!< TPI FIFO0: ETM_ATVALID Mask */
+
+#define TPI_FIFO0_ETM_bytecount_Pos 24 /*!< TPI FIFO0: ETM_bytecount Position */
+#define TPI_FIFO0_ETM_bytecount_Msk (0x3UL << TPI_FIFO0_ETM_bytecount_Pos) /*!< TPI FIFO0: ETM_bytecount Mask */
+
+#define TPI_FIFO0_ETM2_Pos 16 /*!< TPI FIFO0: ETM2 Position */
+#define TPI_FIFO0_ETM2_Msk (0xFFUL << TPI_FIFO0_ETM2_Pos) /*!< TPI FIFO0: ETM2 Mask */
+
+#define TPI_FIFO0_ETM1_Pos 8 /*!< TPI FIFO0: ETM1 Position */
+#define TPI_FIFO0_ETM1_Msk (0xFFUL << TPI_FIFO0_ETM1_Pos) /*!< TPI FIFO0: ETM1 Mask */
+
+#define TPI_FIFO0_ETM0_Pos 0 /*!< TPI FIFO0: ETM0 Position */
+#define TPI_FIFO0_ETM0_Msk (0xFFUL << TPI_FIFO0_ETM0_Pos) /*!< TPI FIFO0: ETM0 Mask */
+
+/* TPI ITATBCTR2 Register Definitions */
+#define TPI_ITATBCTR2_ATREADY_Pos 0 /*!< TPI ITATBCTR2: ATREADY Position */
+#define TPI_ITATBCTR2_ATREADY_Msk (0x1UL << TPI_ITATBCTR2_ATREADY_Pos) /*!< TPI ITATBCTR2: ATREADY Mask */
+
+/* TPI Integration ITM Data Register Definitions (FIFO1) */
+#define TPI_FIFO1_ITM_ATVALID_Pos 29 /*!< TPI FIFO1: ITM_ATVALID Position */
+#define TPI_FIFO1_ITM_ATVALID_Msk (0x3UL << TPI_FIFO1_ITM_ATVALID_Pos) /*!< TPI FIFO1: ITM_ATVALID Mask */
+
+#define TPI_FIFO1_ITM_bytecount_Pos 27 /*!< TPI FIFO1: ITM_bytecount Position */
+#define TPI_FIFO1_ITM_bytecount_Msk (0x3UL << TPI_FIFO1_ITM_bytecount_Pos) /*!< TPI FIFO1: ITM_bytecount Mask */
+
+#define TPI_FIFO1_ETM_ATVALID_Pos 26 /*!< TPI FIFO1: ETM_ATVALID Position */
+#define TPI_FIFO1_ETM_ATVALID_Msk (0x3UL << TPI_FIFO1_ETM_ATVALID_Pos) /*!< TPI FIFO1: ETM_ATVALID Mask */
+
+#define TPI_FIFO1_ETM_bytecount_Pos 24 /*!< TPI FIFO1: ETM_bytecount Position */
+#define TPI_FIFO1_ETM_bytecount_Msk (0x3UL << TPI_FIFO1_ETM_bytecount_Pos) /*!< TPI FIFO1: ETM_bytecount Mask */
+
+#define TPI_FIFO1_ITM2_Pos 16 /*!< TPI FIFO1: ITM2 Position */
+#define TPI_FIFO1_ITM2_Msk (0xFFUL << TPI_FIFO1_ITM2_Pos) /*!< TPI FIFO1: ITM2 Mask */
+
+#define TPI_FIFO1_ITM1_Pos 8 /*!< TPI FIFO1: ITM1 Position */
+#define TPI_FIFO1_ITM1_Msk (0xFFUL << TPI_FIFO1_ITM1_Pos) /*!< TPI FIFO1: ITM1 Mask */
+
+#define TPI_FIFO1_ITM0_Pos 0 /*!< TPI FIFO1: ITM0 Position */
+#define TPI_FIFO1_ITM0_Msk (0xFFUL << TPI_FIFO1_ITM0_Pos) /*!< TPI FIFO1: ITM0 Mask */
+
+/* TPI ITATBCTR0 Register Definitions */
+#define TPI_ITATBCTR0_ATREADY_Pos 0 /*!< TPI ITATBCTR0: ATREADY Position */
+#define TPI_ITATBCTR0_ATREADY_Msk (0x1UL << TPI_ITATBCTR0_ATREADY_Pos) /*!< TPI ITATBCTR0: ATREADY Mask */
+
+/* TPI Integration Mode Control Register Definitions */
+#define TPI_ITCTRL_Mode_Pos 0 /*!< TPI ITCTRL: Mode Position */
+#define TPI_ITCTRL_Mode_Msk (0x1UL << TPI_ITCTRL_Mode_Pos) /*!< TPI ITCTRL: Mode Mask */
+
+/* TPI DEVID Register Definitions */
+#define TPI_DEVID_NRZVALID_Pos 11 /*!< TPI DEVID: NRZVALID Position */
+#define TPI_DEVID_NRZVALID_Msk (0x1UL << TPI_DEVID_NRZVALID_Pos) /*!< TPI DEVID: NRZVALID Mask */
+
+#define TPI_DEVID_MANCVALID_Pos 10 /*!< TPI DEVID: MANCVALID Position */
+#define TPI_DEVID_MANCVALID_Msk (0x1UL << TPI_DEVID_MANCVALID_Pos) /*!< TPI DEVID: MANCVALID Mask */
+
+#define TPI_DEVID_PTINVALID_Pos 9 /*!< TPI DEVID: PTINVALID Position */
+#define TPI_DEVID_PTINVALID_Msk (0x1UL << TPI_DEVID_PTINVALID_Pos) /*!< TPI DEVID: PTINVALID Mask */
+
+#define TPI_DEVID_MinBufSz_Pos 6 /*!< TPI DEVID: MinBufSz Position */
+#define TPI_DEVID_MinBufSz_Msk (0x7UL << TPI_DEVID_MinBufSz_Pos) /*!< TPI DEVID: MinBufSz Mask */
+
+#define TPI_DEVID_AsynClkIn_Pos 5 /*!< TPI DEVID: AsynClkIn Position */
+#define TPI_DEVID_AsynClkIn_Msk (0x1UL << TPI_DEVID_AsynClkIn_Pos) /*!< TPI DEVID: AsynClkIn Mask */
+
+#define TPI_DEVID_NrTraceInput_Pos 0 /*!< TPI DEVID: NrTraceInput Position */
+#define TPI_DEVID_NrTraceInput_Msk (0x1FUL << TPI_DEVID_NrTraceInput_Pos) /*!< TPI DEVID: NrTraceInput Mask */
+
+/* TPI DEVTYPE Register Definitions */
+#define TPI_DEVTYPE_SubType_Pos 0 /*!< TPI DEVTYPE: SubType Position */
+#define TPI_DEVTYPE_SubType_Msk (0xFUL << TPI_DEVTYPE_SubType_Pos) /*!< TPI DEVTYPE: SubType Mask */
+
+#define TPI_DEVTYPE_MajorType_Pos 4 /*!< TPI DEVTYPE: MajorType Position */
+#define TPI_DEVTYPE_MajorType_Msk (0xFUL << TPI_DEVTYPE_MajorType_Pos) /*!< TPI DEVTYPE: MajorType Mask */
+
+/*@}*/ /* end of group CMSIS_TPI */
+
+
+#if (__MPU_PRESENT == 1)
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_MPU Memory Protection Unit (MPU)
+ \brief Type definitions for the Memory Protection Unit (MPU)
+ @{
+ */
+
+/** \brief Structure type to access the Memory Protection Unit (MPU).
+ */
+typedef struct
+{
+ __I uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */
+ __IO uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */
+ __IO uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region RNRber Register */
+ __IO uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */
+ __IO uint32_t RASR; /*!< Offset: 0x010 (R/W) MPU Region Attribute and Size Register */
+ __IO uint32_t RBAR_A1; /*!< Offset: 0x014 (R/W) MPU Alias 1 Region Base Address Register */
+ __IO uint32_t RASR_A1; /*!< Offset: 0x018 (R/W) MPU Alias 1 Region Attribute and Size Register */
+ __IO uint32_t RBAR_A2; /*!< Offset: 0x01C (R/W) MPU Alias 2 Region Base Address Register */
+ __IO uint32_t RASR_A2; /*!< Offset: 0x020 (R/W) MPU Alias 2 Region Attribute and Size Register */
+ __IO uint32_t RBAR_A3; /*!< Offset: 0x024 (R/W) MPU Alias 3 Region Base Address Register */
+ __IO uint32_t RASR_A3; /*!< Offset: 0x028 (R/W) MPU Alias 3 Region Attribute and Size Register */
+} MPU_Type;
+
+/* MPU Type Register */
+#define MPU_TYPE_IREGION_Pos 16 /*!< MPU TYPE: IREGION Position */
+#define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */
+
+#define MPU_TYPE_DREGION_Pos 8 /*!< MPU TYPE: DREGION Position */
+#define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */
+
+#define MPU_TYPE_SEPARATE_Pos 0 /*!< MPU TYPE: SEPARATE Position */
+#define MPU_TYPE_SEPARATE_Msk (1UL << MPU_TYPE_SEPARATE_Pos) /*!< MPU TYPE: SEPARATE Mask */
+
+/* MPU Control Register */
+#define MPU_CTRL_PRIVDEFENA_Pos 2 /*!< MPU CTRL: PRIVDEFENA Position */
+#define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */
+
+#define MPU_CTRL_HFNMIENA_Pos 1 /*!< MPU CTRL: HFNMIENA Position */
+#define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */
+
+#define MPU_CTRL_ENABLE_Pos 0 /*!< MPU CTRL: ENABLE Position */
+#define MPU_CTRL_ENABLE_Msk (1UL << MPU_CTRL_ENABLE_Pos) /*!< MPU CTRL: ENABLE Mask */
+
+/* MPU Region Number Register */
+#define MPU_RNR_REGION_Pos 0 /*!< MPU RNR: REGION Position */
+#define MPU_RNR_REGION_Msk (0xFFUL << MPU_RNR_REGION_Pos) /*!< MPU RNR: REGION Mask */
+
+/* MPU Region Base Address Register */
+#define MPU_RBAR_ADDR_Pos 5 /*!< MPU RBAR: ADDR Position */
+#define MPU_RBAR_ADDR_Msk (0x7FFFFFFUL << MPU_RBAR_ADDR_Pos) /*!< MPU RBAR: ADDR Mask */
+
+#define MPU_RBAR_VALID_Pos 4 /*!< MPU RBAR: VALID Position */
+#define MPU_RBAR_VALID_Msk (1UL << MPU_RBAR_VALID_Pos) /*!< MPU RBAR: VALID Mask */
+
+#define MPU_RBAR_REGION_Pos 0 /*!< MPU RBAR: REGION Position */
+#define MPU_RBAR_REGION_Msk (0xFUL << MPU_RBAR_REGION_Pos) /*!< MPU RBAR: REGION Mask */
+
+/* MPU Region Attribute and Size Register */
+#define MPU_RASR_ATTRS_Pos 16 /*!< MPU RASR: MPU Region Attribute field Position */
+#define MPU_RASR_ATTRS_Msk (0xFFFFUL << MPU_RASR_ATTRS_Pos) /*!< MPU RASR: MPU Region Attribute field Mask */
+
+#define MPU_RASR_SRD_Pos 8 /*!< MPU RASR: Sub-Region Disable Position */
+#define MPU_RASR_SRD_Msk (0xFFUL << MPU_RASR_SRD_Pos) /*!< MPU RASR: Sub-Region Disable Mask */
+
+#define MPU_RASR_SIZE_Pos 1 /*!< MPU RASR: Region Size Field Position */
+#define MPU_RASR_SIZE_Msk (0x1FUL << MPU_RASR_SIZE_Pos) /*!< MPU RASR: Region Size Field Mask */
+
+#define MPU_RASR_ENABLE_Pos 0 /*!< MPU RASR: Region enable bit Position */
+#define MPU_RASR_ENABLE_Msk (1UL << MPU_RASR_ENABLE_Pos) /*!< MPU RASR: Region enable bit Disable Mask */
+
+/*@} end of group CMSIS_MPU */
+#endif
+
+
+#if (__FPU_PRESENT == 1)
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_FPU Floating Point Unit (FPU)
+ \brief Type definitions for the Floating Point Unit (FPU)
+ @{
+ */
+
+/** \brief Structure type to access the Floating Point Unit (FPU).
+ */
+typedef struct
+{
+ uint32_t RESERVED0[1];
+ __IO uint32_t FPCCR; /*!< Offset: 0x004 (R/W) Floating-Point Context Control Register */
+ __IO uint32_t FPCAR; /*!< Offset: 0x008 (R/W) Floating-Point Context Address Register */
+ __IO uint32_t FPDSCR; /*!< Offset: 0x00C (R/W) Floating-Point Default Status Control Register */
+ __I uint32_t MVFR0; /*!< Offset: 0x010 (R/ ) Media and FP Feature Register 0 */
+ __I uint32_t MVFR1; /*!< Offset: 0x014 (R/ ) Media and FP Feature Register 1 */
+} FPU_Type;
+
+/* Floating-Point Context Control Register */
+#define FPU_FPCCR_ASPEN_Pos 31 /*!< FPCCR: ASPEN bit Position */
+#define FPU_FPCCR_ASPEN_Msk (1UL << FPU_FPCCR_ASPEN_Pos) /*!< FPCCR: ASPEN bit Mask */
+
+#define FPU_FPCCR_LSPEN_Pos 30 /*!< FPCCR: LSPEN Position */
+#define FPU_FPCCR_LSPEN_Msk (1UL << FPU_FPCCR_LSPEN_Pos) /*!< FPCCR: LSPEN bit Mask */
+
+#define FPU_FPCCR_MONRDY_Pos 8 /*!< FPCCR: MONRDY Position */
+#define FPU_FPCCR_MONRDY_Msk (1UL << FPU_FPCCR_MONRDY_Pos) /*!< FPCCR: MONRDY bit Mask */
+
+#define FPU_FPCCR_BFRDY_Pos 6 /*!< FPCCR: BFRDY Position */
+#define FPU_FPCCR_BFRDY_Msk (1UL << FPU_FPCCR_BFRDY_Pos) /*!< FPCCR: BFRDY bit Mask */
+
+#define FPU_FPCCR_MMRDY_Pos 5 /*!< FPCCR: MMRDY Position */
+#define FPU_FPCCR_MMRDY_Msk (1UL << FPU_FPCCR_MMRDY_Pos) /*!< FPCCR: MMRDY bit Mask */
+
+#define FPU_FPCCR_HFRDY_Pos 4 /*!< FPCCR: HFRDY Position */
+#define FPU_FPCCR_HFRDY_Msk (1UL << FPU_FPCCR_HFRDY_Pos) /*!< FPCCR: HFRDY bit Mask */
+
+#define FPU_FPCCR_THREAD_Pos 3 /*!< FPCCR: processor mode bit Position */
+#define FPU_FPCCR_THREAD_Msk (1UL << FPU_FPCCR_THREAD_Pos) /*!< FPCCR: processor mode active bit Mask */
+
+#define FPU_FPCCR_USER_Pos 1 /*!< FPCCR: privilege level bit Position */
+#define FPU_FPCCR_USER_Msk (1UL << FPU_FPCCR_USER_Pos) /*!< FPCCR: privilege level bit Mask */
+
+#define FPU_FPCCR_LSPACT_Pos 0 /*!< FPCCR: Lazy state preservation active bit Position */
+#define FPU_FPCCR_LSPACT_Msk (1UL << FPU_FPCCR_LSPACT_Pos) /*!< FPCCR: Lazy state preservation active bit Mask */
+
+/* Floating-Point Context Address Register */
+#define FPU_FPCAR_ADDRESS_Pos 3 /*!< FPCAR: ADDRESS bit Position */
+#define FPU_FPCAR_ADDRESS_Msk (0x1FFFFFFFUL << FPU_FPCAR_ADDRESS_Pos) /*!< FPCAR: ADDRESS bit Mask */
+
+/* Floating-Point Default Status Control Register */
+#define FPU_FPDSCR_AHP_Pos 26 /*!< FPDSCR: AHP bit Position */
+#define FPU_FPDSCR_AHP_Msk (1UL << FPU_FPDSCR_AHP_Pos) /*!< FPDSCR: AHP bit Mask */
+
+#define FPU_FPDSCR_DN_Pos 25 /*!< FPDSCR: DN bit Position */
+#define FPU_FPDSCR_DN_Msk (1UL << FPU_FPDSCR_DN_Pos) /*!< FPDSCR: DN bit Mask */
+
+#define FPU_FPDSCR_FZ_Pos 24 /*!< FPDSCR: FZ bit Position */
+#define FPU_FPDSCR_FZ_Msk (1UL << FPU_FPDSCR_FZ_Pos) /*!< FPDSCR: FZ bit Mask */
+
+#define FPU_FPDSCR_RMode_Pos 22 /*!< FPDSCR: RMode bit Position */
+#define FPU_FPDSCR_RMode_Msk (3UL << FPU_FPDSCR_RMode_Pos) /*!< FPDSCR: RMode bit Mask */
+
+/* Media and FP Feature Register 0 */
+#define FPU_MVFR0_FP_rounding_modes_Pos 28 /*!< MVFR0: FP rounding modes bits Position */
+#define FPU_MVFR0_FP_rounding_modes_Msk (0xFUL << FPU_MVFR0_FP_rounding_modes_Pos) /*!< MVFR0: FP rounding modes bits Mask */
+
+#define FPU_MVFR0_Short_vectors_Pos 24 /*!< MVFR0: Short vectors bits Position */
+#define FPU_MVFR0_Short_vectors_Msk (0xFUL << FPU_MVFR0_Short_vectors_Pos) /*!< MVFR0: Short vectors bits Mask */
+
+#define FPU_MVFR0_Square_root_Pos 20 /*!< MVFR0: Square root bits Position */
+#define FPU_MVFR0_Square_root_Msk (0xFUL << FPU_MVFR0_Square_root_Pos) /*!< MVFR0: Square root bits Mask */
+
+#define FPU_MVFR0_Divide_Pos 16 /*!< MVFR0: Divide bits Position */
+#define FPU_MVFR0_Divide_Msk (0xFUL << FPU_MVFR0_Divide_Pos) /*!< MVFR0: Divide bits Mask */
+
+#define FPU_MVFR0_FP_excep_trapping_Pos 12 /*!< MVFR0: FP exception trapping bits Position */
+#define FPU_MVFR0_FP_excep_trapping_Msk (0xFUL << FPU_MVFR0_FP_excep_trapping_Pos) /*!< MVFR0: FP exception trapping bits Mask */
+
+#define FPU_MVFR0_Double_precision_Pos 8 /*!< MVFR0: Double-precision bits Position */
+#define FPU_MVFR0_Double_precision_Msk (0xFUL << FPU_MVFR0_Double_precision_Pos) /*!< MVFR0: Double-precision bits Mask */
+
+#define FPU_MVFR0_Single_precision_Pos 4 /*!< MVFR0: Single-precision bits Position */
+#define FPU_MVFR0_Single_precision_Msk (0xFUL << FPU_MVFR0_Single_precision_Pos) /*!< MVFR0: Single-precision bits Mask */
+
+#define FPU_MVFR0_A_SIMD_registers_Pos 0 /*!< MVFR0: A_SIMD registers bits Position */
+#define FPU_MVFR0_A_SIMD_registers_Msk (0xFUL << FPU_MVFR0_A_SIMD_registers_Pos) /*!< MVFR0: A_SIMD registers bits Mask */
+
+/* Media and FP Feature Register 1 */
+#define FPU_MVFR1_FP_fused_MAC_Pos 28 /*!< MVFR1: FP fused MAC bits Position */
+#define FPU_MVFR1_FP_fused_MAC_Msk (0xFUL << FPU_MVFR1_FP_fused_MAC_Pos) /*!< MVFR1: FP fused MAC bits Mask */
+
+#define FPU_MVFR1_FP_HPFP_Pos 24 /*!< MVFR1: FP HPFP bits Position */
+#define FPU_MVFR1_FP_HPFP_Msk (0xFUL << FPU_MVFR1_FP_HPFP_Pos) /*!< MVFR1: FP HPFP bits Mask */
+
+#define FPU_MVFR1_D_NaN_mode_Pos 4 /*!< MVFR1: D_NaN mode bits Position */
+#define FPU_MVFR1_D_NaN_mode_Msk (0xFUL << FPU_MVFR1_D_NaN_mode_Pos) /*!< MVFR1: D_NaN mode bits Mask */
+
+#define FPU_MVFR1_FtZ_mode_Pos 0 /*!< MVFR1: FtZ mode bits Position */
+#define FPU_MVFR1_FtZ_mode_Msk (0xFUL << FPU_MVFR1_FtZ_mode_Pos) /*!< MVFR1: FtZ mode bits Mask */
+
+/*@} end of group CMSIS_FPU */
+#endif
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
+ \brief Type definitions for the Core Debug Registers
+ @{
+ */
+
+/** \brief Structure type to access the Core Debug Register (CoreDebug).
+ */
+typedef struct
+{
+ __IO uint32_t DHCSR; /*!< Offset: 0x000 (R/W) Debug Halting Control and Status Register */
+ __O uint32_t DCRSR; /*!< Offset: 0x004 ( /W) Debug Core Register Selector Register */
+ __IO uint32_t DCRDR; /*!< Offset: 0x008 (R/W) Debug Core Register Data Register */
+ __IO uint32_t DEMCR; /*!< Offset: 0x00C (R/W) Debug Exception and Monitor Control Register */
+} CoreDebug_Type;
+
+/* Debug Halting Control and Status Register */
+#define CoreDebug_DHCSR_DBGKEY_Pos 16 /*!< CoreDebug DHCSR: DBGKEY Position */
+#define CoreDebug_DHCSR_DBGKEY_Msk (0xFFFFUL << CoreDebug_DHCSR_DBGKEY_Pos) /*!< CoreDebug DHCSR: DBGKEY Mask */
+
+#define CoreDebug_DHCSR_S_RESET_ST_Pos 25 /*!< CoreDebug DHCSR: S_RESET_ST Position */
+#define CoreDebug_DHCSR_S_RESET_ST_Msk (1UL << CoreDebug_DHCSR_S_RESET_ST_Pos) /*!< CoreDebug DHCSR: S_RESET_ST Mask */
+
+#define CoreDebug_DHCSR_S_RETIRE_ST_Pos 24 /*!< CoreDebug DHCSR: S_RETIRE_ST Position */
+#define CoreDebug_DHCSR_S_RETIRE_ST_Msk (1UL << CoreDebug_DHCSR_S_RETIRE_ST_Pos) /*!< CoreDebug DHCSR: S_RETIRE_ST Mask */
+
+#define CoreDebug_DHCSR_S_LOCKUP_Pos 19 /*!< CoreDebug DHCSR: S_LOCKUP Position */
+#define CoreDebug_DHCSR_S_LOCKUP_Msk (1UL << CoreDebug_DHCSR_S_LOCKUP_Pos) /*!< CoreDebug DHCSR: S_LOCKUP Mask */
+
+#define CoreDebug_DHCSR_S_SLEEP_Pos 18 /*!< CoreDebug DHCSR: S_SLEEP Position */
+#define CoreDebug_DHCSR_S_SLEEP_Msk (1UL << CoreDebug_DHCSR_S_SLEEP_Pos) /*!< CoreDebug DHCSR: S_SLEEP Mask */
+
+#define CoreDebug_DHCSR_S_HALT_Pos 17 /*!< CoreDebug DHCSR: S_HALT Position */
+#define CoreDebug_DHCSR_S_HALT_Msk (1UL << CoreDebug_DHCSR_S_HALT_Pos) /*!< CoreDebug DHCSR: S_HALT Mask */
+
+#define CoreDebug_DHCSR_S_REGRDY_Pos 16 /*!< CoreDebug DHCSR: S_REGRDY Position */
+#define CoreDebug_DHCSR_S_REGRDY_Msk (1UL << CoreDebug_DHCSR_S_REGRDY_Pos) /*!< CoreDebug DHCSR: S_REGRDY Mask */
+
+#define CoreDebug_DHCSR_C_SNAPSTALL_Pos 5 /*!< CoreDebug DHCSR: C_SNAPSTALL Position */
+#define CoreDebug_DHCSR_C_SNAPSTALL_Msk (1UL << CoreDebug_DHCSR_C_SNAPSTALL_Pos) /*!< CoreDebug DHCSR: C_SNAPSTALL Mask */
+
+#define CoreDebug_DHCSR_C_MASKINTS_Pos 3 /*!< CoreDebug DHCSR: C_MASKINTS Position */
+#define CoreDebug_DHCSR_C_MASKINTS_Msk (1UL << CoreDebug_DHCSR_C_MASKINTS_Pos) /*!< CoreDebug DHCSR: C_MASKINTS Mask */
+
+#define CoreDebug_DHCSR_C_STEP_Pos 2 /*!< CoreDebug DHCSR: C_STEP Position */
+#define CoreDebug_DHCSR_C_STEP_Msk (1UL << CoreDebug_DHCSR_C_STEP_Pos) /*!< CoreDebug DHCSR: C_STEP Mask */
+
+#define CoreDebug_DHCSR_C_HALT_Pos 1 /*!< CoreDebug DHCSR: C_HALT Position */
+#define CoreDebug_DHCSR_C_HALT_Msk (1UL << CoreDebug_DHCSR_C_HALT_Pos) /*!< CoreDebug DHCSR: C_HALT Mask */
+
+#define CoreDebug_DHCSR_C_DEBUGEN_Pos 0 /*!< CoreDebug DHCSR: C_DEBUGEN Position */
+#define CoreDebug_DHCSR_C_DEBUGEN_Msk (1UL << CoreDebug_DHCSR_C_DEBUGEN_Pos) /*!< CoreDebug DHCSR: C_DEBUGEN Mask */
+
+/* Debug Core Register Selector Register */
+#define CoreDebug_DCRSR_REGWnR_Pos 16 /*!< CoreDebug DCRSR: REGWnR Position */
+#define CoreDebug_DCRSR_REGWnR_Msk (1UL << CoreDebug_DCRSR_REGWnR_Pos) /*!< CoreDebug DCRSR: REGWnR Mask */
+
+#define CoreDebug_DCRSR_REGSEL_Pos 0 /*!< CoreDebug DCRSR: REGSEL Position */
+#define CoreDebug_DCRSR_REGSEL_Msk (0x1FUL << CoreDebug_DCRSR_REGSEL_Pos) /*!< CoreDebug DCRSR: REGSEL Mask */
+
+/* Debug Exception and Monitor Control Register */
+#define CoreDebug_DEMCR_TRCENA_Pos 24 /*!< CoreDebug DEMCR: TRCENA Position */
+#define CoreDebug_DEMCR_TRCENA_Msk (1UL << CoreDebug_DEMCR_TRCENA_Pos) /*!< CoreDebug DEMCR: TRCENA Mask */
+
+#define CoreDebug_DEMCR_MON_REQ_Pos 19 /*!< CoreDebug DEMCR: MON_REQ Position */
+#define CoreDebug_DEMCR_MON_REQ_Msk (1UL << CoreDebug_DEMCR_MON_REQ_Pos) /*!< CoreDebug DEMCR: MON_REQ Mask */
+
+#define CoreDebug_DEMCR_MON_STEP_Pos 18 /*!< CoreDebug DEMCR: MON_STEP Position */
+#define CoreDebug_DEMCR_MON_STEP_Msk (1UL << CoreDebug_DEMCR_MON_STEP_Pos) /*!< CoreDebug DEMCR: MON_STEP Mask */
+
+#define CoreDebug_DEMCR_MON_PEND_Pos 17 /*!< CoreDebug DEMCR: MON_PEND Position */
+#define CoreDebug_DEMCR_MON_PEND_Msk (1UL << CoreDebug_DEMCR_MON_PEND_Pos) /*!< CoreDebug DEMCR: MON_PEND Mask */
+
+#define CoreDebug_DEMCR_MON_EN_Pos 16 /*!< CoreDebug DEMCR: MON_EN Position */
+#define CoreDebug_DEMCR_MON_EN_Msk (1UL << CoreDebug_DEMCR_MON_EN_Pos) /*!< CoreDebug DEMCR: MON_EN Mask */
+
+#define CoreDebug_DEMCR_VC_HARDERR_Pos 10 /*!< CoreDebug DEMCR: VC_HARDERR Position */
+#define CoreDebug_DEMCR_VC_HARDERR_Msk (1UL << CoreDebug_DEMCR_VC_HARDERR_Pos) /*!< CoreDebug DEMCR: VC_HARDERR Mask */
+
+#define CoreDebug_DEMCR_VC_INTERR_Pos 9 /*!< CoreDebug DEMCR: VC_INTERR Position */
+#define CoreDebug_DEMCR_VC_INTERR_Msk (1UL << CoreDebug_DEMCR_VC_INTERR_Pos) /*!< CoreDebug DEMCR: VC_INTERR Mask */
+
+#define CoreDebug_DEMCR_VC_BUSERR_Pos 8 /*!< CoreDebug DEMCR: VC_BUSERR Position */
+#define CoreDebug_DEMCR_VC_BUSERR_Msk (1UL << CoreDebug_DEMCR_VC_BUSERR_Pos) /*!< CoreDebug DEMCR: VC_BUSERR Mask */
+
+#define CoreDebug_DEMCR_VC_STATERR_Pos 7 /*!< CoreDebug DEMCR: VC_STATERR Position */
+#define CoreDebug_DEMCR_VC_STATERR_Msk (1UL << CoreDebug_DEMCR_VC_STATERR_Pos) /*!< CoreDebug DEMCR: VC_STATERR Mask */
+
+#define CoreDebug_DEMCR_VC_CHKERR_Pos 6 /*!< CoreDebug DEMCR: VC_CHKERR Position */
+#define CoreDebug_DEMCR_VC_CHKERR_Msk (1UL << CoreDebug_DEMCR_VC_CHKERR_Pos) /*!< CoreDebug DEMCR: VC_CHKERR Mask */
+
+#define CoreDebug_DEMCR_VC_NOCPERR_Pos 5 /*!< CoreDebug DEMCR: VC_NOCPERR Position */
+#define CoreDebug_DEMCR_VC_NOCPERR_Msk (1UL << CoreDebug_DEMCR_VC_NOCPERR_Pos) /*!< CoreDebug DEMCR: VC_NOCPERR Mask */
+
+#define CoreDebug_DEMCR_VC_MMERR_Pos 4 /*!< CoreDebug DEMCR: VC_MMERR Position */
+#define CoreDebug_DEMCR_VC_MMERR_Msk (1UL << CoreDebug_DEMCR_VC_MMERR_Pos) /*!< CoreDebug DEMCR: VC_MMERR Mask */
+
+#define CoreDebug_DEMCR_VC_CORERESET_Pos 0 /*!< CoreDebug DEMCR: VC_CORERESET Position */
+#define CoreDebug_DEMCR_VC_CORERESET_Msk (1UL << CoreDebug_DEMCR_VC_CORERESET_Pos) /*!< CoreDebug DEMCR: VC_CORERESET Mask */
+
+/*@} end of group CMSIS_CoreDebug */
+
+
+/** \ingroup CMSIS_core_register
+ \defgroup CMSIS_core_base Core Definitions
+ \brief Definitions for base addresses, unions, and structures.
+ @{
+ */
+
+/* Memory mapping of Cortex-M4 Hardware */
+#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
+#define ITM_BASE (0xE0000000UL) /*!< ITM Base Address */
+#define DWT_BASE (0xE0001000UL) /*!< DWT Base Address */
+#define TPI_BASE (0xE0040000UL) /*!< TPI Base Address */
+#define CoreDebug_BASE (0xE000EDF0UL) /*!< Core Debug Base Address */
+#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
+#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
+#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
+
+#define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */
+#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
+#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
+#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
+#define ITM ((ITM_Type *) ITM_BASE ) /*!< ITM configuration struct */
+#define DWT ((DWT_Type *) DWT_BASE ) /*!< DWT configuration struct */
+#define TPI ((TPI_Type *) TPI_BASE ) /*!< TPI configuration struct */
+#define CoreDebug ((CoreDebug_Type *) CoreDebug_BASE) /*!< Core Debug configuration struct */
+
+#if (__MPU_PRESENT == 1)
+ #define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */
+ #define MPU ((MPU_Type *) MPU_BASE ) /*!< Memory Protection Unit */
+#endif
+
+#if (__FPU_PRESENT == 1)
+ #define FPU_BASE (SCS_BASE + 0x0F30UL) /*!< Floating Point Unit */
+ #define FPU ((FPU_Type *) FPU_BASE ) /*!< Floating Point Unit */
+#endif
+
+/*@} */
+
+
+
+/*******************************************************************************
+ * Hardware Abstraction Layer
+ Core Function Interface contains:
+ - Core NVIC Functions
+ - Core SysTick Functions
+ - Core Debug Functions
+ - Core Register Access Functions
+ ******************************************************************************/
+/** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
+*/
+
+
+
+/* ########################## NVIC functions #################################### */
+/** \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_NVICFunctions NVIC Functions
+ \brief Functions that manage interrupts and exceptions via the NVIC.
+ @{
+ */
+
+/** \brief Set Priority Grouping
+
+ The function sets the priority grouping field using the required unlock sequence.
+ The parameter PriorityGroup is assigned to the field SCB->AIRCR [10:8] PRIGROUP field.
+ Only values from 0..7 are used.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
+
+ \param [in] PriorityGroup Priority grouping field.
+ */
+__STATIC_INLINE void NVIC_SetPriorityGrouping(uint32_t PriorityGroup)
+{
+ uint32_t reg_value;
+ uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07); /* only values 0..7 are used */
+
+ reg_value = SCB->AIRCR; /* read old register configuration */
+ reg_value &= ~(SCB_AIRCR_VECTKEY_Msk | SCB_AIRCR_PRIGROUP_Msk); /* clear bits to change */
+ reg_value = (reg_value |
+ ((uint32_t)0x5FA << SCB_AIRCR_VECTKEY_Pos) |
+ (PriorityGroupTmp << 8)); /* Insert write key and priorty group */
+ SCB->AIRCR = reg_value;
+}
+
+
+/** \brief Get Priority Grouping
+
+ The function reads the priority grouping field from the NVIC Interrupt Controller.
+
+ \return Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field).
+ */
+__STATIC_INLINE uint32_t NVIC_GetPriorityGrouping(void)
+{
+ return ((SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) >> SCB_AIRCR_PRIGROUP_Pos); /* read priority grouping field */
+}
+
+
+/** \brief Enable External Interrupt
+
+ The function enables a device-specific interrupt in the NVIC interrupt controller.
+
+ \param [in] IRQn External interrupt number. Value cannot be negative.
+ */
+__STATIC_INLINE void NVIC_EnableIRQ(IRQn_Type IRQn)
+{
+/* NVIC->ISER[((uint32_t)(IRQn) >> 5)] = (1 << ((uint32_t)(IRQn) & 0x1F)); enable interrupt */
+ NVIC->ISER[(uint32_t)((int32_t)IRQn) >> 5] = (uint32_t)(1 << ((uint32_t)((int32_t)IRQn) & (uint32_t)0x1F)); /* enable interrupt */
+}
+
+
+/** \brief Disable External Interrupt
+
+ The function disables a device-specific interrupt in the NVIC interrupt controller.
+
+ \param [in] IRQn External interrupt number. Value cannot be negative.
+ */
+__STATIC_INLINE void NVIC_DisableIRQ(IRQn_Type IRQn)
+{
+ NVIC->ICER[((uint32_t)(IRQn) >> 5)] = (1 << ((uint32_t)(IRQn) & 0x1F)); /* disable interrupt */
+}
+
+
+/** \brief Get Pending Interrupt
+
+ The function reads the pending register in the NVIC and returns the pending bit
+ for the specified interrupt.
+
+ \param [in] IRQn Interrupt number.
+
+ \return 0 Interrupt status is not pending.
+ \return 1 Interrupt status is pending.
+ */
+__STATIC_INLINE uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)
+{
+ return((uint32_t) ((NVIC->ISPR[(uint32_t)(IRQn) >> 5] & (1 << ((uint32_t)(IRQn) & 0x1F)))?1:0)); /* Return 1 if pending else 0 */
+}
+
+
+/** \brief Set Pending Interrupt
+
+ The function sets the pending bit of an external interrupt.
+
+ \param [in] IRQn Interrupt number. Value cannot be negative.
+ */
+__STATIC_INLINE void NVIC_SetPendingIRQ(IRQn_Type IRQn)
+{
+ NVIC->ISPR[((uint32_t)(IRQn) >> 5)] = (1 << ((uint32_t)(IRQn) & 0x1F)); /* set interrupt pending */
+}
+
+
+/** \brief Clear Pending Interrupt
+
+ The function clears the pending bit of an external interrupt.
+
+ \param [in] IRQn External interrupt number. Value cannot be negative.
+ */
+__STATIC_INLINE void NVIC_ClearPendingIRQ(IRQn_Type IRQn)
+{
+ NVIC->ICPR[((uint32_t)(IRQn) >> 5)] = (1 << ((uint32_t)(IRQn) & 0x1F)); /* Clear pending interrupt */
+}
+
+
+/** \brief Get Active Interrupt
+
+ The function reads the active register in NVIC and returns the active bit.
+
+ \param [in] IRQn Interrupt number.
+
+ \return 0 Interrupt status is not active.
+ \return 1 Interrupt status is active.
+ */
+__STATIC_INLINE uint32_t NVIC_GetActive(IRQn_Type IRQn)
+{
+ return((uint32_t)((NVIC->IABR[(uint32_t)(IRQn) >> 5] & (1 << ((uint32_t)(IRQn) & 0x1F)))?1:0)); /* Return 1 if active else 0 */
+}
+
+
+/** \brief Set Interrupt Priority
+
+ The function sets the priority of an interrupt.
+
+ \note The priority cannot be set for every core interrupt.
+
+ \param [in] IRQn Interrupt number.
+ \param [in] priority Priority to set.
+ */
+__STATIC_INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
+{
+ if(IRQn < 0) {
+ SCB->SHP[((uint32_t)(IRQn) & 0xF)-4] = ((priority << (8 - __NVIC_PRIO_BITS)) & 0xff); } /* set Priority for Cortex-M System Interrupts */
+ else {
+ NVIC->IP[(uint32_t)(IRQn)] = ((priority << (8 - __NVIC_PRIO_BITS)) & 0xff); } /* set Priority for device specific Interrupts */
+}
+
+
+/** \brief Get Interrupt Priority
+
+ The function reads the priority of an interrupt. The interrupt
+ number can be positive to specify an external (device specific)
+ interrupt, or negative to specify an internal (core) interrupt.
+
+
+ \param [in] IRQn Interrupt number.
+ \return Interrupt Priority. Value is aligned automatically to the implemented
+ priority bits of the microcontroller.
+ */
+__STATIC_INLINE uint32_t NVIC_GetPriority(IRQn_Type IRQn)
+{
+
+ if(IRQn < 0) {
+ return((uint32_t)(SCB->SHP[((uint32_t)(IRQn) & 0xF)-4] >> (8 - __NVIC_PRIO_BITS))); } /* get priority for Cortex-M system interrupts */
+ else {
+ return((uint32_t)(NVIC->IP[(uint32_t)(IRQn)] >> (8 - __NVIC_PRIO_BITS))); } /* get priority for device specific interrupts */
+}
+
+
+/** \brief Encode Priority
+
+ The function encodes the priority for an interrupt with the given priority group,
+ preemptive priority value, and subpriority value.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS), the samllest possible priority group is set.
+
+ \param [in] PriorityGroup Used priority group.
+ \param [in] PreemptPriority Preemptive priority value (starting from 0).
+ \param [in] SubPriority Subpriority value (starting from 0).
+ \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
+ */
+__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
+{
+ uint32_t PriorityGroupTmp = (PriorityGroup & 0x07); /* only values 0..7 are used */
+ uint32_t PreemptPriorityBits;
+ uint32_t SubPriorityBits;
+
+ PreemptPriorityBits = ((7 - PriorityGroupTmp) > __NVIC_PRIO_BITS) ? __NVIC_PRIO_BITS : 7 - PriorityGroupTmp;
+ SubPriorityBits = ((PriorityGroupTmp + __NVIC_PRIO_BITS) < 7) ? 0 : PriorityGroupTmp - 7 + __NVIC_PRIO_BITS;
+
+ return (
+ ((PreemptPriority & ((1 << (PreemptPriorityBits)) - 1)) << SubPriorityBits) |
+ ((SubPriority & ((1 << (SubPriorityBits )) - 1)))
+ );
+}
+
+
+/** \brief Decode Priority
+
+ The function decodes an interrupt priority value with a given priority group to
+ preemptive priority value and subpriority value.
+ In case of a conflict between priority grouping and available
+ priority bits (__NVIC_PRIO_BITS) the samllest possible priority group is set.
+
+ \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
+ \param [in] PriorityGroup Used priority group.
+ \param [out] pPreemptPriority Preemptive priority value (starting from 0).
+ \param [out] pSubPriority Subpriority value (starting from 0).
+ */
+__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* pPreemptPriority, uint32_t* pSubPriority)
+{
+ uint32_t PriorityGroupTmp = (PriorityGroup & 0x07); /* only values 0..7 are used */
+ uint32_t PreemptPriorityBits;
+ uint32_t SubPriorityBits;
+
+ PreemptPriorityBits = ((7 - PriorityGroupTmp) > __NVIC_PRIO_BITS) ? __NVIC_PRIO_BITS : 7 - PriorityGroupTmp;
+ SubPriorityBits = ((PriorityGroupTmp + __NVIC_PRIO_BITS) < 7) ? 0 : PriorityGroupTmp - 7 + __NVIC_PRIO_BITS;
+
+ *pPreemptPriority = (Priority >> SubPriorityBits) & ((1 << (PreemptPriorityBits)) - 1);
+ *pSubPriority = (Priority ) & ((1 << (SubPriorityBits )) - 1);
+}
+
+
+/** \brief System Reset
+
+ The function initiates a system reset request to reset the MCU.
+ */
+__STATIC_INLINE void NVIC_SystemReset(void)
+{
+ __DSB(); /* Ensure all outstanding memory accesses included
+ buffered write are completed before reset */
+ SCB->AIRCR = ((0x5FA << SCB_AIRCR_VECTKEY_Pos) |
+ (SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) |
+ SCB_AIRCR_SYSRESETREQ_Msk); /* Keep priority group unchanged */
+ __DSB(); /* Ensure completion of memory access */
+ while(1); /* wait until reset */
+}
+
+/*@} end of CMSIS_Core_NVICFunctions */
+
+
+
+/* ################################## SysTick function ############################################ */
+/** \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_SysTickFunctions SysTick Functions
+ \brief Functions that configure the System.
+ @{
+ */
+
+#if (__Vendor_SysTickConfig == 0)
+
+/** \brief System Tick Configuration
+
+ The function initializes the System Timer and its interrupt, and starts the System Tick Timer.
+ Counter is in free running mode to generate periodic interrupts.
+
+ \param [in] ticks Number of ticks between two interrupts.
+
+ \return 0 Function succeeded.
+ \return 1 Function failed.
+
+ \note When the variable __Vendor_SysTickConfig is set to 1, then the
+ function SysTick_Config is not included. In this case, the file device.h
+ must contain a vendor-specific implementation of this function.
+
+ */
+__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
+{
+ if (ticks > SysTick_LOAD_RELOAD_Msk) return (1); /* Reload value impossible */
+
+ SysTick->LOAD = (ticks & SysTick_LOAD_RELOAD_Msk) - 1; /* set reload register */
+ NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Systick Interrupt */
+ SysTick->VAL = 0; /* Load the SysTick Counter Value */
+ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
+ SysTick_CTRL_TICKINT_Msk |
+ SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
+ return (0); /* Function successful */
+}
+
+#endif
+
+/*@} end of CMSIS_Core_SysTickFunctions */
+
+
+
+/* ##################################### Debug In/Output function ########################################### */
+/** \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_core_DebugFunctions ITM Functions
+ \brief Functions that access the ITM debug interface.
+ @{
+ */
+
+extern volatile int32_t ITM_RxBuffer; /*!< External variable to receive characters. */
+#define ITM_RXBUFFER_EMPTY 0x5AA55AA5 /*!< Value identifying \ref ITM_RxBuffer is ready for next character. */
+
+
+/** \brief ITM Send Character
+
+ The function transmits a character via the ITM channel 0, and
+ \li Just returns when no debugger is connected that has booked the output.
+ \li Is blocking when a debugger is connected, but the previous character sent has not been transmitted.
+
+ \param [in] ch Character to transmit.
+
+ \returns Character to transmit.
+ */
+__STATIC_INLINE uint32_t ITM_SendChar (uint32_t ch)
+{
+ if ((ITM->TCR & ITM_TCR_ITMENA_Msk) && /* ITM enabled */
+ (ITM->TER & (1UL << 0) ) ) /* ITM Port #0 enabled */
+ {
+ while (ITM->PORT[0].u32 == 0);
+ ITM->PORT[0].u8 = (uint8_t) ch;
+ }
+ return (ch);
+}
+
+
+/** \brief ITM Receive Character
+
+ The function inputs a character via the external variable \ref ITM_RxBuffer.
+
+ \return Received character.
+ \return -1 No character pending.
+ */
+__STATIC_INLINE int32_t ITM_ReceiveChar (void) {
+ int32_t ch = -1; /* no character available */
+
+ if (ITM_RxBuffer != ITM_RXBUFFER_EMPTY) {
+ ch = ITM_RxBuffer;
+ ITM_RxBuffer = ITM_RXBUFFER_EMPTY; /* ready for next character */
+ }
+
+ return (ch);
+}
+
+
+/** \brief ITM Check Character
+
+ The function checks whether a character is pending for reading in the variable \ref ITM_RxBuffer.
+
+ \return 0 No character available.
+ \return 1 Character available.
+ */
+__STATIC_INLINE int32_t ITM_CheckChar (void) {
+
+ if (ITM_RxBuffer == ITM_RXBUFFER_EMPTY) {
+ return (0); /* no character available */
+ } else {
+ return (1); /* character available */
+ }
+}
+
+/*@} end of CMSIS_core_DebugFunctions */
+
+#endif /* __CORE_CM4_H_DEPENDANT */
+
+#endif /* __CMSIS_GENERIC */
+
+#ifdef __cplusplus
+}
+#endif
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cm4_simd.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cm4_simd.h
new file mode 100644
index 000000000..34b395a04
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cm4_simd.h
@@ -0,0 +1,649 @@
+/**************************************************************************//**
+ * @file core_cm4_simd.h
+ * @brief CMSIS Cortex-M4 SIMD Header File
+ * @version V3.00
+ * @date 19. January 2012
+ *
+ * @note
+ * Copyright (C) 2010-2012 ARM Limited. All rights reserved.
+ *
+ * @par
+ * ARM Limited (ARM) is supplying this software for use with Cortex-M
+ * processor based microcontrollers. This file can be freely distributed
+ * within development tools that are supporting such ARM based processors.
+ *
+ * @par
+ * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
+ * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
+ * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
+ * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
+ *
+ ******************************************************************************/
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+#ifndef __CORE_CM4_SIMD_H
+#define __CORE_CM4_SIMD_H
+
+
+/*******************************************************************************
+ * Hardware Abstraction Layer
+ ******************************************************************************/
+
+
+/* ################### Compiler specific Intrinsics ########################### */
+/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
+ Access to dedicated SIMD instructions
+ @{
+*/
+
+#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
+/* ARM armcc specific functions */
+
+/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
+#define __SADD8 __sadd8
+#define __QADD8 __qadd8
+#define __SHADD8 __shadd8
+#define __UADD8 __uadd8
+#define __UQADD8 __uqadd8
+#define __UHADD8 __uhadd8
+#define __SSUB8 __ssub8
+#define __QSUB8 __qsub8
+#define __SHSUB8 __shsub8
+#define __USUB8 __usub8
+#define __UQSUB8 __uqsub8
+#define __UHSUB8 __uhsub8
+#define __SADD16 __sadd16
+#define __QADD16 __qadd16
+#define __SHADD16 __shadd16
+#define __UADD16 __uadd16
+#define __UQADD16 __uqadd16
+#define __UHADD16 __uhadd16
+#define __SSUB16 __ssub16
+#define __QSUB16 __qsub16
+#define __SHSUB16 __shsub16
+#define __USUB16 __usub16
+#define __UQSUB16 __uqsub16
+#define __UHSUB16 __uhsub16
+#define __SASX __sasx
+#define __QASX __qasx
+#define __SHASX __shasx
+#define __UASX __uasx
+#define __UQASX __uqasx
+#define __UHASX __uhasx
+#define __SSAX __ssax
+#define __QSAX __qsax
+#define __SHSAX __shsax
+#define __USAX __usax
+#define __UQSAX __uqsax
+#define __UHSAX __uhsax
+#define __USAD8 __usad8
+#define __USADA8 __usada8
+#define __SSAT16 __ssat16
+#define __USAT16 __usat16
+#define __UXTB16 __uxtb16
+#define __UXTAB16 __uxtab16
+#define __SXTB16 __sxtb16
+#define __SXTAB16 __sxtab16
+#define __SMUAD __smuad
+#define __SMUADX __smuadx
+#define __SMLAD __smlad
+#define __SMLADX __smladx
+#define __SMLALD __smlald
+#define __SMLALDX __smlaldx
+#define __SMUSD __smusd
+#define __SMUSDX __smusdx
+#define __SMLSD __smlsd
+#define __SMLSDX __smlsdx
+#define __SMLSLD __smlsld
+#define __SMLSLDX __smlsldx
+#define __SEL __sel
+#define __QADD __qadd
+#define __QSUB __qsub
+
+#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
+ ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
+
+#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
+ ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
+
+
+/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
+
+
+
+#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
+/* IAR iccarm specific functions */
+
+/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
+#include
+
+/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
+
+
+
+#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
+/* TI CCS specific functions */
+
+/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
+#include
+
+/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
+
+
+
+#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
+/* GNU gcc specific functions */
+
+/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
+{
+ uint32_t result;
+
+ __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
+ return(result);
+}
+
+#define __SSAT16(ARG1,ARG2) \
+({ \
+ uint32_t __RES, __ARG1 = (ARG1); \
+ __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
+ __RES; \
+ })
+
+#define __USAT16(ARG1,ARG2) \
+({ \
+ uint32_t __RES, __ARG1 = (ARG1); \
+ __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
+ __RES; \
+ })
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
+{
+ uint32_t result;
+
+ __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
+{
+ uint32_t result;
+
+ __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
+{
+ uint32_t result;
+
+ __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
+{
+ uint32_t result;
+
+ __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
+ return(result);
+}
+
+#define __SMLALD(ARG1,ARG2,ARG3) \
+({ \
+ uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((uint64_t)(ARG3) >> 32), __ARG3_L = (uint32_t)((uint64_t)(ARG3) & 0xFFFFFFFFUL); \
+ __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
+ (uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
+ })
+
+#define __SMLALDX(ARG1,ARG2,ARG3) \
+({ \
+ uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((uint64_t)(ARG3) >> 32), __ARG3_L = (uint32_t)((uint64_t)(ARG3) & 0xFFFFFFFFUL); \
+ __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
+ (uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
+ })
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
+{
+ uint32_t result;
+
+ __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
+{
+ uint32_t result;
+
+ __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
+ return(result);
+}
+
+#define __SMLSLD(ARG1,ARG2,ARG3) \
+({ \
+ uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((ARG3) >> 32), __ARG3_L = (uint32_t)((ARG3) & 0xFFFFFFFFUL); \
+ __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
+ (uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
+ })
+
+#define __SMLSLDX(ARG1,ARG2,ARG3) \
+({ \
+ uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((ARG3) >> 32), __ARG3_L = (uint32_t)((ARG3) & 0xFFFFFFFFUL); \
+ __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
+ (uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
+ })
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB(uint32_t op1, uint32_t op2)
+{
+ uint32_t result;
+
+ __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
+ return(result);
+}
+
+#define __PKHBT(ARG1,ARG2,ARG3) \
+({ \
+ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
+ __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
+ __RES; \
+ })
+
+#define __PKHTB(ARG1,ARG2,ARG3) \
+({ \
+ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
+ if (ARG3 == 0) \
+ __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
+ else \
+ __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
+ __RES; \
+ })
+
+/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
+
+
+
+#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
+/* TASKING carm specific functions */
+
+
+/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
+/* not yet supported */
+/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
+
+
+#endif
+
+/*@} end of group CMSIS_SIMD_intrinsics */
+
+
+#endif /* __CORE_CM4_SIMD_H */
+
+#ifdef __cplusplus
+}
+#endif
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cmFunc.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cmFunc.h
new file mode 100644
index 000000000..1991ae3d9
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cmFunc.h
@@ -0,0 +1,616 @@
+/**************************************************************************//**
+ * @file core_cmFunc.h
+ * @brief CMSIS Cortex-M Core Function Access Header File
+ * @version V3.00
+ * @date 19. January 2012
+ *
+ * @note
+ * Copyright (C) 2009-2012 ARM Limited. All rights reserved.
+ *
+ * @par
+ * ARM Limited (ARM) is supplying this software for use with Cortex-M
+ * processor based microcontrollers. This file can be freely distributed
+ * within development tools that are supporting such ARM based processors.
+ *
+ * @par
+ * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
+ * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
+ * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
+ * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
+ *
+ ******************************************************************************/
+
+#ifndef __CORE_CMFUNC_H
+#define __CORE_CMFUNC_H
+
+
+/* ########################### Core Function Access ########################### */
+/** \ingroup CMSIS_Core_FunctionInterface
+ \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
+ @{
+ */
+
+#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
+/* ARM armcc specific functions */
+
+#if (__ARMCC_VERSION < 400677)
+ #error "Please use ARM Compiler Toolchain V4.0.677 or later!"
+#endif
+
+/* intrinsic void __enable_irq(); */
+/* intrinsic void __disable_irq(); */
+
+/** \brief Get Control Register
+
+ This function returns the content of the Control Register.
+
+ \return Control Register value
+ */
+__STATIC_INLINE uint32_t __get_CONTROL(void)
+{
+ register uint32_t __regControl __ASM("control");
+ return(__regControl);
+}
+
+
+/** \brief Set Control Register
+
+ This function writes the given value to the Control Register.
+
+ \param [in] control Control Register value to set
+ */
+__STATIC_INLINE void __set_CONTROL(uint32_t control)
+{
+ register uint32_t __regControl __ASM("control");
+ __regControl = control;
+}
+
+
+/** \brief Get IPSR Register
+
+ This function returns the content of the IPSR Register.
+
+ \return IPSR Register value
+ */
+__STATIC_INLINE uint32_t __get_IPSR(void)
+{
+ register uint32_t __regIPSR __ASM("ipsr");
+ return(__regIPSR);
+}
+
+
+/** \brief Get APSR Register
+
+ This function returns the content of the APSR Register.
+
+ \return APSR Register value
+ */
+__STATIC_INLINE uint32_t __get_APSR(void)
+{
+ register uint32_t __regAPSR __ASM("apsr");
+ return(__regAPSR);
+}
+
+
+/** \brief Get xPSR Register
+
+ This function returns the content of the xPSR Register.
+
+ \return xPSR Register value
+ */
+__STATIC_INLINE uint32_t __get_xPSR(void)
+{
+ register uint32_t __regXPSR __ASM("xpsr");
+ return(__regXPSR);
+}
+
+
+/** \brief Get Process Stack Pointer
+
+ This function returns the current value of the Process Stack Pointer (PSP).
+
+ \return PSP Register value
+ */
+__STATIC_INLINE uint32_t __get_PSP(void)
+{
+ register uint32_t __regProcessStackPointer __ASM("psp");
+ return(__regProcessStackPointer);
+}
+
+
+/** \brief Set Process Stack Pointer
+
+ This function assigns the given value to the Process Stack Pointer (PSP).
+
+ \param [in] topOfProcStack Process Stack Pointer value to set
+ */
+__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
+{
+ register uint32_t __regProcessStackPointer __ASM("psp");
+ __regProcessStackPointer = topOfProcStack;
+}
+
+
+/** \brief Get Main Stack Pointer
+
+ This function returns the current value of the Main Stack Pointer (MSP).
+
+ \return MSP Register value
+ */
+__STATIC_INLINE uint32_t __get_MSP(void)
+{
+ register uint32_t __regMainStackPointer __ASM("msp");
+ return(__regMainStackPointer);
+}
+
+
+/** \brief Set Main Stack Pointer
+
+ This function assigns the given value to the Main Stack Pointer (MSP).
+
+ \param [in] topOfMainStack Main Stack Pointer value to set
+ */
+__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
+{
+ register uint32_t __regMainStackPointer __ASM("msp");
+ __regMainStackPointer = topOfMainStack;
+}
+
+
+/** \brief Get Priority Mask
+
+ This function returns the current state of the priority mask bit from the Priority Mask Register.
+
+ \return Priority Mask value
+ */
+__STATIC_INLINE uint32_t __get_PRIMASK(void)
+{
+ register uint32_t __regPriMask __ASM("primask");
+ return(__regPriMask);
+}
+
+
+/** \brief Set Priority Mask
+
+ This function assigns the given value to the Priority Mask Register.
+
+ \param [in] priMask Priority Mask
+ */
+__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
+{
+ register uint32_t __regPriMask __ASM("primask");
+ __regPriMask = (priMask);
+}
+
+
+#if (__CORTEX_M >= 0x03)
+
+/** \brief Enable FIQ
+
+ This function enables FIQ interrupts by clearing the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+#define __enable_fault_irq __enable_fiq
+
+
+/** \brief Disable FIQ
+
+ This function disables FIQ interrupts by setting the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+#define __disable_fault_irq __disable_fiq
+
+
+/** \brief Get Base Priority
+
+ This function returns the current value of the Base Priority register.
+
+ \return Base Priority register value
+ */
+__STATIC_INLINE uint32_t __get_BASEPRI(void)
+{
+ register uint32_t __regBasePri __ASM("basepri");
+ return(__regBasePri);
+}
+
+
+/** \brief Set Base Priority
+
+ This function assigns the given value to the Base Priority register.
+
+ \param [in] basePri Base Priority value to set
+ */
+__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
+{
+ register uint32_t __regBasePri __ASM("basepri");
+ __regBasePri = (basePri & 0xff);
+}
+
+
+/** \brief Get Fault Mask
+
+ This function returns the current value of the Fault Mask register.
+
+ \return Fault Mask register value
+ */
+__STATIC_INLINE uint32_t __get_FAULTMASK(void)
+{
+ register uint32_t __regFaultMask __ASM("faultmask");
+ return(__regFaultMask);
+}
+
+
+/** \brief Set Fault Mask
+
+ This function assigns the given value to the Fault Mask register.
+
+ \param [in] faultMask Fault Mask value to set
+ */
+__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
+{
+ register uint32_t __regFaultMask __ASM("faultmask");
+ __regFaultMask = (faultMask & (uint32_t)1);
+}
+
+#endif /* (__CORTEX_M >= 0x03) */
+
+
+#if (__CORTEX_M == 0x04)
+
+/** \brief Get FPSCR
+
+ This function returns the current value of the Floating Point Status/Control register.
+
+ \return Floating Point Status/Control register value
+ */
+__STATIC_INLINE uint32_t __get_FPSCR(void)
+{
+#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
+ register uint32_t __regfpscr __ASM("fpscr");
+ return(__regfpscr);
+#else
+ return(0);
+#endif
+}
+
+
+/** \brief Set FPSCR
+
+ This function assigns the given value to the Floating Point Status/Control register.
+
+ \param [in] fpscr Floating Point Status/Control value to set
+ */
+__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
+{
+#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
+ register uint32_t __regfpscr __ASM("fpscr");
+ __regfpscr = (fpscr);
+#endif
+}
+
+#endif /* (__CORTEX_M == 0x04) */
+
+
+#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
+/* IAR iccarm specific functions */
+
+#include
+
+
+#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
+/* TI CCS specific functions */
+
+#include
+
+
+#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
+/* GNU gcc specific functions */
+
+/** \brief Enable IRQ Interrupts
+
+ This function enables IRQ interrupts by clearing the I-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
+{
+ __ASM volatile ("cpsie i");
+}
+
+
+/** \brief Disable IRQ Interrupts
+
+ This function disables IRQ interrupts by setting the I-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
+{
+ __ASM volatile ("cpsid i");
+}
+
+
+/** \brief Get Control Register
+
+ This function returns the content of the Control Register.
+
+ \return Control Register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
+{
+ uint32_t result;
+
+ __ASM volatile ("MRS %0, control" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Set Control Register
+
+ This function writes the given value to the Control Register.
+
+ \param [in] control Control Register value to set
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
+{
+ __ASM volatile ("MSR control, %0" : : "r" (control) );
+}
+
+
+/** \brief Get IPSR Register
+
+ This function returns the content of the IPSR Register.
+
+ \return IPSR Register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
+{
+ uint32_t result;
+
+ __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Get APSR Register
+
+ This function returns the content of the APSR Register.
+
+ \return APSR Register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
+{
+ uint32_t result;
+
+ __ASM volatile ("MRS %0, apsr" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Get xPSR Register
+
+ This function returns the content of the xPSR Register.
+
+ \return xPSR Register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
+{
+ uint32_t result;
+
+ __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Get Process Stack Pointer
+
+ This function returns the current value of the Process Stack Pointer (PSP).
+
+ \return PSP Register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
+{
+ register uint32_t result;
+
+ __ASM volatile ("MRS %0, psp\n" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Set Process Stack Pointer
+
+ This function assigns the given value to the Process Stack Pointer (PSP).
+
+ \param [in] topOfProcStack Process Stack Pointer value to set
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
+{
+ __ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) );
+}
+
+
+/** \brief Get Main Stack Pointer
+
+ This function returns the current value of the Main Stack Pointer (MSP).
+
+ \return MSP Register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
+{
+ register uint32_t result;
+
+ __ASM volatile ("MRS %0, msp\n" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Set Main Stack Pointer
+
+ This function assigns the given value to the Main Stack Pointer (MSP).
+
+ \param [in] topOfMainStack Main Stack Pointer value to set
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
+{
+ __ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) );
+}
+
+
+/** \brief Get Priority Mask
+
+ This function returns the current state of the priority mask bit from the Priority Mask Register.
+
+ \return Priority Mask value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
+{
+ uint32_t result;
+
+ __ASM volatile ("MRS %0, primask" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Set Priority Mask
+
+ This function assigns the given value to the Priority Mask Register.
+
+ \param [in] priMask Priority Mask
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
+{
+ __ASM volatile ("MSR primask, %0" : : "r" (priMask) );
+}
+
+
+#if (__CORTEX_M >= 0x03)
+
+/** \brief Enable FIQ
+
+ This function enables FIQ interrupts by clearing the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
+{
+ __ASM volatile ("cpsie f");
+}
+
+
+/** \brief Disable FIQ
+
+ This function disables FIQ interrupts by setting the F-bit in the CPSR.
+ Can only be executed in Privileged modes.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
+{
+ __ASM volatile ("cpsid f");
+}
+
+
+/** \brief Get Base Priority
+
+ This function returns the current value of the Base Priority register.
+
+ \return Base Priority register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
+{
+ uint32_t result;
+
+ __ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Set Base Priority
+
+ This function assigns the given value to the Base Priority register.
+
+ \param [in] basePri Base Priority value to set
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
+{
+ __ASM volatile ("MSR basepri, %0" : : "r" (value) );
+}
+
+
+/** \brief Get Fault Mask
+
+ This function returns the current value of the Fault Mask register.
+
+ \return Fault Mask register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
+{
+ uint32_t result;
+
+ __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
+ return(result);
+}
+
+
+/** \brief Set Fault Mask
+
+ This function assigns the given value to the Fault Mask register.
+
+ \param [in] faultMask Fault Mask value to set
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
+{
+ __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) );
+}
+
+#endif /* (__CORTEX_M >= 0x03) */
+
+
+#if (__CORTEX_M == 0x04)
+
+/** \brief Get FPSCR
+
+ This function returns the current value of the Floating Point Status/Control register.
+
+ \return Floating Point Status/Control register value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
+{
+#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
+ uint32_t result;
+
+ __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
+ return(result);
+#else
+ return(0);
+#endif
+}
+
+
+/** \brief Set FPSCR
+
+ This function assigns the given value to the Floating Point Status/Control register.
+
+ \param [in] fpscr Floating Point Status/Control value to set
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
+{
+#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
+ __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) );
+#endif
+}
+
+#endif /* (__CORTEX_M == 0x04) */
+
+
+#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
+/* TASKING carm specific functions */
+
+/*
+ * The CMSIS functions have been implemented as intrinsics in the compiler.
+ * Please use "carm -?i" to get an up to date list of all instrinsics,
+ * Including the CMSIS ones.
+ */
+
+#endif
+
+/*@} end of CMSIS_Core_RegAccFunctions */
+
+
+#endif /* __CORE_CMFUNC_H */
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cmInstr.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cmInstr.h
new file mode 100644
index 000000000..7981634e7
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/Include/core_cmInstr.h
@@ -0,0 +1,618 @@
+/**************************************************************************//**
+ * @file core_cmInstr.h
+ * @brief CMSIS Cortex-M Core Instruction Access Header File
+ * @version V3.00
+ * @date 07. February 2012
+ *
+ * @note
+ * Copyright (C) 2009-2012 ARM Limited. All rights reserved.
+ *
+ * @par
+ * ARM Limited (ARM) is supplying this software for use with Cortex-M
+ * processor based microcontrollers. This file can be freely distributed
+ * within development tools that are supporting such ARM based processors.
+ *
+ * @par
+ * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
+ * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
+ * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
+ * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
+ *
+ ******************************************************************************/
+
+#ifndef __CORE_CMINSTR_H
+#define __CORE_CMINSTR_H
+
+
+/* ########################## Core Instruction Access ######################### */
+/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
+ Access to dedicated instructions
+ @{
+*/
+
+#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
+/* ARM armcc specific functions */
+
+#if (__ARMCC_VERSION < 400677)
+ #error "Please use ARM Compiler Toolchain V4.0.677 or later!"
+#endif
+
+
+/** \brief No Operation
+
+ No Operation does nothing. This instruction can be used for code alignment purposes.
+ */
+#define __NOP __nop
+
+
+/** \brief Wait For Interrupt
+
+ Wait For Interrupt is a hint instruction that suspends execution
+ until one of a number of events occurs.
+ */
+#define __WFI __wfi
+
+
+/** \brief Wait For Event
+
+ Wait For Event is a hint instruction that permits the processor to enter
+ a low-power state until one of a number of events occurs.
+ */
+#define __WFE __wfe
+
+
+/** \brief Send Event
+
+ Send Event is a hint instruction. It causes an event to be signaled to the CPU.
+ */
+#define __SEV __sev
+
+
+/** \brief Instruction Synchronization Barrier
+
+ Instruction Synchronization Barrier flushes the pipeline in the processor,
+ so that all instructions following the ISB are fetched from cache or
+ memory, after the instruction has been completed.
+ */
+#define __ISB() __isb(0xF)
+
+
+/** \brief Data Synchronization Barrier
+
+ This function acts as a special kind of Data Memory Barrier.
+ It completes when all explicit memory accesses before this instruction complete.
+ */
+#define __DSB() __dsb(0xF)
+
+
+/** \brief Data Memory Barrier
+
+ This function ensures the apparent order of the explicit memory operations before
+ and after the instruction, without ensuring their completion.
+ */
+#define __DMB() __dmb(0xF)
+
+
+/** \brief Reverse byte order (32 bit)
+
+ This function reverses the byte order in integer value.
+
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#define __REV __rev
+
+
+/** \brief Reverse byte order (16 bit)
+
+ This function reverses the byte order in two unsigned short values.
+
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
+{
+ rev16 r0, r0
+ bx lr
+}
+
+
+/** \brief Reverse byte order in signed short value
+
+ This function reverses the byte order in a signed short value with sign extension to integer.
+
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
+{
+ revsh r0, r0
+ bx lr
+}
+
+
+/** \brief Rotate Right in unsigned value (32 bit)
+
+ This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+
+ \param [in] value Value to rotate
+ \param [in] value Number of Bits to rotate
+ \return Rotated value
+ */
+#define __ROR __ror
+
+
+#if (__CORTEX_M >= 0x03)
+
+/** \brief Reverse bit order of value
+
+ This function reverses the bit order of the given value.
+
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+#define __RBIT __rbit
+
+
+/** \brief LDR Exclusive (8 bit)
+
+ This function performs a exclusive LDR command for 8 bit value.
+
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
+
+
+/** \brief LDR Exclusive (16 bit)
+
+ This function performs a exclusive LDR command for 16 bit values.
+
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
+
+
+/** \brief LDR Exclusive (32 bit)
+
+ This function performs a exclusive LDR command for 32 bit values.
+
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
+
+
+/** \brief STR Exclusive (8 bit)
+
+ This function performs a exclusive STR command for 8 bit values.
+
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STREXB(value, ptr) __strex(value, ptr)
+
+
+/** \brief STR Exclusive (16 bit)
+
+ This function performs a exclusive STR command for 16 bit values.
+
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STREXH(value, ptr) __strex(value, ptr)
+
+
+/** \brief STR Exclusive (32 bit)
+
+ This function performs a exclusive STR command for 32 bit values.
+
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+#define __STREXW(value, ptr) __strex(value, ptr)
+
+
+/** \brief Remove the exclusive lock
+
+ This function removes the exclusive lock which is created by LDREX.
+
+ */
+#define __CLREX __clrex
+
+
+/** \brief Signed Saturate
+
+ This function saturates a signed value.
+
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (1..32)
+ \return Saturated value
+ */
+#define __SSAT __ssat
+
+
+/** \brief Unsigned Saturate
+
+ This function saturates an unsigned value.
+
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (0..31)
+ \return Saturated value
+ */
+#define __USAT __usat
+
+
+/** \brief Count leading zeros
+
+ This function counts the number of leading zeros of a data value.
+
+ \param [in] value Value to count the leading zeros
+ \return number of leading zeros in value
+ */
+#define __CLZ __clz
+
+#endif /* (__CORTEX_M >= 0x03) */
+
+
+
+#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
+/* IAR iccarm specific functions */
+
+#include
+
+
+#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
+/* TI CCS specific functions */
+
+#include
+
+
+#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
+/* GNU gcc specific functions */
+
+/** \brief No Operation
+
+ No Operation does nothing. This instruction can be used for code alignment purposes.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void)
+{
+ __ASM volatile ("nop");
+}
+
+
+/** \brief Wait For Interrupt
+
+ Wait For Interrupt is a hint instruction that suspends execution
+ until one of a number of events occurs.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void)
+{
+ __ASM volatile ("wfi");
+}
+
+
+/** \brief Wait For Event
+
+ Wait For Event is a hint instruction that permits the processor to enter
+ a low-power state until one of a number of events occurs.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void)
+{
+ __ASM volatile ("wfe");
+}
+
+
+/** \brief Send Event
+
+ Send Event is a hint instruction. It causes an event to be signaled to the CPU.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void)
+{
+ __ASM volatile ("sev");
+}
+
+
+/** \brief Instruction Synchronization Barrier
+
+ Instruction Synchronization Barrier flushes the pipeline in the processor,
+ so that all instructions following the ISB are fetched from cache or
+ memory, after the instruction has been completed.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void)
+{
+ __ASM volatile ("isb");
+}
+
+
+/** \brief Data Synchronization Barrier
+
+ This function acts as a special kind of Data Memory Barrier.
+ It completes when all explicit memory accesses before this instruction complete.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void)
+{
+ __ASM volatile ("dsb");
+}
+
+
+/** \brief Data Memory Barrier
+
+ This function ensures the apparent order of the explicit memory operations before
+ and after the instruction, without ensuring their completion.
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void)
+{
+ __ASM volatile ("dmb");
+}
+
+
+/** \brief Reverse byte order (32 bit)
+
+ This function reverses the byte order in integer value.
+
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value)
+{
+ uint32_t result;
+
+ __ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
+ return(result);
+}
+
+
+/** \brief Reverse byte order (16 bit)
+
+ This function reverses the byte order in two unsigned short values.
+
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value)
+{
+ uint32_t result;
+
+ __ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
+ return(result);
+}
+
+
+/** \brief Reverse byte order in signed short value
+
+ This function reverses the byte order in a signed short value with sign extension to integer.
+
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value)
+{
+ uint32_t result;
+
+ __ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
+ return(result);
+}
+
+
+/** \brief Rotate Right in unsigned value (32 bit)
+
+ This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+
+ \param [in] value Value to rotate
+ \param [in] value Number of Bits to rotate
+ \return Rotated value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
+{
+
+ __ASM volatile ("ror %0, %0, %1" : "+r" (op1) : "r" (op2) );
+ return(op1);
+}
+
+
+#if (__CORTEX_M >= 0x03)
+
+/** \brief Reverse bit order of value
+
+ This function reverses the bit order of the given value.
+
+ \param [in] value Value to reverse
+ \return Reversed value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
+{
+ uint32_t result;
+
+ __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
+ return(result);
+}
+
+
+/** \brief LDR Exclusive (8 bit)
+
+ This function performs a exclusive LDR command for 8 bit value.
+
+ \param [in] ptr Pointer to data
+ \return value of type uint8_t at (*ptr)
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
+{
+ uint8_t result;
+
+ __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
+ return(result);
+}
+
+
+/** \brief LDR Exclusive (16 bit)
+
+ This function performs a exclusive LDR command for 16 bit values.
+
+ \param [in] ptr Pointer to data
+ \return value of type uint16_t at (*ptr)
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
+{
+ uint16_t result;
+
+ __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
+ return(result);
+}
+
+
+/** \brief LDR Exclusive (32 bit)
+
+ This function performs a exclusive LDR command for 32 bit values.
+
+ \param [in] ptr Pointer to data
+ \return value of type uint32_t at (*ptr)
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
+{
+ uint32_t result;
+
+ __ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
+ return(result);
+}
+
+
+/** \brief STR Exclusive (8 bit)
+
+ This function performs a exclusive STR command for 8 bit values.
+
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
+{
+ uint32_t result;
+
+ __ASM volatile ("strexb %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
+ return(result);
+}
+
+
+/** \brief STR Exclusive (16 bit)
+
+ This function performs a exclusive STR command for 16 bit values.
+
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
+{
+ uint32_t result;
+
+ __ASM volatile ("strexh %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
+ return(result);
+}
+
+
+/** \brief STR Exclusive (32 bit)
+
+ This function performs a exclusive STR command for 32 bit values.
+
+ \param [in] value Value to store
+ \param [in] ptr Pointer to location
+ \return 0 Function succeeded
+ \return 1 Function failed
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
+{
+ uint32_t result;
+
+ __ASM volatile ("strex %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
+ return(result);
+}
+
+
+/** \brief Remove the exclusive lock
+
+ This function removes the exclusive lock which is created by LDREX.
+
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void)
+{
+ __ASM volatile ("clrex");
+}
+
+
+/** \brief Signed Saturate
+
+ This function saturates a signed value.
+
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (1..32)
+ \return Saturated value
+ */
+#define __SSAT(ARG1,ARG2) \
+({ \
+ uint32_t __RES, __ARG1 = (ARG1); \
+ __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
+ __RES; \
+ })
+
+
+/** \brief Unsigned Saturate
+
+ This function saturates an unsigned value.
+
+ \param [in] value Value to be saturated
+ \param [in] sat Bit position to saturate to (0..31)
+ \return Saturated value
+ */
+#define __USAT(ARG1,ARG2) \
+({ \
+ uint32_t __RES, __ARG1 = (ARG1); \
+ __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
+ __RES; \
+ })
+
+
+/** \brief Count leading zeros
+
+ This function counts the number of leading zeros of a data value.
+
+ \param [in] value Value to count the leading zeros
+ \return number of leading zeros in value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value)
+{
+ uint8_t result;
+
+ __ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
+ return(result);
+}
+
+#endif /* (__CORTEX_M >= 0x03) */
+
+
+
+
+#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
+/* TASKING carm specific functions */
+
+/*
+ * The CMSIS functions have been implemented as intrinsics in the compiler.
+ * Please use "carm -?i" to get an up to date list of all intrinsics,
+ * Including the CMSIS ones.
+ */
+
+#endif
+
+/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
+
+#endif /* __CORE_CMINSTR_H */
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/README.txt b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/README.txt
new file mode 100644
index 000000000..efa2ad16e
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/README.txt
@@ -0,0 +1,37 @@
+* -------------------------------------------------------------------
+* Copyright (C) 2011 ARM Limited. All rights reserved.
+*
+* Date: 11 October 2011
+* Revision: V3.00
+*
+* Project: Cortex Microcontroller Software Interface Standard (CMSIS)
+* Title: Release Note for CMSIS
+*
+* -------------------------------------------------------------------
+
+
+NOTE - Open the index.html file to access CMSIS documentation
+
+
+The Cortex Microcontroller Software Interface Standard (CMSIS) provides a single standard across all
+Cortex-Mx processor series vendors. It enables code re-use and code sharing across software projects
+and reduces time-to-market for new embedded applications.
+
+CMSIS is released under the terms of the end user license agreement ("CMSIS END USER LICENCE AGREEMENT.pdf").
+Any user of the software package is bound to the terms and conditions of the end user license agreement.
+
+
+You will find the following sub-directories:
+
+Documentation - Contains CMSIS documentation.
+
+DSP_Lib - MDK project files, Examples and source files etc.. to build the
+ CMSIS DSP Software Library for Cortex-M0, Cortex-M3, Cortex-M4 processors.
+
+Include - CMSIS Core Support and CMSIS DSP Include Files.
+
+Lib - CMSIS DSP Libraries.
+
+RTOS - CMSIS RTOS API template header file.
+
+SVD - CMSIS SVD Schema files and Conversion Utility.
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/license.txt b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/license.txt
new file mode 100644
index 000000000..b220574a5
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/ASF/thirdparty/CMSIS/license.txt
@@ -0,0 +1,167 @@
+END USER LICENCE AGREEMENT FOR THE CORTEX MICROCONTROLLER SOFTWARE INTERFACE
+STANDARD (CMSIS) SPECIFICATION AND SOFTWARE
+
+THIS END USER LICENCE AGREEMENT ("LICENCE") IS A LEGAL AGREEMENT BETWEEN YOU (EITHER A
+SINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND ARM LIMITED ("ARM") FOR THE USE OF THE
+CMSIS SPECIFICATION, EXAMPLE CODE, DSP LIBRARY SPECIFICATION AND DSP LIBRARY
+IMPLEMENTATION AS SUCH TERMS ARE DEFINED BELOW (COLLECTIVELY, THE "ARM
+DELIVERABLES"). ARM IS ONLY WILLING TO LICENSE THE ARM DELIVERABLES TO YOU ON CONDITION
+THAT YOU ACCEPT ALL OF THE TERMS IN THIS LICENCE. BY CLICKING "I AGREE", OR BY INSTALLING
+OR OTHERWISE USING OR COPYING THE ARM DELIVERABLES YOU INDICATE THAT YOU AGREE TO
+BE BOUND BY ALL THE TERMS OF THIS LICENCE. IF YOU DO NOT AGREE TO THE TERMS OF THIS
+LICENCE, ARM IS UNWILLING TO LICENSE YOU TO USE THE ARM DELIVERABLES AND YOU MAY NOT
+INSTALL, USE OR COPY THE ARM DELIVERABLES.
+
+"CMSIS Specification" means any documentation and C programming language files defining the application
+programming interface, naming and coding conventions of the Cortex Microcontroller Software Interface
+Standard (CMSIS) as well as the System View Description (SVD) documentation and associated XML schema
+file. Notwithstanding the foregoing, "CMSIS Specification" shall not include (i) the implementation of other
+published specifications referenced in the CMSIS Specification; (ii) any enabling technologies that may be
+necessary to make or use any product or portion thereof that complies with the CMSIS Specification, but are not
+themselves expressly set forth in the CMSIS Specification (e.g. compiler front ends, code generators, back ends,
+libraries or other compiler, assembler or linker technologies; validation or debug software or hardware;
+applications, operating system or driver software; RISC architecture; processor microarchitecture); (iii)
+maskworks and physical layouts of integrated circuit designs; or (iv) RTL or other high level representations of
+integrated circuit designs.
+
+"DSP Library Implementation" means any C programming language source code implementing the functionality
+of the digital signal processor (DSP) algorithms and the application programming interface as defined in the DSP
+Library Specification. The DSP Library Implementation makes use of CMSIS application programming interface
+and therefore is targeted at Cortex-M class processors.
+
+"DSP Library Specification" means the DSP library documentation and C programming language file defining the
+application programming interface of the DSP Library Implementation. Notwithstanding the foregoing, "DSP
+Library Specification" shall not include (i) the implementation of other published specifications referenced in the
+DSP Library Specification; (ii) any enabling technologies that may be necessary to make or use any product or
+portion thereof that complies with the DSP Library Specification, but are not themselves expressly set forth in the
+DSP Library Specification (e.g. compiler front ends, code generators, back ends, libraries or other compiler,
+assembler or linker technologies; validation or debug software or hardware; applications, operating system or
+driver software; RISC architecture; processor microarchitecture); (iii) maskworks and physical layouts of
+integrated circuit designs; or (iv) RTL or other high level representations of integrated circuit designs.
+
+"Example Code" means any files in C, C++ or ARM assembly programming languages, associated project and
+configuration files that demonstrate the usage of the CMSIS Specification, the DSP Library Specification and the
+DSP Library Implementation, for microprocessors or device specific software applications that are for use with
+microprocessors.
+
+1. LICENCE GRANTS.
+
+1.1 ARM hereby grants to you, subject to the terms and conditions of this Licence, a non-exclusive, nontransferable
+licence, to;
+
+(i) use and copy the CMSIS Specification for the purpose of developing, having developed, manufacturing,
+having manufactured, offering to sell, selling, supplying or otherwise distributing products that comply with the
+CMSIS Specification, provided that you preserve any copyright notices which are included with, or in, the CMSIS
+Specification and provided that you do not use ARM's name, logo or trademarks to market such products;
+
+(ii) use, copy, and modify (solely to the extent necessary to incorporate the whole or any part of the DSP Library
+Specification into your documentation), the DSP Library Specification, for the purpose of developing, having
+developed, manufacturing, having manufactured, offering to sell, selling, supplying or otherwise distributing
+products that comply with the DSP Library Specification, and distribute and have distributed any documentation
+created by or for you that has been derived from the DSP Library Specification with such products, provided that
+you preserve any copyright notices which are included with, or in, the DSP Library Specification and provided that
+you do not use ARM's name, logo or trademarks to market such products;
+
+(iii) use, copy, modify and sublicense the Example Code solely for the purpose of developing, having developed,
+manufacturing, having manufactured, offering to sell, selling, supplying or otherwise distributing products that
+comply with either or both the CMSIS Specification and the DSP Library Specification, provided that you preserve
+any copyright notices which are included with, or in, the Example Code and that you do not use ARM's name,
+logo or trademarks to market such products;
+
+(iv) use, copy and modify (provided that the logical functionality and the application programming interface of the
+DSP Library Implementation are maintained) the DSP Library Implementation, solely for the purposes of
+developing; (a) software applications for use with microprocessors manufactured or simulated under licence from
+ARM ("Software Applications"); and (b) tools that are designed to develop software programs for use with
+microprocessors manufactured or simulated under licence from ARM ("Tools"); and
+
+(v) subject to clause 1.1(vi) below; (a) distribute and sublicense the use of the DSP Library Implementation
+(including any modified forms thereof created under Clause 1.1(iv) above) in binary or source format, solely as
+incorporated into Software Library Applications and Tools to third parties; and (b) sublicense to such third parties
+the right to use and copy the Tools for the purposes of developing and distribute software programs for use with
+microprocessors manufactured or simulated under licence from ARM.
+
+(vi) CONDITIONS ON REDISTRIBUTION: If you choose to redistribute the whole or any part of the DSP Library
+Implementation as incorporated into Software Library Applications or Tools, you agree to; (a) ensure that the
+DSP Library Implementation is licensed for use only as part of Software Library Applications and Tools and only
+for use with microprocessors manufactured or simulated under licence from ARM; (b) not to use ARM's name,
+logo or trademarks to market Software Applications and Tools; and (c) include valid copyright notices on
+Software Applications and Tools, and preserve any copyright notices which are included with, or in, the DSP
+Library Implementation.
+
+2. RESTRICTIONS ON USE OF THE ARM DELIVERABLES.
+
+PERMITTED USERS: The ARM Deliverables shall be used only by you (either a single individual, or single legal
+entity) your employees, or by your on-site bona fide sub-contractors for whose acts and omissions you hereby
+agree to be responsible to ARM for to the same extent as you are for your employees, and provided always that
+such sub-contractors; (i) are contractually obligated to use the ARM Deliverables only for your benefit, and (ii)
+agree to assign all their work product and any rights they create therein in the supply of such work to you.
+COPYRIGHT AND RESERVATION OF RIGHTS: The ARM Deliverables are owned by ARM or its licensors and
+are protected by copyright and other intellectual property laws and international treaties. The ARM Deliverables
+are licensed not sold. Except as expressly licensed herein, you acquire no right, title or interest in the ARM
+Deliverables or any intellectual property therein. In no event shall the licences granted herein be construed as
+granting you, expressly or by implication, estoppels or otherwise, a licence to use any ARM technology except
+the ARM Deliverables.
+
+3. SUPPORT.
+
+ARM is not obligated to support the ARM Deliverables but may do so entirely at ARM's discretion.
+
+4. NO WARRANTY
+
+YOU AGREE THAT THE ARM DELIVERABLES ARE LICENSED "AS IS", AND THAT ARM EXPRESSLY
+DISCLAIMS ALL REPRESENTATIONS, WARRANTIES, CONDITIONS OR OTHER TERMS, EXPRESS,
+IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NONINFRINGEMENT,
+SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE. THE ARM
+DELIVERABLES MAY CONTAIN ERRORS. ARM RESERVES THE RIGHT TO INCORPORATE
+MODIFICATIONS TO THE ARM DELIVERABLES IN LATER REVISIONS OF THEM, AND TO MAKE
+IMPROVEMENTS OR CHANGES IN THE ARM DELIVERABLES AT ANY TIME.
+
+5. LIMITATION OF LIABILITY.
+
+THE MAXIMUM LIABILITY OF ARM TO YOU IN AGGREGATE FOR ALL CLAIMS MADE AGAINST ARM IN
+CONTRACT, TORT OR OTHERWISE UNDER OR IN CONNECTION WITH THE SUBJECT MATTER OF THIS
+LICENCE SHALL NOT EXCEED THE GREATER OF (I) THE TOTAL OF SUMS PAID BY YOU TO ARM (IF
+ANY) FOR THIS LICENCE AND (II) US$10.00. THE LIMITATIONS, EXCLUSIONS AND DISCLAIMERS IN
+THIS LICENCE SHALL APPLY TO THE MAXIMUM EXTENT ALLOWED BY APPLICABLE LAW.
+
+6. U.S. GOVERNMENT END USERS.
+US Government Restrictions: Use, duplication, reproduction, release, modification, disclosure or transfer of this
+commercial product and accompanying documentation is restricted in accordance with the terms of this Licence.
+
+7. TERM AND TERMINATION.
+
+7.1 This Licence shall remain in force until terminated in accordance with the terms of Clause 7.2 or Clause 7.3
+below.
+
+7.2 Without prejudice to any of its other rights if you are in breach of any of the terms and conditions of this
+Licence then ARM may terminate this Licence immediately upon giving written notice to you. You may terminate
+this Licence at any time.
+
+7.3 This Licence shall immediately terminate and shall be unavailable to you if you or any party affiliated to you
+asserts any patents against ARM, ARM affiliates, third parties who have a valid licence from ARM for the ARM
+Deliverables, or any customers or distributors of any of them based upon a claim that your (or your affiliate)
+patent is Necessary to implement the CMSIS Specification or DSP Library Specification. In this Licence; (i)
+"affiliate" means any entity controlling, controlled by or under common control with a party (in fact or in law, via
+voting securities, management control or otherwise) and "affiliated" shall be construed accordingly; (ii) "assert"
+means to allege infringement in legal or administrative proceedings, or proceedings before any other competent
+trade, arbitral or international authority; (iii) "Necessary" means with respect to any claims of any patent, those
+claims which, without the appropriate permission of the patent owner, will be infringed when implementing the
+CMSIS Specification or DSP Library Specification because no alternative, commercially reasonable, noninfringing
+way of implementing the CMSIS Specification or DSP Library Specification is known.
+
+7.4 Upon termination of this Licence, you shall stop using the ARM Deliverables and destroy all copies of the
+ARM Deliverables in your possession. The provisions of clauses 5, 6, 7, and 8 shall survive termination of this
+Licence.
+
+8. GENERAL.
+
+This Licence is governed by English Law. Except where ARM agrees otherwise in a written contract signed by
+you and ARM, this is the only agreement between you and ARM relating to the ARM Deliverables and it may only
+be modified by written agreement between you and ARM. Except as expressly agreed in writing, this Licence
+may not be modified by purchase orders, advertising or other representation by any person. If any clause or
+sentence in this Licence is held by a court of law to be illegal or unenforceable the remaining provisions of this
+Licence shall not be affected thereby. The failure by ARM to enforce any of the provisions of this Licence, unless
+waived in writing, shall not constitute a waiver of ARM's rights to enforce such provision or any other provision of
+this Licence in the future. This Licence may not be assigned without the prior written consent of ARM.
+
+ARM contract reference LEC-PRE-00489
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/RunTimeStatsTimer.c b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/RunTimeStatsTimer.c
new file mode 100644
index 000000000..635a1e527
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/RunTimeStatsTimer.c
@@ -0,0 +1,136 @@
+/*
+ FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that has become a de facto standard. *
+ * *
+ * Help yourself get started quickly and support the FreeRTOS *
+ * project by purchasing a FreeRTOS tutorial book, reference *
+ * manual, or both from: http://www.FreeRTOS.org/Documentation *
+ * *
+ * Thank you! *
+ * *
+ ***************************************************************************
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ >>! NOTE: The modification to the GPL is included to allow you to distribute
+ >>! a combined work that includes FreeRTOS without being obliged to provide
+ >>! the source code for proprietary components outside of the FreeRTOS
+ >>! kernel.
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available from the following
+ link: http://www.freertos.org/a00114.html
+
+ 1 tab == 4 spaces!
+
+ ***************************************************************************
+ * *
+ * Having a problem? Start by reading the FAQ "My application does *
+ * not run, what could be wrong?" *
+ * *
+ * http://www.FreeRTOS.org/FAQHelp.html *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org - Documentation, books, training, latest versions,
+ license and Real Time Engineers Ltd. contact details.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
+ Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/* FreeRTOS includes. */
+#include "FreeRTOS.h"
+
+/* Utility functions to implement run time stats on Cortex-M CPUs. The collected
+run time data can be viewed through the CLI interface. See the following URL for
+more information on run time stats:
+http://www.freertos.org/rtos-run-time-stats.html */
+
+/* Addresses of registers in the Cortex-M debug hardware. */
+#define rtsDWT_CYCCNT ( *( ( unsigned long * ) 0xE0001004 ) )
+#define rtsDWT_CONTROL ( *( ( unsigned long * ) 0xE0001000 ) )
+#define rtsSCB_DEMCR ( *( ( unsigned long * ) 0xE000EDFC ) )
+#define rtsTRCENA_BIT ( 0x01000000UL )
+#define rtsCOUNTER_ENABLE_BIT ( 0x01UL )
+
+/* Simple shift divide for scaling to avoid an overflow occurring too soon. The
+number of bits to shift depends on the clock speed. */
+#define runtimeSLOWER_CLOCK_SPEEDS ( 70000000UL )
+#define runtimeSHIFT_13 13
+#define runtimeOVERFLOW_BIT_13 ( 1UL << ( 32UL - runtimeSHIFT_13 ) )
+#define runtimeSHIFT_14 14
+#define runtimeOVERFLOW_BIT_14 ( 1UL << ( 32UL - runtimeSHIFT_14 ) )
+
+/*-----------------------------------------------------------*/
+
+void vConfigureTimerForRunTimeStats( void )
+{
+ /* Enable TRCENA. */
+ rtsSCB_DEMCR = rtsSCB_DEMCR | rtsTRCENA_BIT;
+
+ /* Reset counter. */
+ rtsDWT_CYCCNT = 0;
+
+ /* Enable counter. */
+ rtsDWT_CONTROL = rtsDWT_CONTROL | rtsCOUNTER_ENABLE_BIT;
+}
+/*-----------------------------------------------------------*/
+
+uint32_t ulGetRunTimeCounterValue( void )
+{
+static unsigned long ulLastCounterValue = 0UL, ulOverflows = 0;
+unsigned long ulValueNow;
+
+ ulValueNow = rtsDWT_CYCCNT;
+
+ /* Has the value overflowed since it was last read. */
+ if( ulValueNow < ulLastCounterValue )
+ {
+ ulOverflows++;
+ }
+ ulLastCounterValue = ulValueNow;
+
+ /* Cannot use configCPU_CLOCK_HZ directly as it may itself not be a constant
+ but instead map to a variable that holds the clock speed. */
+
+ /* There is no prescale on the counter, so simulate in software. */
+ if( configCPU_CLOCK_HZ < runtimeSLOWER_CLOCK_SPEEDS )
+ {
+ ulValueNow >>= runtimeSHIFT_13;
+ ulValueNow += ( runtimeOVERFLOW_BIT_13 * ulOverflows );
+ }
+ else
+ {
+ ulValueNow >>= runtimeSHIFT_14;
+ ulValueNow += ( runtimeOVERFLOW_BIT_14 * ulOverflows );
+ }
+
+ return ulValueNow;
+}
+/*-----------------------------------------------------------*/
+
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/asf.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/asf.h
new file mode 100644
index 000000000..03d53df4b
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/asf.h
@@ -0,0 +1,93 @@
+/**
+ * \file
+ *
+ * \brief Autogenerated API include file for the Atmel Software Framework (ASF)
+ *
+ * Copyright (c) 2012 Atmel Corporation. All rights reserved.
+ *
+ * \asf_license_start
+ *
+ * \page License
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * 3. The name of Atmel may not be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * 4. This software may only be redistributed and used in connection with an
+ * Atmel microcontroller product.
+ *
+ * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
+ * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ * \asf_license_stop
+ *
+ */
+
+#ifndef ASF_H
+#define ASF_H
+
+/*
+ * This file includes all API header files for the selected drivers from ASF.
+ * Note: There might be duplicate includes required by more than one driver.
+ *
+ * The file is automatically generated and will be re-written when
+ * running the ASF driver selector tool. Any changes will be discarded.
+ */
+
+// From module: Common SAM compiler driver
+#include
+#include
+
+// From module: Ethernet MAC (GMAC)
+#include
+
+// From module: Ethernet Physical Transceiver (ksz8051mnl)
+#include
+
+// From module: Generic board support
+#include
+
+// From module: IOPORT - General purpose I/O service
+#include
+
+// From module: Interrupt management - SAM implementation
+#include
+
+// From module: PMC - Power Management Controller
+#include
+#include
+
+// From module: Part identification macros
+#include
+
+// From module: SAM FPU driver
+#include
+
+// From module: SAM4E EK LED support enabled
+#include
+
+// From module: SAM4E startup code
+#include
+
+// From module: System Clock Control - SAM4E implementation
+#include
+
+#endif // ASF_H
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/FreeRTOSConfig.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/FreeRTOSConfig.h
new file mode 100644
index 000000000..da072d87e
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/FreeRTOSConfig.h
@@ -0,0 +1,228 @@
+/*
+ FreeRTOS V7.5.3 - Copyright (C) 2013 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that has become a de facto standard. *
+ * *
+ * Help yourself get started quickly and support the FreeRTOS *
+ * project by purchasing a FreeRTOS tutorial book, reference *
+ * manual, or both from: http://www.FreeRTOS.org/Documentation *
+ * *
+ * Thank you! *
+ * *
+ ***************************************************************************
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ >>! NOTE: The modification to the GPL is included to allow you to distribute
+ >>! a combined work that includes FreeRTOS without being obliged to provide
+ >>! the source code for proprietary components outside of the FreeRTOS
+ >>! kernel.
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available from the following
+ link: http://www.freertos.org/a00114.html
+
+ 1 tab == 4 spaces!
+
+ ***************************************************************************
+ * *
+ * Having a problem? Start by reading the FAQ "My application does *
+ * not run, what could be wrong?" *
+ * *
+ * http://www.FreeRTOS.org/FAQHelp.html *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org - Documentation, books, training, latest versions,
+ license and Real Time Engineers Ltd. contact details.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
+ Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+
+#ifndef FREERTOS_CONFIG_H
+#define FREERTOS_CONFIG_H
+
+/* Atmel library includes. */
+#include
+
+/*-----------------------------------------------------------
+ * Application specific definitions.
+ *
+ * These definitions should be adjusted for your particular hardware and
+ * application requirements.
+ *
+ * THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
+ * FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
+ *
+ * See http://www.freertos.org/a00110.html.
+ *----------------------------------------------------------*/
+
+#define configUSE_PREEMPTION 1
+#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
+#define configUSE_IDLE_HOOK 0
+#define configUSE_TICK_HOOK 0
+#define configCPU_CLOCK_HZ ( ( unsigned long ) CHIP_FREQ_CPU_MAX )
+#define configTICK_RATE_HZ ( 1000 )
+#define configMAX_PRIORITIES ( 5 )
+#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 130 )
+#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 22800 ) )
+#define configMAX_TASK_NAME_LEN ( 10 )
+#define configUSE_TRACE_FACILITY 1
+#define configUSE_16_BIT_TICKS 0
+#define configIDLE_SHOULD_YIELD 1
+#define configUSE_MUTEXES 1
+#define configQUEUE_REGISTRY_SIZE 8
+#define configCHECK_FOR_STACK_OVERFLOW 2
+#define configUSE_RECURSIVE_MUTEXES 1
+#define configUSE_MALLOC_FAILED_HOOK 1
+#define configUSE_APPLICATION_TASK_TAG 0
+#define configUSE_COUNTING_SEMAPHORES 1
+
+/* Run time stats gathering definitions. */
+void vConfigureTimerForRunTimeStats( void );
+uint32_t ulGetRunTimeCounterValue( void );
+#define configGENERATE_RUN_TIME_STATS 1
+#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() vConfigureTimerForRunTimeStats()
+#define portGET_RUN_TIME_COUNTER_VALUE() ulGetRunTimeCounterValue()
+
+/* This demo makes use of one or more example stats formatting functions. These
+format the raw data provided by the uxTaskGetSystemState() function in to human
+readable ASCII form. See the notes in the implementation of vTaskList() within
+FreeRTOS/Source/tasks.c for limitations. */
+#define configUSE_STATS_FORMATTING_FUNCTIONS 1
+
+/* Co-routine definitions. */
+#define configUSE_CO_ROUTINES 0
+#define configMAX_CO_ROUTINE_PRIORITIES ( 2 )
+
+/* Software timer definitions. */
+#define configUSE_TIMERS 1
+#define configTIMER_TASK_PRIORITY ( 2 )
+#define configTIMER_QUEUE_LENGTH 5
+#define configTIMER_TASK_STACK_DEPTH ( configMINIMAL_STACK_SIZE * 2 )
+
+/* Set the following definitions to 1 to include the API function, or zero
+to exclude the API function. */
+#define INCLUDE_vTaskPrioritySet 1
+#define INCLUDE_uxTaskPriorityGet 1
+#define INCLUDE_vTaskDelete 1
+#define INCLUDE_vTaskCleanUpResources 1
+#define INCLUDE_vTaskSuspend 1
+#define INCLUDE_vTaskDelayUntil 1
+#define INCLUDE_vTaskDelay 1
+
+/* Cortex-M specific definitions. */
+#ifdef __NVIC_PRIO_BITS
+ /* __BVIC_PRIO_BITS will be specified when CMSIS is being used. */
+ #define configPRIO_BITS __NVIC_PRIO_BITS
+#else
+ #define configPRIO_BITS 4 /* 15 priority levels */
+#endif
+
+/* The lowest interrupt priority that can be used in a call to a "set priority"
+function. */
+#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 0xf
+
+/* The highest interrupt priority that can be used by any interrupt service
+routine that makes calls to interrupt safe FreeRTOS API functions. DO NOT CALL
+INTERRUPT SAFE FREERTOS API FUNCTIONS FROM ANY INTERRUPT THAT HAS A HIGHER
+PRIORITY THAN THIS! (higher priorities are lower numeric values. */
+#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5
+
+/* Interrupt priorities used by the kernel port layer itself. These are generic
+to all Cortex-M ports, and do not rely on any particular library functions. */
+#define configKERNEL_INTERRUPT_PRIORITY ( configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
+/* !!!! configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to zero !!!!
+See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. */
+#define configMAX_SYSCALL_INTERRUPT_PRIORITY ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
+
+/* Normal assert() semantics without relying on the provision of an assert.h
+header file. */
+extern void vAssertCalled( uint32_t ulLine, const char *pcFile );
+#define configASSERT( x ) if( ( x ) == 0 ) vAssertCalled( __LINE__, __FILE__ )
+
+/* Definitions that map the FreeRTOS port interrupt handlers to their CMSIS
+standard names. */
+#define xPortPendSVHandler PendSV_Handler
+#define vPortSVCHandler SVC_Handler
+#define xPortSysTickHandler SysTick_Handler
+
+/* MAC address configuration. In a deployed production system this would
+probably be read from an EEPROM. In the demo it is just hard coded. Make sure
+each node on the network has a unique MAC address. */
+#define configMAC_ADDR0 0x00
+#define configMAC_ADDR1 0x11
+#define configMAC_ADDR2 0x22
+#define configMAC_ADDR3 0x33
+#define configMAC_ADDR4 0x44
+#define configMAC_ADDR5 0x45
+
+/* Default IP address configuration. Used in ipconfigUSE_DNS is set to 0, or
+ipconfigUSE_DNS is set to 1 but a DNS server cannot be contacted. */
+#define configIP_ADDR0 172
+#define configIP_ADDR1 25
+#define configIP_ADDR2 218
+#define configIP_ADDR3 200
+
+/* Default gateway IP address configuration. Used in ipconfigUSE_DNS is set to
+0, or ipconfigUSE_DNS is set to 1 but a DNS server cannot be contacted. */
+#define configGATEWAY_ADDR0 172
+#define configGATEWAY_ADDR1 25
+#define configGATEWAY_ADDR2 218
+#define configGATEWAY_ADDR3 1
+
+/* Default DNS server configuration. OpenDNS addresses are 208.67.222.222 and
+208.67.220.220. Used in ipconfigUSE_DNS is set to 0, or ipconfigUSE_DNS is set
+to 1 but a DNS server cannot be contacted.*/
+#define configDNS_SERVER_ADDR0 208
+#define configDNS_SERVER_ADDR1 67
+#define configDNS_SERVER_ADDR2 222
+#define configDNS_SERVER_ADDR3 222
+
+/* Default netmask configuration. Used in ipconfigUSE_DNS is set to 0, or
+ipconfigUSE_DNS is set to 1 but a DNS server cannot be contacted. */
+#define configNET_MASK0 255
+#define configNET_MASK1 255
+#define configNET_MASK2 255
+#define configNET_MASK3 0
+
+/* The priority used by the Ethernet MAC driver interrupt. */
+#define configMAC_INTERRUPT_PRIORITY ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY )
+
+/* Dimensions a buffer that can be used by the FreeRTOS+CLI command
+interpreter. See the FreeRTOS+CLI documentation for more information:
+http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_CLI/ */
+#define configCOMMAND_INT_MAX_OUTPUT_SIZE 1024
+
+/* If configINCLUDE_DEMO_DEBUG_STATS is set to one, then a few basic IP trace
+macros are defined to gather some UDP stack statistics that can then be viewed
+through the CLI interface. */
+#define configINCLUDE_DEMO_DEBUG_STATS 1
+
+#endif /* FREERTOS_CONFIG_H */
+
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/FreeRTOSIPConfig.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/FreeRTOSIPConfig.h
new file mode 100644
index 000000000..0ec023489
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/FreeRTOSIPConfig.h
@@ -0,0 +1,276 @@
+/*
+ * FreeRTOS+UDP V1.0.2 (C) 2013 Real Time Engineers ltd.
+ * All rights reserved
+ *
+ * This file is part of the FreeRTOS+UDP distribution. The FreeRTOS+UDP license
+ * terms are different to the FreeRTOS license terms.
+ *
+ * FreeRTOS+UDP uses a dual license model that allows the software to be used
+ * under a standard GPL open source license, or a commercial license. The
+ * standard GPL license (unlike the modified GPL license under which FreeRTOS
+ * itself is distributed) requires that all software statically linked with
+ * FreeRTOS+UDP is also distributed under the same GPL V2 license terms.
+ * Details of both license options follow:
+ *
+ * - Open source licensing -
+ * FreeRTOS+UDP is a free download and may be used, modified, evaluated and
+ * distributed without charge provided the user adheres to version two of the
+ * GNU General Public License (GPL) and does not remove the copyright notice or
+ * this text. The GPL V2 text is available on the gnu.org web site, and on the
+ * following URL: http://www.FreeRTOS.org/gpl-2.0.txt.
+ *
+ * - Commercial licensing -
+ * Businesses and individuals that for commercial or other reasons cannot comply
+ * with the terms of the GPL V2 license must obtain a commercial license before
+ * incorporating FreeRTOS+UDP into proprietary software for distribution in any
+ * form. Commercial licenses can be purchased from http://shop.freertos.org/udp
+ * and do not require any source files to be changed.
+ *
+ * FreeRTOS+UDP is distributed in the hope that it will be useful. You cannot
+ * use FreeRTOS+UDP unless you agree that you use the software 'as is'.
+ * FreeRTOS+UDP is provided WITHOUT ANY WARRANTY; without even the implied
+ * warranties of NON-INFRINGEMENT, MERCHANTABILITY or FITNESS FOR A PARTICULAR
+ * PURPOSE. Real Time Engineers Ltd. disclaims all conditions and terms, be they
+ * implied, expressed, or statutory.
+ *
+ * 1 tab == 4 spaces!
+ *
+ * http://www.FreeRTOS.org
+ * http://www.FreeRTOS.org/udp
+ *
+ */
+
+/*****************************************************************************
+ *
+ * See the following URL for configuration information.
+ * http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_UDP/UDP_IP_Configuration.shtml
+ *
+ *****************************************************************************/
+
+#ifndef FREERTOS_IP_CONFIG_H
+#define FREERTOS_IP_CONFIG_H
+
+/* The IP stack executes it its own task (although any application task can make
+use of its services through the published sockets API). ipconfigUDP_TASK_PRIORITY
+sets the priority of the task that executes the IP stack. The priority is a
+standard FreeRTOS task priority so can take any value from 0 (the lowest
+priority) to (configMAX_PRIORITIES - 1) (the highest priority).
+configMAX_PRIORITIES is a standard FreeRTOS configuration parameter defined in
+FreeRTOSConfig.h, not FreeRTOSIPConfig.h. Consideration needs to be given as to
+the priority assigned to the task executing the IP stack relative to the
+priority assigned to tasks that use the IP stack.
+
+Note: If the application is started without the network cable plugged in then
+this should be set to the lowest priority - otherwise the Atmel ASF GMAC driver
+will poll the GMAC interface waiting for a connection to be established. The
+driver uses a very long timeout and no lower priority tasks will be able to
+execute during this time. This demo starts with the IP task running at the idle
+priority - then raises the priority of the IP task in the network event hook
+when a connection has been established. */
+#define ipconfigUDP_TASK_PRIORITY ( tskIDLE_PRIORITY )
+
+/* The size, in words (not bytes), of the stack allocated to the FreeRTOS+UDP
+task. This setting is less important when the FreeRTOS Win32 simulator is used
+as the Win32 simulator only stores a fixed amount of information on the task
+stack. FreeRTOS includes optional stack overflow detection, see:
+http://www.freertos.org/Stacks-and-stack-overflow-checking.html */
+#define ipconfigUDP_TASK_STACK_SIZE_WORDS ( configMINIMAL_STACK_SIZE * 2 )
+
+/* ipconfigRAND32() is called by the IP stack to generate a random number that
+is then used as a DHCP transaction number. Random number generation is performed
+via this macro to allow applications to use their own random number generation
+method. For example, it might be possible to generate a random number by
+sampling noise on an analogue input. */
+#define ipconfigRAND32() 1
+
+/* If ipconfigUSE_NETWORK_EVENT_HOOK is set to 1 then FreeRTOS+UDP will call the
+network event hook at the appropriate times. If ipconfigUSE_NETWORK_EVENT_HOOK
+is not set to 1 then the network event hook will never be called. See
+http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_UDP/API/vApplicationIPNetworkEventHook.shtml
+*/
+#define ipconfigUSE_NETWORK_EVENT_HOOK 1
+
+/* Sockets have a send block time attribute. If FreeRTOS_sendto() is called but
+a network buffer cannot be obtained then the calling task is held in the Blocked
+state (so other tasks can continue to executed) until either a network buffer
+becomes available or the send block time expires. If the send block time expires
+then the send operation is aborted. The maximum allowable send block time is
+capped to the value set by ipconfigMAX_SEND_BLOCK_TIME_TICKS. Capping the
+maximum allowable send block time prevents prevents a deadlock occurring when
+all the network buffers are in use and the tasks that process (and subsequently
+free) the network buffers are themselves blocked waiting for a network buffer.
+ipconfigMAX_SEND_BLOCK_TIME_TICKS is specified in RTOS ticks. A time in
+milliseconds can be converted to a time in ticks by dividing the time in
+milliseconds by portTICK_RATE_MS. */
+#define ipconfigMAX_SEND_BLOCK_TIME_TICKS ( 20 / portTICK_RATE_MS )
+
+/* If ipconfigUSE_DHCP is 1 then FreeRTOS+UDP will attempt to retrieve an IP
+address, netmask, DNS server address and gateway address from a DHCP server. If
+ipconfigUSE_DHCP is 0 then FreeRTOS+UDP will use a static IP address. The
+stack will revert to using the static IP address even when ipconfigUSE_DHCP is
+set to 1 if a valid configuration cannot be obtained from a DHCP server for any
+reason. The static configuration used is that passed into the stack by the
+FreeRTOS_IPInit() function call. */
+#define ipconfigUSE_DHCP 0
+
+/* When ipconfigUSE_DHCP is set to 1, DHCP requests will be sent out at
+increasing time intervals until either a reply is received from a DHCP server
+and accepted, or the interval between transmissions reaches
+ipconfigMAXIMUM_DISCOVER_TX_PERIOD. The IP stack will revert to using the
+static IP address passed as a parameter to FreeRTOS_IPInit() if the
+re-transmission time interval reaches ipconfigMAXIMUM_DISCOVER_TX_PERIOD without
+a DHCP reply being received. */
+#ifdef _WINDOWS_
+ /* The windows simulated time is not real time so the max delay is much
+ shorter. */
+ #define ipconfigMAXIMUM_DISCOVER_TX_PERIOD ( 999 / portTICK_RATE_MS )
+#else
+ #define ipconfigMAXIMUM_DISCOVER_TX_PERIOD ( 120000 / portTICK_RATE_MS )
+#endif /* _WINDOWS_ */
+
+/* The ARP cache is a table that maps IP addresses to MAC addresses. The IP
+stack can only send a UDP message to a remove IP address if it knowns the MAC
+address associated with the IP address, or the MAC address of the router used to
+contact the remote IP address. When a UDP message is received from a remote IP
+address the MAC address and IP address are added to the ARP cache. When a UDP
+message is sent to a remote IP address that does not already appear in the ARP
+cache then the UDP message is replaced by a ARP message that solicits the
+required MAC address information. ipconfigARP_CACHE_ENTRIES defines the maximum
+number of entries that can exist in the ARP table at any one time. */
+#define ipconfigARP_CACHE_ENTRIES 6
+
+/* ARP requests that do not result in an ARP response will be re-transmitted a
+maximum of ipconfigMAX_ARP_RETRANSMISSIONS times before the ARP request is
+aborted. */
+#define ipconfigMAX_ARP_RETRANSMISSIONS ( 5 )
+
+/* ipconfigMAX_ARP_AGE defines the maximum time between an entry in the ARP
+table being created or refreshed and the entry being removed because it is stale.
+New ARP requests are sent for ARP cache entries that are nearing their maximum
+age. ipconfigMAX_ARP_AGE is specified in tens of seconds, so a value of 150 is
+equal to 1500 seconds (or 25 minutes). */
+#define ipconfigMAX_ARP_AGE 150
+
+/* Implementing FreeRTOS_inet_addr() necessitates the use of string handling
+routines, which are relatively large. To save code space the full
+FreeRTOS_inet_addr() implementation is made optional, and a smaller and faster
+alternative called FreeRTOS_inet_addr_quick() is provided. FreeRTOS_inet_addr()
+takes an IP in decimal dot format (for example, "192.168.0.1") as its parameter.
+FreeRTOS_inet_addr_quick() takes an IP address as four separate numerical octets
+(for example, 192, 168, 0, 1) as its parameters. If
+ipconfigINCLUDE_FULL_INET_ADDR is set to 1 then both FreeRTOS_inet_addr() and
+FreeRTOS_indet_addr_quick() are available. If ipconfigINCLUDE_FULL_INET_ADDR is
+not set to 1 then only FreeRTOS_indet_addr_quick() is available. */
+#define ipconfigINCLUDE_FULL_INET_ADDR 1
+
+/* ipconfigNUM_NETWORK_BUFFERS defines the total number of network buffer that
+are available to the IP stack. The total number of network buffers is limited
+to ensure the total amount of RAM that can be consumed by the IP stack is capped
+to a pre-determinable value. */
+#define ipconfigNUM_NETWORK_BUFFERS 10
+
+/* A FreeRTOS queue is used to send events from application tasks to the IP
+stack. ipconfigEVENT_QUEUE_LENGTH sets the maximum number of events that can
+be queued for processing at any one time. The event queue must be a minimum of
+5 greater than the total number of network buffers. */
+#define ipconfigEVENT_QUEUE_LENGTH ( ipconfigNUM_NETWORK_BUFFERS + 5 )
+
+/* The address of a socket is the combination of its IP address and its port
+number. FreeRTOS_bind() is used to manually allocate a port number to a socket
+(to 'bind' the socket to a port), but manual binding is not normally necessary
+for client sockets (those sockets that initiate outgoing connections rather than
+wait for incoming connections on a known port number). If
+ipconfigALLOW_SOCKET_SEND_WITHOUT_BIND is set to 1 then calling
+FreeRTOS_sendto() on a socket that has not yet been bound will result in the IP
+stack automatically binding the socket to a port number from the range
+socketAUTO_PORT_ALLOCATION_START_NUMBER to 0xffff. If
+ipconfigALLOW_SOCKET_SEND_WITHOUT_BIND is set to 0 then calling FreeRTOS_sendto()
+on a socket that has not yet been bound will result in the send operation being
+aborted. */
+#define ipconfigALLOW_SOCKET_SEND_WITHOUT_BIND 1
+
+/* Defines the Time To Live (TTL) values used in outgoing UDP packets. */
+#define updconfigIP_TIME_TO_LIVE 128
+
+/* If ipconfigCAN_FRAGMENT_OUTGOING_PACKETS is set to 1 then UDP packets that
+contain more data than will fit in a single network frame will be fragmented
+across multiple IP packets. Also see the ipconfigNETWORK_MTU setting. If
+ipconfigCAN_FRAGMENT_OUTGOING_PACKETS is 1 then (ipconfigNETWORK_MTU - 28) must
+be divisible by 8. Setting ipconfigCAN_FRAGMENT_OUTGOING_PACKETS to 1 will
+increase both the code size and execution time. */
+#define ipconfigCAN_FRAGMENT_OUTGOING_PACKETS 0
+
+/* The MTU is the maximum number of bytes the payload of a network frame can
+contain. For normal Ethernet V2 frames the maximum MTU is 1500. Setting a
+lower value can save RAM, depending on the buffer management scheme used. If
+ipconfigCAN_FRAGMENT_OUTGOING_PACKETS is 1 then (ipconfigNETWORK_MTU - 28) must
+be divisible by 8. */
+#define ipconfigNETWORK_MTU 1200
+
+/* Set ipconfigUSE_DNS to 1 to include a basic DNS client/resolver. DNS is used
+through the FreeRTOS_gethostbyname() API function. */
+#define ipconfigUSE_DNS 1
+
+/* If ipconfigREPLY_TO_INCOMING_PINGS is set to 1 then the IP stack will
+generate replies to incoming ICMP echo (ping) requests. */
+#define ipconfigREPLY_TO_INCOMING_PINGS 1
+
+/* If ipconfigSUPPORT_OUTGOING_PINGS is set to 1 then the
+FreeRTOS_SendPingRequest() API function is available. */
+#define ipconfigSUPPORT_OUTGOING_PINGS 0
+
+/* If ipconfigSUPPORT_SELECT_FUNCTION is set to 1 then the FreeRTOS_select()
+(and associated) API function is available. */
+#define ipconfigSUPPORT_SELECT_FUNCTION 1
+
+/* Used for stack testing only, and must be implemented in the network
+interface. */
+#define updconfigLOOPBACK_ETHERNET_PACKETS 0
+
+/* If ipconfigFILTER_OUT_NON_ETHERNET_II_FRAMES is set to 1 then Ethernet frames
+that are not in Ethernet II format will be dropped. This option is included for
+potential future IP stack developments. */
+#define ipconfigFILTER_OUT_NON_ETHERNET_II_FRAMES 1
+
+/* If ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES is set to 1 then it is the
+responsibility of the Ethernet interface to filter out packets that are of no
+interest. If the Ethernet interface does not implement this functionality, then
+set ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES to 0 to have the IP stack
+perform the filtering instead (it is much less efficient for the stack to do it
+because the packet will already have been passed into the stack). If the
+Ethernet driver does all the necessary filtering in hardware then software
+filtering can be removed by using a value other than 1 or 0. */
+#define ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES 0
+
+/* Set ipconfigFREERTOS_PLUS_NABTO to 1 to support the Nabto protocol, or 0 to
+exclude support for the Nabto protocol. If ipconfigFREERTOS_PLUS_NABTO is set
+to one then the project must build the Nabto source code (or reference a
+pre-build Nabto library. */
+#define ipconfigFREERTOS_PLUS_NABTO 0
+
+/* Sets the size of the stack used by the Nabto service task. The Nabto event
+handler executes in the context of the Nabto service task. If the event handler
+uses a lot of stack then it is possible the value set here will need to be
+increased. It is recommended to have FreeRTOS stack overflow checking turned
+on during development (see the configCHECK_FOR_STACK_OVERFLOW in
+FreeRTOSConfig.h and in the documentation. */
+#define ipconfigNABTO_TASK_STACK_SIZE ( configMINIMAL_STACK_SIZE * 2 )
+
+/* Sets the priority of the Nabto service task. This is a standard FreeRTOS
+task priority so can take values between 0 (the lowest priority) and
+configMAX_PRIORITIES - 1 (the highest priority). Also see the definition of
+ipconfigUDP_TASK_PRIORITY. This would normally be set to be either one higher
+or one lower than ipconfigUDP_TASK_PRIORITY, depending on the application. */
+#define ipconfigNABTO_TASK_PRIORITY ( ipconfigUDP_TASK_PRIORITY + 1 )
+
+/* The windows simulator cannot really simulate MAC interrupts, and needs to
+block occasionally to allow other tasks to run. */
+#ifdef _WINDOWS_
+ #define configWINDOWS_MAC_INTERRUPT_SIMULATOR_DELAY ( 3 / portTICK_RATE_MS )
+#endif
+
+/* The example IP trace macros are included here so the definitions are
+available in all the FreeRTOS+UDP source files. */
+#include "DemoIPTrace.h"
+
+#endif /* FREERTOS_IP_CONFIG_H */
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_board.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_board.h
new file mode 100644
index 000000000..4a914ee21
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_board.h
@@ -0,0 +1,92 @@
+/**
+ * \file
+ *
+ * \brief SAM4E-EK board configuration.
+ *
+ * Copyright (c) 2012-2013 Atmel Corporation. All rights reserved.
+ *
+ * \asf_license_start
+ *
+ * \page License
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * 3. The name of Atmel may not be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * 4. This software may only be redistributed and used in connection with an
+ * Atmel microcontroller product.
+ *
+ * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
+ * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ * \asf_license_stop
+ *
+ */
+
+#ifndef CONF_BOARD_H_INCLUDED
+#define CONF_BOARD_H_INCLUDED
+
+/* Configure UART pins */
+//#define CONF_BOARD_UART_CONSOLE
+
+/* Enable ETH PHY: KSZ8051MNL feature */
+#define CONF_BOARD_KSZ8051MNL
+/*
+ * LED pins are not configured for PWM function here.
+ * Because those LED pins are enabled for PIO function by default.
+ * You can enable them according to application.
+ */
+/* Configure PWM LED0 pin */
+//#define CONF_BOARD_PWM_LED0
+
+/* Configure PWM LED1 pin */
+//#define CONF_BOARD_PWM_LED1
+
+/* Configure PWM LED2 pin */
+//#define CONF_BOARD_PWM_LED2
+
+/* Configure PWM LED3 pin */
+//#define CONF_BOARD_PWM_LED3
+
+/*
+ * USART pins are configured as basic serial port by default.
+ * You can enable other pins according application.
+ */
+/* Configure USART RXD pin */
+//#define CONF_BOARD_USART_RXD
+
+/* Configure USART TXD pin */
+//#define CONF_BOARD_USART_TXD
+
+/* Configure USART CTS pin */
+//#define CONF_BOARD_USART_CTS
+
+/* Configure USART RTS pin */
+//#define CONF_BOARD_USART_RTS
+
+/* Configure USART synchronous communication SCK pin */
+//#define CONF_BOARD_USART_SCK
+
+/* Configure ADM3312 enable pin */
+//#define CONF_BOARD_ADM3312_EN
+//#define CONF_BOARD_ADM3312_EN_DISABLE_AT_INIT
+
+#endif /* CONF_BOARD_H_INCLUDED */
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_clock.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_clock.h
new file mode 100644
index 000000000..65f41e2cf
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_clock.h
@@ -0,0 +1,94 @@
+/**
+ * \file
+ *
+ * \brief SAM4E clock configuration.
+ *
+ * Copyright (c) 2012-2013 Atmel Corporation. All rights reserved.
+ *
+ * \asf_license_start
+ *
+ * \page License
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * 3. The name of Atmel may not be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * 4. This software may only be redistributed and used in connection with an
+ * Atmel microcontroller product.
+ *
+ * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
+ * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ * \asf_license_stop
+ *
+ */
+
+#ifndef CONF_CLOCK_H_INCLUDED
+#define CONF_CLOCK_H_INCLUDED
+
+// ===== System Clock (MCK) Source Options
+//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_RC
+//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_XTAL
+//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_BYPASS
+//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_4M_RC
+//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_8M_RC
+//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_12M_RC
+//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_XTAL
+//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_BYPASS
+#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLLACK
+
+// ===== System Clock (MCK) Prescaler Options (Fmck = Fsys / (SYSCLK_PRES))
+//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_1
+#define CONFIG_SYSCLK_PRES SYSCLK_PRES_2
+//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_4
+//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_8
+//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_16
+//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_32
+//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_64
+//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_3
+
+// ===== PLL0 (A) Options (Fpll = (Fclk * PLL_mul) / PLL_div)
+// Use mul and div effective values here.
+#define CONFIG_PLL0_SOURCE PLL_SRC_MAINCK_XTAL
+#define CONFIG_PLL0_MUL 16
+#define CONFIG_PLL0_DIV 1
+
+
+// ===== USB Clock Source Options (Fusb = FpllX / USB_div)
+// Use div effective value here.
+#define CONFIG_USBCLK_SOURCE USBCLK_SRC_PLL0
+#define CONFIG_USBCLK_DIV 2
+
+// ===== Target frequency (System clock)
+// - XTAL frequency: 12MHz
+// - System clock source: PLLA
+// - System clock prescaler: 2 (divided by 2)
+// - PLLA source: XTAL
+// - PLLA output: XTAL * 16 / 1
+// - System clock: 12 * 16 / 1 / 2 = 96MHz
+// ===== Target frequency (USB Clock)
+// - USB clock source: PLLA
+// - USB clock divider: 2 (divided by 2)
+// - PLLA output: XTAL * 16 / 2
+// - USB clock: 12 * 16 / 2 / 2 = 48MHz
+
+
+#endif /* CONF_CLOCK_H_INCLUDED */
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_eth.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_eth.h
new file mode 100644
index 000000000..73e55cbaf
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/conf_eth.h
@@ -0,0 +1,107 @@
+ /**
+ * \file
+ *
+ * \brief GMAC (Ethernet MAC) driver for SAM.
+ *
+ * Copyright (c) 2013 Atmel Corporation. All rights reserved.
+ *
+ * \asf_license_start
+ *
+ * \page License
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * 3. The name of Atmel may not be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * 4. This software may only be redistributed and used in connection with an
+ * Atmel microcontroller product.
+ *
+ * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
+ * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ * \asf_license_stop
+ *
+ */
+
+#ifndef CONF_EMAC_H_INCLUDED
+#define CONF_EMAC_H_INCLUDED
+
+/// @cond 0
+/**INDENT-OFF**/
+#ifdef __cplusplus
+extern "C" {
+#endif
+/**INDENT-ON**/
+/// @endcond
+
+#include "gmac.h"
+
+/** Number of buffer for RX */
+#define GMAC_RX_BUFFERS 16
+
+/** Number of buffer for TX */
+#define GMAC_TX_BUFFERS 8
+
+/** MAC PHY operation max retry count */
+#define MAC_PHY_RETRY_MAX 1000000
+
+/** MAC address definition. The MAC address must be unique on the network. */
+#define ETHERNET_CONF_ETHADDR0 0x00
+#define ETHERNET_CONF_ETHADDR1 0x04
+#define ETHERNET_CONF_ETHADDR2 0x25
+#define ETHERNET_CONF_ETHADDR3 0x1C
+#define ETHERNET_CONF_ETHADDR4 0xA0
+#define ETHERNET_CONF_ETHADDR5 0x02
+
+/** WAN Address: 192.168.0.2 */
+
+/* The IP address being used. */
+#define ETHERNET_CONF_IPADDR0 192
+#define ETHERNET_CONF_IPADDR1 168
+#define ETHERNET_CONF_IPADDR2 0
+#define ETHERNET_CONF_IPADDR3 2
+
+/** WAN gateway: 192.168.0.250 */
+
+/*! The gateway address being used. */
+#define ETHERNET_CONF_GATEWAY_ADDR0 192
+#define ETHERNET_CONF_GATEWAY_ADDR1 168
+#define ETHERNET_CONF_GATEWAY_ADDR2 0
+#define ETHERNET_CONF_GATEWAY_ADDR3 250
+
+/** The network mask being used. */
+#define ETHERNET_CONF_NET_MASK0 255
+#define ETHERNET_CONF_NET_MASK1 255
+#define ETHERNET_CONF_NET_MASK2 255
+#define ETHERNET_CONF_NET_MASK3 0
+
+/** Ethernet MII/RMII mode */
+#define ETH_PHY_MODE GMAC_PHY_MII
+
+/// @cond 0
+/**INDENT-OFF**/
+#ifdef __cplusplus
+}
+#endif
+/**INDENT-ON**/
+/// @endcond
+
+#endif /* CONF_EMAC_H_INCLUDED */
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/config_fat_sl.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/config_fat_sl.h
new file mode 100644
index 000000000..373d78092
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/config_fat_sl.h
@@ -0,0 +1,67 @@
+/*
+ * FreeRTOS+FAT FS V1.0.0 (C) 2013 HCC Embedded
+ *
+ * FreeRTOS+FAT SL is an complementary component provided to Real Time Engineers
+ * Ltd. by HCC Embedded for use with FreeRTOS. It is not, in itself, part of
+ * the FreeRTOS kernel. FreeRTOS+FAT SL is licensed separately from FreeRTOS,
+ * and uses a different license to FreeRTOS. FreeRTOS+FAT SL uses a dual
+ * license model, information on which is provided below:
+ *
+ * - Open source licensing -
+ * FreeRTOS+FAT SL is a free download and may be used, modified and distributed
+ * without charge provided the user adheres to version two of the GNU General
+ * Public license (GPL) and does not remove the copyright notice or this text.
+ * The GPL V2 text is available on the gnu.org web site, and on the following
+ * URL: http://www.FreeRTOS.org/gpl-2.0.txt
+ *
+ * - Commercial licensing -
+ * Businesses and individuals who wish to incorporate FreeRTOS+FAT SL into
+ * proprietary software for redistribution in any form must first obtain a
+ * commercial license - and in-so-doing support the maintenance, support and
+ * further development of the FreeRTOS+FAT SL product. Commercial licenses can
+ * be obtained from http://shop.freertos.org and do not require any source files
+ * to be changed.
+ *
+ * FreeRTOS+FAT SL is distributed in the hope that it will be useful. You
+ * cannot use FreeRTOS+FAT SL unless you agree that you use the software 'as
+ * is'. FreeRTOS+FAT SL is provided WITHOUT ANY WARRANTY; without even the
+ * implied warranties of NON-INFRINGEMENT, MERCHANTABILITY or FITNESS FOR A
+ * PARTICULAR PURPOSE. Real Time Engineers Ltd. and HCC Embedded disclaims all
+ * conditions and terms, be they implied, expressed, or statutory.
+ *
+ * http://www.FreeRTOS.org
+ * http://www.FreeRTOS.org/FreeRTOS-Plus
+ *
+ */
+
+#ifndef _CONFIG_FAT_SL_H
+#define _CONFIG_FAT_SL_H
+
+#include "../version/ver_fat_sl.h"
+#if VER_FAT_SL_MAJOR != 3 || VER_FAT_SL_MINOR != 2
+ #error Incompatible FAT_SL version number!
+#endif
+
+#include "../api/api_mdriver.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/**************************************************************************
+**
+** FAT SL user settings
+**
+**************************************************************************/
+#define F_SECTOR_SIZE 512u /* Disk sector size. */
+#define F_FS_THREAD_AWARE 1 /* Set to one if the file system will be access from more than one task. */
+#define F_MAXPATH 64 /* Maximum length a file name (including its full path) can be. */
+#define F_MAX_LOCK_WAIT_TICKS 20 /* The maximum number of RTOS ticks to wait when attempting to obtain a lock on the file system when F_FS_THREAD_AWARE is set to 1. */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _CONFIG_FAT_SL_H */
+
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/config_mdriver_ram.h b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/config_mdriver_ram.h
new file mode 100644
index 000000000..bd7823ef1
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/config/config_mdriver_ram.h
@@ -0,0 +1,52 @@
+/*
+ * FreeRTOS+FAT FS V1.0.0 (C) 2013 HCC Embedded
+ *
+ * FreeRTOS+FAT SL is an complementary component provided to Real Time Engineers
+ * Ltd. by HCC Embedded for use with FreeRTOS. It is not, in itself, part of
+ * the FreeRTOS kernel. FreeRTOS+FAT SL is licensed separately from FreeRTOS,
+ * and uses a different license to FreeRTOS. FreeRTOS+FAT SL uses a dual
+ * license model, information on which is provided below:
+ *
+ * - Open source licensing -
+ * FreeRTOS+FAT SL is a free download and may be used, modified and distributed
+ * without charge provided the user adheres to version two of the GNU General
+ * Public license (GPL) and does not remove the copyright notice or this text.
+ * The GPL V2 text is available on the gnu.org web site, and on the following
+ * URL: http://www.FreeRTOS.org/gpl-2.0.txt
+ *
+ * - Commercial licensing -
+ * Businesses and individuals who wish to incorporate FreeRTOS+FAT SL into
+ * proprietary software for redistribution in any form must first obtain a
+ * commercial license - and in-so-doing support the maintenance, support and
+ * further development of the FreeRTOS+FAT SL product. Commercial licenses can
+ * be obtained from http://shop.freertos.org and do not require any source files
+ * to be changed.
+ *
+ * FreeRTOS+FAT SL is distributed in the hope that it will be useful. You
+ * cannot use FreeRTOS+FAT SL unless you agree that you use the software 'as
+ * is'. FreeRTOS+FAT SL is provided WITHOUT ANY WARRANTY; without even the
+ * implied warranties of NON-INFRINGEMENT, MERCHANTABILITY or FITNESS FOR A
+ * PARTICULAR PURPOSE. Real Time Engineers Ltd. and HCC Embedded disclaims all
+ * conditions and terms, be they implied, expressed, or statutory.
+ *
+ * http://www.FreeRTOS.org
+ * http://www.FreeRTOS.org/FreeRTOS-Plus
+ *
+ */
+
+#ifndef _CONFIG_MDRIVER_RAM_H_
+#define _CONFIG_MDRIVER_RAM_H_
+
+#include "../version/ver_mdriver_ram.h"
+#if VER_MDRIVER_RAM_MAJOR != 1 || VER_MDRIVER_RAM_MINOR != 2
+ #error Incompatible MDRIVER_RAM version number!
+#endif
+
+#define MDRIVER_RAM_SECTOR_SIZE 512 /* Sector size */
+
+#define MDRIVER_RAM_VOLUME0_SIZE (28 * 1024) /* definition for size of ramdrive0 */
+
+#define MDRIVER_MEM_LONG_ACCESS 1 /* set this value to 1 if 32bit access available */
+
+#endif /* ifndef _CONFIG_MDRIVER_RAM_H_ */
+
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main.c b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main.c
new file mode 100644
index 000000000..b07ff053c
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main.c
@@ -0,0 +1,235 @@
+/*
+ FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that has become a de facto standard. *
+ * *
+ * Help yourself get started quickly and support the FreeRTOS *
+ * project by purchasing a FreeRTOS tutorial book, reference *
+ * manual, or both from: http://www.FreeRTOS.org/Documentation *
+ * *
+ * Thank you! *
+ * *
+ ***************************************************************************
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ >>! NOTE: The modification to the GPL is included to allow you to distribute
+ >>! a combined work that includes FreeRTOS without being obliged to provide
+ >>! the source code for proprietary components outside of the FreeRTOS
+ >>! kernel.
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available from the following
+ link: http://www.freertos.org/a00114.html
+
+ 1 tab == 4 spaces!
+
+ ***************************************************************************
+ * *
+ * Having a problem? Start by reading the FAQ "My application does *
+ * not run, what could be wrong?" *
+ * *
+ * http://www.FreeRTOS.org/FAQHelp.html *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org - Documentation, books, training, latest versions,
+ license and Real Time Engineers Ltd. contact details.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
+ Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/******************************************************************************
+ * This project provides two demo applications. A simple blinky style project,
+ * and a more comprehensive application that makes use of FreeRTOS+ add-on
+ * components. The mainCREATE_SIMPLE_BLINKY_DEMO_ONLY setting (defined in this
+ * file) is used to select between the two. The simply blinky demo is
+ * implemented and described in main_blinky.c. The more comprehensive demo
+ * application is implemented and described in main_full.c.
+ *
+ * This file implements the code that is not demo specific, including the
+ * hardware setup and FreeRTOS hook functions.
+ *
+ */
+
+/* Kernel includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+
+/* Set mainCREATE_SIMPLE_BLINKY_DEMO_ONLY to one to run the simple blinky demo,
+or 0 to run the more comprehensive demo application that includes add-on
+components. */
+#define mainCREATE_SIMPLE_BLINKY_DEMO_ONLY 0
+
+/*-----------------------------------------------------------*/
+
+/*
+ * Set up the hardware ready to run this demo.
+ */
+static void prvSetupHardware( void );
+
+/*
+ * main_blinky() is used when mainCREATE_SIMPLE_BLINKY_DEMO_ONLY is set to 1.
+ * main_full() is used when mainCREATE_SIMPLE_BLINKY_DEMO_ONLY is set to 0.
+ */
+extern void main_blinky( void );
+extern void main_full( void );
+
+/*-----------------------------------------------------------*/
+
+int main( void )
+{
+ /* Prepare the hardware to run this demo. */
+ prvSetupHardware();
+
+ /* The mainCREATE_SIMPLE_BLINKY_DEMO_ONLY setting is described at the top
+ of this file. */
+ #if mainCREATE_SIMPLE_BLINKY_DEMO_ONLY == 1
+ {
+ main_blinky();
+ }
+ #else
+ {
+ main_full();
+ }
+ #endif
+
+ return 0;
+}
+/*-----------------------------------------------------------*/
+
+static void prvSetupHardware( void )
+{
+ /* Call the ASF initialisation functions. */
+ board_init();
+ sysclk_init();
+ pmc_enable_periph_clk( ID_GMAC );
+}
+/*-----------------------------------------------------------*/
+
+void vApplicationMallocFailedHook( void )
+{
+ /* vApplicationMallocFailedHook() will only be called if
+ configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
+ function that will get called if a call to pvPortMalloc() fails.
+ pvPortMalloc() is called internally by the kernel whenever a task, queue,
+ timer or semaphore is created. It is also called by various parts of the
+ demo application. If heap_1.c or heap_2.c are used, then the size of the
+ heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
+ FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
+ to query the size of free heap space that remains (although it does not
+ provide information on how the remaining heap might be fragmented). */
+ taskDISABLE_INTERRUPTS();
+ for( ;; );
+}
+/*-----------------------------------------------------------*/
+
+void vApplicationIdleHook( void )
+{
+ /* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
+ to 1 in FreeRTOSConfig.h. It will be called on each iteration of the idle
+ task. It is essential that code added to this hook function never attempts
+ to block in any way (for example, call xQueueReceive() with a block time
+ specified, or call vTaskDelay()). If the application makes use of the
+ vTaskDelete() API function (as this demo application does) then it is also
+ important that vApplicationIdleHook() is permitted to return to its calling
+ function, because it is the responsibility of the idle task to clean up
+ memory allocated by the kernel to any task that has since been deleted. */
+
+ /* The simple blinky demo does not use the idle hook - the full demo does. */
+ #if( mainCREATE_SIMPLE_BLINKY_DEMO_ONLY == 0 )
+ {
+ extern void vFullDemoIdleHook( void );
+
+ vFullDemoIdleHook();
+ }
+ #endif
+}
+/*-----------------------------------------------------------*/
+
+void vApplicationStackOverflowHook( xTaskHandle pxTask, signed char *pcTaskName )
+{
+ ( void ) pcTaskName;
+ ( void ) pxTask;
+
+ /* Run time stack overflow checking is performed if
+ configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
+ function is called if a stack overflow is detected. */
+ taskDISABLE_INTERRUPTS();
+ for( ;; );
+}
+/*-----------------------------------------------------------*/
+
+void vApplicationTickHook( void )
+{
+ /* This function will be called by each tick interrupt if
+ configUSE_TICK_HOOK is set to 1 in FreeRTOSConfig.h. User code can be
+ added here, but the tick hook is called from an interrupt context, so
+ code must not attempt to block, and only the interrupt safe FreeRTOS API
+ functions can be used (those that end in FromISR()). */
+}
+/*-----------------------------------------------------------*/
+
+void vAssertCalled( uint32_t ulLine, const char *pcFile )
+{
+/* The following two variables are just to ensure the parameters are not
+optimised away and therefore unavailable when viewed in the debugger. */
+volatile uint32_t ulLineNumber = ulLine, ulSetNoneZeroInDebuggerToReturn = 0;
+volatile const char * const pcFileName = pcFile;
+
+ taskENTER_CRITICAL();
+ while( ulSetNoneZeroInDebuggerToReturn == 0 )
+ {
+ /* If you want to set out of this function in the debugger to see the
+ assert() location then set ulSetNoneZeroInDebuggerToReturn to a non-zero
+ value. */
+ }
+ taskEXIT_CRITICAL();
+
+ ( void ) pcFileName;
+ ( void ) ulLineNumber;
+}
+/*-----------------------------------------------------------*/
+
+/* Provided to keep the linker happy. */
+void _exit_( int status )
+{
+ ( void ) status;
+ vAssertCalled( __LINE__, __FILE__ );
+ for( ;; );
+}
+
+int _read( void )
+{
+ return 0;
+}
+
+int _write( int x )
+{
+ ( void ) x;
+ return 0;
+}
\ No newline at end of file
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main_blinky.c b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main_blinky.c
new file mode 100644
index 000000000..a19957549
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main_blinky.c
@@ -0,0 +1,271 @@
+/*
+ FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that has become a de facto standard. *
+ * *
+ * Help yourself get started quickly and support the FreeRTOS *
+ * project by purchasing a FreeRTOS tutorial book, reference *
+ * manual, or both from: http://www.FreeRTOS.org/Documentation *
+ * *
+ * Thank you! *
+ * *
+ ***************************************************************************
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ >>! NOTE: The modification to the GPL is included to allow you to distribute
+ >>! a combined work that includes FreeRTOS without being obliged to provide
+ >>! the source code for proprietary components outside of the FreeRTOS
+ >>! kernel.
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available from the following
+ link: http://www.freertos.org/a00114.html
+
+ 1 tab == 4 spaces!
+
+ ***************************************************************************
+ * *
+ * Having a problem? Start by reading the FAQ "My application does *
+ * not run, what could be wrong?" *
+ * *
+ * http://www.FreeRTOS.org/FAQHelp.html *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org - Documentation, books, training, latest versions,
+ license and Real Time Engineers Ltd. contact details.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
+ Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/******************************************************************************
+ * NOTE 1: This project provides two demo applications. A simple blinky style
+ * project, and a more comprehensive demo application that makes use of some
+ * add-on components. The mainCREATE_SIMPLE_BLINKY_DEMO_ONLY setting in main.c
+ * is used to select between the two. See the notes on using
+ * mainCREATE_SIMPLE_BLINKY_DEMO_ONLY in main.c. This file implements the
+ * simply blinky style version.
+ *
+ * NOTE 2: This file only contains the source code that is specific to the
+ * basic demo. Generic functions, such FreeRTOS hook functions, and functions
+ * required to configure the hardware, are defined in main.c.
+ ******************************************************************************
+ *
+ * main_blinky() creates one queue, and two tasks and one software timer. It
+ * then starts the scheduler.
+ *
+ * The Queue Send Task:
+ * The queue send task is implemented by the prvQueueSendTask() function in
+ * this file. The task sits in a loop that sends a value to the queue every
+ * 200 milliseconds.
+ *
+ * The Queue Receive Task:
+ * The queue receive task is implemented by the prvQueueReceiveTask() function
+ * in this file. The task sits in a loop that blocks on the queue to wait for
+ * data to arrive (it does not use any CPU time while it is in the Blocked
+ * state), toggling an LED each time it receives the value sent by the queue
+ * send task. As the queue send task writes to the queue every 200 milliseconds
+ * the LED will toggle every 200 milliseconds.
+ */
+
+
+/* Kernel includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "queue.h"
+#include "timers.h"
+
+/* Priorities at which the tasks are created. */
+#define mainQUEUE_RECEIVE_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
+#define mainQUEUE_SEND_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
+
+/* The rate at which data is sent to the queue. The 200ms value is converted
+to ticks using the portTICK_RATE_MS constant. */
+#define mainQUEUE_SEND_FREQUENCY_MS ( 200 / portTICK_RATE_MS )
+
+/* The number of items the queue can hold. This is 1 as the receive task
+will remove items as they are added, meaning the send task should always find
+the queue empty. */
+#define mainQUEUE_LENGTH ( 1 )
+
+/* Values passed to the two tasks just to check the task parameter
+functionality. */
+#define mainQUEUE_SEND_PARAMETER ( 0x1111UL )
+#define mainQUEUE_RECEIVE_PARAMETER ( 0x22UL )
+
+/* The period of the blinky software timer. The period is specified in ms and
+converted to ticks using the portTICK_RATE_MS constant. */
+#define mainBLINKY_TIMER_PERIOD ( 50 / portTICK_RATE_MS )
+
+/* A block time of zero simply means "don't block". */
+#define mainDONT_BLOCK ( 0 )
+
+/* The LEDs toggled by the timer and queue receive task respectively. */
+#define mainTIMER_LED LED0_GPIO
+#define mainTASK_LED LED1_GPIO
+
+/*-----------------------------------------------------------*/
+
+/*
+ * The tasks as described in the comments at the top of this file.
+ */
+static void prvQueueReceiveTask( void *pvParameters );
+static void prvQueueSendTask( void *pvParameters );
+
+/*
+ * The callback function for the blinky software timer, as described at the top
+ * of this file.
+ */
+static void prvBlinkyTimerCallback( xTimerHandle xTimer );
+
+/*
+ * Called by main() to create the simply blinky style application if
+ * mainCREATE_SIMPLE_BLINKY_DEMO_ONLY is set to 1.
+ */
+void main_blinky( void );
+
+/*-----------------------------------------------------------*/
+
+/* The queue used by both tasks. */
+static xQueueHandle xQueue = NULL;
+
+/*-----------------------------------------------------------*/
+
+void main_blinky( void )
+{
+xTimerHandle xTimer;
+
+ /* Create the queue. */
+ xQueue = xQueueCreate( mainQUEUE_LENGTH, sizeof( unsigned long ) );
+
+ if( xQueue != NULL )
+ {
+ /* Start the two tasks as described in the comments at the top of this
+ file. */
+ xTaskCreate( prvQueueReceiveTask, /* The function that implements the task. */
+ ( signed char * ) "Rx", /* The text name assigned to the task - for debug only as it is not used by the kernel. */
+ configMINIMAL_STACK_SIZE, /* The size of the stack to allocate to the task. */
+ ( void * ) mainQUEUE_RECEIVE_PARAMETER, /* The parameter passed to the task - just to check the functionality. */
+ mainQUEUE_RECEIVE_TASK_PRIORITY, /* The priority assigned to the task. */
+ NULL ); /* The task handle is not required, so NULL is passed. */
+
+ xTaskCreate( prvQueueSendTask, ( signed char * ) "TX", configMINIMAL_STACK_SIZE, ( void * ) mainQUEUE_SEND_PARAMETER, mainQUEUE_SEND_TASK_PRIORITY, NULL );
+
+ /* Create the blinky software timer as described at the top of this
+ file. */
+ xTimer = xTimerCreate( ( const signed char * ) "Blinky",/* A text name, purely to help debugging. */
+ ( mainBLINKY_TIMER_PERIOD ), /* The timer period. */
+ pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
+ ( void * ) 0, /* The ID is not used, so can be set to anything. */
+ prvBlinkyTimerCallback ); /* The callback function that inspects the status of all the other tasks. */
+
+ configASSERT( xTimer );
+
+ if( xTimer != NULL )
+ {
+ xTimerStart( xTimer, mainDONT_BLOCK );
+ }
+
+ /* Start the tasks and timer running. */
+ vTaskStartScheduler();
+ }
+
+ /* If all is well, the scheduler will now be running, and the following
+ line will never be reached. If the following line does execute, then
+ there was insufficient FreeRTOS heap memory available for the idle and/or
+ timer tasks to be created. See the memory management section on the
+ FreeRTOS web site for more details. */
+ for( ;; );
+}
+/*-----------------------------------------------------------*/
+
+static void prvQueueSendTask( void *pvParameters )
+{
+portTickType xNextWakeTime;
+const unsigned long ulValueToSend = 100UL;
+
+ /* Check the task parameter is as expected. */
+ configASSERT( ( ( unsigned long ) pvParameters ) == mainQUEUE_SEND_PARAMETER );
+
+ /* Initialise xNextWakeTime - this only needs to be done once. */
+ xNextWakeTime = xTaskGetTickCount();
+
+ for( ;; )
+ {
+ /* Place this task in the blocked state until it is time to run again.
+ The block time is specified in ticks, the constant used converts ticks
+ to ms. While in the Blocked state this task will not consume any CPU
+ time. */
+ vTaskDelayUntil( &xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS );
+
+ /* Send to the queue - causing the queue receive task to unblock and
+ toggle the LED. 0 is used as the block time so the sending operation
+ will not block - it shouldn't need to block as the queue should always
+ be empty at this point in the code. */
+ xQueueSend( xQueue, &ulValueToSend, 0U );
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvQueueReceiveTask( void *pvParameters )
+{
+unsigned long ulReceivedValue;
+
+ /* Check the task parameter is as expected. */
+ configASSERT( ( ( unsigned long ) pvParameters ) == mainQUEUE_RECEIVE_PARAMETER );
+
+ for( ;; )
+ {
+ /* Wait until something arrives in the queue - this task will block
+ indefinitely provided INCLUDE_vTaskSuspend is set to 1 in
+ FreeRTOSConfig.h. */
+ xQueueReceive( xQueue, &ulReceivedValue, portMAX_DELAY );
+
+ /* To get here something must have been received from the queue, but
+ is it the expected value? If it is, toggle the LED. */
+ if( ulReceivedValue == 100UL )
+ {
+ ioport_toggle_pin_level( mainTASK_LED );
+ ulReceivedValue = 0U;
+ }
+ }
+}
+/*-----------------------------------------------------------*/
+
+static void prvBlinkyTimerCallback( xTimerHandle xTimer )
+{
+ /* Avoid compiler warnings. */
+ ( void ) xTimer;
+
+ /* This function is called when the blinky software time expires. All the
+ function does is toggle the LED. LED mainTIMER_LED should therefore toggle
+ with the period set by mainBLINKY_TIMER_PERIOD. */
+ ioport_toggle_pin_level( mainTIMER_LED );
+}
+/*-----------------------------------------------------------*/
+
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main_full.c b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main_full.c
new file mode 100644
index 000000000..34a0c5f7f
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/main_full.c
@@ -0,0 +1,251 @@
+/*
+ FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
+ All rights reserved
+
+ VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+ ***************************************************************************
+ * *
+ * FreeRTOS provides completely free yet professionally developed, *
+ * robust, strictly quality controlled, supported, and cross *
+ * platform software that has become a de facto standard. *
+ * *
+ * Help yourself get started quickly and support the FreeRTOS *
+ * project by purchasing a FreeRTOS tutorial book, reference *
+ * manual, or both from: http://www.FreeRTOS.org/Documentation *
+ * *
+ * Thank you! *
+ * *
+ ***************************************************************************
+
+ This file is part of the FreeRTOS distribution.
+
+ FreeRTOS is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License (version 2) as published by the
+ Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+ >>! NOTE: The modification to the GPL is included to allow you to distribute
+ >>! a combined work that includes FreeRTOS without being obliged to provide
+ >>! the source code for proprietary components outside of the FreeRTOS
+ >>! kernel.
+
+ FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. Full license text is available from the following
+ link: http://www.freertos.org/a00114.html
+
+ 1 tab == 4 spaces!
+
+ ***************************************************************************
+ * *
+ * Having a problem? Start by reading the FAQ "My application does *
+ * not run, what could be wrong?" *
+ * *
+ * http://www.FreeRTOS.org/FAQHelp.html *
+ * *
+ ***************************************************************************
+
+ http://www.FreeRTOS.org - Documentation, books, training, latest versions,
+ license and Real Time Engineers Ltd. contact details.
+
+ http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+ including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+ compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+ http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
+ Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
+ licenses offer ticketed support, indemnification and middleware.
+
+ http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+ engineered and independently SIL3 certified version for use in safety and
+ mission critical applications that require provable dependability.
+
+ 1 tab == 4 spaces!
+*/
+
+/* FreeRTOS includes. */
+#include "FreeRTOS.h"
+#include "task.h"
+#include "timers.h"
+
+/* FreeRTOS+UDP includes. */
+#include "FreeRTOS_UDP_IP.h"
+
+/* Demo application includes. */
+#include "UDPCommandInterpreter.h"
+
+/* Note: If the application is started without the network cable plugged in
+then ipconfigUDP_TASK_PRIORITY should be set to 0 in FreeRTOSIPConfig.h to
+ensure the IP task is created at the idle priority. This is because the Atmel
+ASF GMAC driver polls the GMAC looking for a connection, and doing so will
+prevent any lower priority tasks from executing. In this demo the IP task is
+started at the idle priority, then set to configMAX_PRIORITIES - 2 in the
+network event hook only after a connection has been established (when the event
+passed into the network event hook is eNetworkUp). */
+#define mainCONNECTED_IP_TASK_PRIORITY ( configMAX_PRIORITIES - 2 )
+#define mainDISCONNECTED_IP_TASK_PRIORITY ( tskIDLE_PRIORITY )
+
+/* UDP command server task parameters. */
+#define mainUDP_CLI_TASK_PRIORITY ( tskIDLE_PRIORITY )
+#define mainUDP_CLI_PORT_NUMBER ( 5001UL )
+#define mainUDP_CLI_TASK_STACK_SIZE ( configMINIMAL_STACK_SIZE * 2U )
+
+/* Simple toggles an LED to show the program is running. */
+static void prvFlashTimerCallback( xTimerHandle xTimer );
+
+/* Creates a set of sample files on a RAM disk. */
+extern void vCreateAndVerifySampleFiles( void );
+
+/*
+ * Register the generic commands that can be used with FreeRTOS+CLI.
+ */
+extern void vRegisterSampleCLICommands( void );
+
+/*
+ * Register the file system commands that can be used with FreeRTOS+CLI.
+ */
+extern void vRegisterFileSystemCLICommands( void );
+
+/*-----------------------------------------------------------*/
+
+/* The default IP and MAC address used by the demo. The address configuration
+defined here will be used if ipconfigUSE_DHCP is 0, or if ipconfigUSE_DHCP is
+1 but a DHCP server could not be contacted. See the online documentation for
+more information. */
+static const uint8_t ucIPAddress[ 4 ] = { configIP_ADDR0, configIP_ADDR1, configIP_ADDR2, configIP_ADDR3 };
+static const uint8_t ucNetMask[ 4 ] = { configNET_MASK0, configNET_MASK1, configNET_MASK2, configNET_MASK3 };
+static const uint8_t ucGatewayAddress[ 4 ] = { configGATEWAY_ADDR0, configGATEWAY_ADDR1, configGATEWAY_ADDR2, configGATEWAY_ADDR3 };
+static const uint8_t ucDNSServerAddress[ 4 ] = { configDNS_SERVER_ADDR0, configDNS_SERVER_ADDR1, configDNS_SERVER_ADDR2, configDNS_SERVER_ADDR3 };
+
+/* The MAC address used by the demo. In production units the MAC address would
+probably be read from flash memory or an EEPROM. Here it is just hard coded.
+Note each node on a network must have a unique MAC address. */
+const uint8_t ucMACAddress[ 6 ] = { configMAC_ADDR0, configMAC_ADDR1, configMAC_ADDR2, configMAC_ADDR3, configMAC_ADDR4, configMAC_ADDR5 };
+
+/*-----------------------------------------------------------*/
+int main_full( void )
+{
+xTimerHandle xFlashTimer;
+
+ /* If the file system is only going to be accessed from one task then
+ F_FS_THREAD_AWARE can be set to 0 and the set of example files are created
+ before the RTOS scheduler is started. If the file system is going to be
+ access from more than one task then F_FS_THREAD_AWARE must be set to 1 and
+ the set of sample files are created from the idle task hook function
+ vApplicationIdleHook() - which is defined in this file. */
+ #if( F_FS_THREAD_AWARE == 0 )
+ {
+ /* Initialise the drive and file system, then create a few example
+ files. The output from this function just goes to the stdout window,
+ allowing the output to be viewed when the UDP command console is not
+ connected. */
+ vCreateAndVerifySampleFiles();
+ }
+ #endif
+
+ /* Register generic commands with the FreeRTOS+CLI command interpreter. */
+ vRegisterSampleCLICommands();
+
+ /* Register file system related commands with the FreeRTOS+CLI command
+ interpreter. */
+ vRegisterFileSystemCLICommands();
+
+ /* Create the timer that just toggles an LED to indicate that the
+ application is running. */
+ xFlashTimer = xTimerCreate( ( const signed char * const ) "Flash", 200 / portTICK_RATE_MS, pdTRUE, NULL, prvFlashTimerCallback );
+ configASSERT( xFlashTimer );
+
+ /* Start the timer. As the scheduler is not running a block time cannot be
+ used and is set to 0. */
+ xTimerStart( xFlashTimer, 0 );
+
+ /* Initialise the network interface. Tasks that use the network are
+ created in the network event hook when the network is connected and ready
+ for use. The address values passed in here are used if ipconfigUSE_DHCP is
+ set to 0, or if ipconfigUSE_DHCP is set to 1 but a DHCP server cannot be
+ contacted. The Nabto service task is created automatically if
+ ipconfigFREERTOS_PLUS_NABTO is set to 1 in FreeRTOSIPConfig.h. */
+ FreeRTOS_IPInit( ucIPAddress, ucNetMask, ucGatewayAddress, ucDNSServerAddress, ucMACAddress );
+
+ /* Start the scheduler itself. */
+ vTaskStartScheduler();
+
+ /* If all is well, the scheduler will now be running, and the following line
+ will never be reached. If the following line does execute, then there was
+ insufficient FreeRTOS heap memory available for the idle and/or timer tasks
+ to be created. See the memory management section on the FreeRTOS web site
+ for more details. */
+ for( ;; );
+}
+/*-----------------------------------------------------------*/
+
+static void prvFlashTimerCallback( xTimerHandle xTimer )
+{
+ /* The parameter is not used. */
+ ( void ) xTimer;
+
+ /* Timer callback function that does nothing other than toggle an LED to
+ indicate that the application is still running. */
+ ioport_toggle_pin_level( LED0_GPIO );
+}
+/*-----------------------------------------------------------*/
+
+/* Called by FreeRTOS+UDP when the network connects. */
+void vApplicationIPNetworkEventHook( eIPCallbackEvent_t eNetworkEvent )
+{
+static long lTasksAlreadyCreated = pdFALSE;
+
+ /* Note: If the application is started without the network cable plugged in
+ then ipconfigUDP_TASK_PRIORITY should be set to 0 in FreeRTOSIPConfig.h to
+ ensure the IP task is created at the idle priority. This is because the Atmel
+ ASF GMAC driver polls the GMAC looking for a connection, and doing so will
+ prevent any lower priority tasks from executing. In this demo the IP task is
+ started at the idle priority, then set to configMAX_PRIORITIES - 2 in the
+ network event hook only after a connection has been established (when the event
+ passed into the network event hook is eNetworkUp). */
+ if( eNetworkEvent == eNetworkUp )
+ {
+ vTaskPrioritySet( NULL, mainCONNECTED_IP_TASK_PRIORITY );
+
+ if( lTasksAlreadyCreated == pdFALSE )
+ {
+ /* Create the task that handles the CLI on a UDP port. The port number
+ is set using the configUDP_CLI_PORT_NUMBER setting in FreeRTOSConfig.h. */
+ vStartUDPCommandInterpreterTask( mainUDP_CLI_TASK_STACK_SIZE, mainUDP_CLI_PORT_NUMBER, mainUDP_CLI_TASK_PRIORITY );
+ }
+ }
+
+ if( eNetworkEvent == eNetworkDown )
+ {
+ vTaskPrioritySet( NULL, tskIDLE_PRIORITY );
+ }
+}
+/*-----------------------------------------------------------*/
+
+void vFullDemoIdleHook( void )
+{
+ /* If the file system is only going to be accessed from one task then
+ F_FS_THREAD_AWARE can be set to 0 and the set of example files is created
+ before the RTOS scheduler is started. If the file system is going to be
+ access from more than one task then F_FS_THREAD_AWARE must be set to 1 and
+ the set of sample files are created from the idle task hook function. */
+ #if( F_FS_THREAD_AWARE == 1 )
+ {
+ static portBASE_TYPE xCreatedSampleFiles = pdFALSE;
+
+ /* Initialise the drive and file system, then create a few example
+ files. The output from this function just goes to the stdout window,
+ allowing the output to be viewed when the UDP command console is not
+ connected. */
+ if( xCreatedSampleFiles == pdFALSE )
+ {
+ vCreateAndVerifySampleFiles();
+ xCreatedSampleFiles = pdTRUE;
+ }
+ }
+ #endif
+}
+
+
+
+
diff --git a/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/printf-stdarg.c b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/printf-stdarg.c
new file mode 100644
index 000000000..45a824384
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M4_ATSAM4E_Atmel_Studio/src/printf-stdarg.c
@@ -0,0 +1,280 @@
+/*
+ Copyright 2001, 2002 Georges Menie (www.menie.org)
+ stdarg version contributed by Christian Ettinger
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+*/
+
+/*
+ putchar is the only external dependency for this file,
+ if you have a working putchar, leave it commented out.
+ If not, uncomment the define below and
+ replace outbyte(c) by your own function call.
+
+#define putchar(c) outbyte(c)
+*/
+
+#include
+
+static void printchar(char **str, int c)
+{
+ extern int putchar(int c);
+
+ if (str) {
+ **str = c;
+ ++(*str);
+ }
+ else (void)putchar(c);
+}
+
+#define PAD_RIGHT 1
+#define PAD_ZERO 2
+
+static int prints(char **out, const char *string, int width, int pad)
+{
+ register int pc = 0, padchar = ' ';
+
+ if (width > 0) {
+ register int len = 0;
+ register const char *ptr;
+ for (ptr = string; *ptr; ++ptr) ++len;
+ if (len >= width) width = 0;
+ else width -= len;
+ if (pad & PAD_ZERO) padchar = '0';
+ }
+ if (!(pad & PAD_RIGHT)) {
+ for ( ; width > 0; --width) {
+ printchar (out, padchar);
+ ++pc;
+ }
+ }
+ for ( ; *string ; ++string) {
+ printchar (out, *string);
+ ++pc;
+ }
+ for ( ; width > 0; --width) {
+ printchar (out, padchar);
+ ++pc;
+ }
+
+ return pc;
+}
+
+/* the following should be enough for 32 bit int */
+#define PRINT_BUF_LEN 12
+
+static int printi(char **out, int i, int b, int sg, int width, int pad, int letbase)
+{
+ char print_buf[PRINT_BUF_LEN];
+ register char *s;
+ register int t, neg = 0, pc = 0;
+ register unsigned int u = i;
+
+ if (i == 0) {
+ print_buf[0] = '0';
+ print_buf[1] = '\0';
+ return prints (out, print_buf, width, pad);
+ }
+
+ if (sg && b == 10 && i < 0) {
+ neg = 1;
+ u = -i;
+ }
+
+ s = print_buf + PRINT_BUF_LEN-1;
+ *s = '\0';
+
+ while (u) {
+ t = u % b;
+ if( t >= 10 )
+ t += letbase - '0' - 10;
+ *--s = t + '0';
+ u /= b;
+ }
+
+ if (neg) {
+ if( width && (pad & PAD_ZERO) ) {
+ printchar (out, '-');
+ ++pc;
+ --width;
+ }
+ else {
+ *--s = '-';
+ }
+ }
+
+ return pc + prints (out, s, width, pad);
+}
+
+static int print( char **out, const char *format, va_list args )
+{
+ register int width, pad;
+ register int pc = 0;
+ char scr[2];
+
+ for (; *format != 0; ++format) {
+ if (*format == '%') {
+ ++format;
+ width = pad = 0;
+ if (*format == '\0') break;
+ if (*format == '%') goto out;
+ if (*format == '-') {
+ ++format;
+ pad = PAD_RIGHT;
+ }
+ while (*format == '0') {
+ ++format;
+ pad |= PAD_ZERO;
+ }
+ for ( ; *format >= '0' && *format <= '9'; ++format) {
+ width *= 10;
+ width += *format - '0';
+ }
+ if( *format == 's' ) {
+ register char *s = (char *)va_arg( args, int );
+ pc += prints (out, s?s:"(null)", width, pad);
+ continue;
+ }
+ if( *format == 'd' ) {
+ pc += printi (out, va_arg( args, int ), 10, 1, width, pad, 'a');
+ continue;
+ }
+ if( *format == 'x' ) {
+ pc += printi (out, va_arg( args, int ), 16, 0, width, pad, 'a');
+ continue;
+ }
+ if( *format == 'X' ) {
+ pc += printi (out, va_arg( args, int ), 16, 0, width, pad, 'A');
+ continue;
+ }
+ if( *format == 'u' ) {
+ pc += printi (out, va_arg( args, int ), 10, 0, width, pad, 'a');
+ continue;
+ }
+ if( *format == 'c' ) {
+ /* char are converted to int then pushed on the stack */
+ scr[0] = (char)va_arg( args, int );
+ scr[1] = '\0';
+ pc += prints (out, scr, width, pad);
+ continue;
+ }
+ }
+ else {
+ out:
+ printchar (out, *format);
+ ++pc;
+ }
+ }
+ if (out) **out = '\0';
+ va_end( args );
+ return pc;
+}
+
+int printf(const char *format, ...)
+{
+ va_list args;
+
+ va_start( args, format );
+ return print( 0, format, args );
+}
+
+int sprintf(char *out, const char *format, ...)
+{
+ va_list args;
+
+ va_start( args, format );
+ return print( &out, format, args );
+}
+
+
+int snprintf( char *buf, unsigned int count, const char *format, ... )
+{
+ va_list args;
+
+ ( void ) count;
+
+ va_start( args, format );
+ return print( &buf, format, args );
+}
+
+
+#ifdef TEST_PRINTF
+int main(void)
+{
+ char *ptr = "Hello world!";
+ char *np = 0;
+ int i = 5;
+ unsigned int bs = sizeof(int)*8;
+ int mi;
+ char buf[80];
+
+ mi = (1 << (bs-1)) + 1;
+ printf("%s\n", ptr);
+ printf("printf test\n");
+ printf("%s is null pointer\n", np);
+ printf("%d = 5\n", i);
+ printf("%d = - max int\n", mi);
+ printf("char %c = 'a'\n", 'a');
+ printf("hex %x = ff\n", 0xff);
+ printf("hex %02x = 00\n", 0);
+ printf("signed %d = unsigned %u = hex %x\n", -3, -3, -3);
+ printf("%d %s(s)%", 0, "message");
+ printf("\n");
+ printf("%d %s(s) with %%\n", 0, "message");
+ sprintf(buf, "justif: \"%-10s\"\n", "left"); printf("%s", buf);
+ sprintf(buf, "justif: \"%10s\"\n", "right"); printf("%s", buf);
+ sprintf(buf, " 3: %04d zero padded\n", 3); printf("%s", buf);
+ sprintf(buf, " 3: %-4d left justif.\n", 3); printf("%s", buf);
+ sprintf(buf, " 3: %4d right justif.\n", 3); printf("%s", buf);
+ sprintf(buf, "-3: %04d zero padded\n", -3); printf("%s", buf);
+ sprintf(buf, "-3: %-4d left justif.\n", -3); printf("%s", buf);
+ sprintf(buf, "-3: %4d right justif.\n", -3); printf("%s", buf);
+
+ return 0;
+}
+
+/*
+ * if you compile this file with
+ * gcc -Wall $(YOUR_C_OPTIONS) -DTEST_PRINTF -c printf.c
+ * you will get a normal warning:
+ * printf.c:214: warning: spurious trailing `%' in format
+ * this line is testing an invalid % at the end of the format string.
+ *
+ * this should display (on 32bit int machine) :
+ *
+ * Hello world!
+ * printf test
+ * (null) is null pointer
+ * 5 = 5
+ * -2147483647 = - max int
+ * char a = 'a'
+ * hex ff = ff
+ * hex 00 = 00
+ * signed -3 = unsigned 4294967293 = hex fffffffd
+ * 0 message(s)
+ * 0 message(s) with %
+ * justif: "left "
+ * justif: " right"
+ * 3: 0003 zero padded
+ * 3: 3 left justif.
+ * 3: 3 right justif.
+ * -3: -003 zero padded
+ * -3: -3 left justif.
+ * -3: -3 right justif.
+ */
+
+#endif
+
+