Percepio Trace Recorder v4.6.0 (#789)

* * Percepio Trace Recorder v4.6.0

* Add space between inclusion of header and comment

* Fix broken posix build - part 1

* Add percepio timer implementation

* Remove delted trace recorder header file

* Fix Networking demo  build

* Fix CLI demo

* Fix visual studio version number

* Fix core header check

* Fix more core checks

* Fix last of core checks

Co-authored-by: Aniruddha Kanhere <60444055+AniruddhaKanhere@users.noreply.github.com>
Co-authored-by: Alfred Gedeon <alfred2g@hotmail.com>
This commit is contained in:
Erik Tamlin 2022-11-03 21:58:38 +01:00 committed by GitHub
parent aa316fc1b4
commit c568ba8c44
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
143 changed files with 23823 additions and 16781 deletions

View file

@ -52,8 +52,6 @@
extern "C" {
#endif
#include "trcPortDefines.h"
/******************************************************************************
* Include of processor header file
*

View file

@ -18,6 +18,9 @@ INCLUDE_DIRS += -I${KERNEL_DIR}/portable/ThirdParty/GCC/Posix
INCLUDE_DIRS += -I${KERNEL_DIR}/portable/ThirdParty/GCC/Posix/utils
INCLUDE_DIRS += -I${FREERTOS_DIR}/Demo/Common/include
INCLUDE_DIRS += -I${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/Include
INCLUDE_DIRS += -I${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/config
INCLUDE_DIRS += -I${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/streamports/File/include
INCLUDE_DIRS += -I${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/streamports/File/config
SOURCE_FILES := $(wildcard *.c)
SOURCE_FILES += $(wildcard ${FREERTOS_DIR}/Source/*.c)
@ -73,9 +76,7 @@ else
CPPFLAGS += -DprojCOVERAGE_TEST=0
# Trace library.
SOURCE_FILES += ${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/trcKernelPort.c
SOURCE_FILES += ${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/trcSnapshotRecorder.c
SOURCE_FILES += ${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/trcStreamingRecorder.c
SOURCE_FILES += ${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/streamports/File/trcStreamingPort.c
SOURCE_FILES += $(wildcard ${FREERTOS_PLUS_DIR}/Source/FreeRTOS-Plus-Trace/*.c )
endif
ifdef PROFILE

View file

@ -58,6 +58,7 @@
#include <signal.h>
#include <errno.h>
#include <sys/select.h>
#include <time.h>
/* FreeRTOS kernel includes. */
#include "FreeRTOS.h"
@ -66,6 +67,10 @@
/* Local includes. */
#include "console.h"
#if ( projCOVERAGE_TEST != 1 )
#include <trcRecorder.h>
#endif
#define BLINKY_DEMO 0
#define FULL_DEMO 1
@ -140,6 +145,9 @@ StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
static BaseType_t xTraceRunning = pdTRUE;
#endif
static clockid_t cid = CLOCK_THREAD_CPUTIME_ID;
static uint32_t frequency;
/*-----------------------------------------------------------*/
int main( void )
@ -161,7 +169,6 @@ int main( void )
#if ( TRACE_ON_ENTER == 1 )
printf( "\r\nThe trace will be dumped to disk if Enter is hit.\r\n" );
#endif
uiTraceStart();
}
#endif /* if ( projCOVERAGE_TEST != 1 ) */
@ -352,6 +359,7 @@ static void prvSaveTraceFile( void )
#if ( projCOVERAGE_TEST != 1 )
{
FILE * pxOutputFile;
extern RecorderDataType* RecorderDataPtr;
vTraceStop();
@ -437,3 +445,58 @@ void handle_sigint( int signal )
exit( 2 );
}
void vTraceTimerReset( void )
{
int xRet;
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
xRet = clock_settime( cid, &ts );
if( xRet != 0 )
{
printf( "Could not reset time: %s\n", strerror( errno ) );
}
}
uint32_t uiTraceTimerGetFrequency( void )
{
struct timespec res;
int xRet;
res.tv_nsec = 0;
res.tv_sec = 0;
xRet = clock_getres( cid, &res );
if( xRet == 0 )
{
// calculate frequency from timer definition
frequency = (uint64_t) 1000000000 / res.tv_nsec;
}
else
{
printf( "Could not get clock frequency: %s\n", strerror( errno ) );
}
return frequency;
}
uint32_t uiTraceTimerGetValue( void )
{
int xRet;
struct timespec tp;
uint32_t result = 0;
xRet = clock_gettime( cid, &tp );
if( xRet == 0 )
{
result = tp.tv_nsec / frequency;
result += (tp.tv_sec * 1000000000) / frequency;
}
else
{
printf( "Could not get time: %s\n", strerror( errno ) );
}
return result;
}

View file

@ -1,310 +1,320 @@
/*******************************************************************************
* Trace Recorder Library for Tracealyzer v3.1.2
* Percepio AB, www.percepio.com
*
* trcConfig.h
*
* Main configuration parameters for the trace recorder library.
* More settings can be found in trcStreamingConfig.h and trcSnapshotConfig.h.
*
* Read more at http://percepio.com/2016/10/05/rtos-tracing/
*
* Terms of Use
* This file is part of the trace recorder library (RECORDER), which is the
* intellectual property of Percepio AB (PERCEPIO) and provided under a
* license as follows.
* The RECORDER may be used free of charge for the purpose of recording data
* intended for analysis in PERCEPIO products. It may not be used or modified
* for other purposes without explicit permission from PERCEPIO.
* You may distribute the RECORDER in its original source code form, assuming
* this text (terms of use, disclaimer, copyright notice) is unchanged. You are
* allowed to distribute the RECORDER with minor modifications intended for
* configuration or porting of the RECORDER, e.g., to allow using it on a
* specific processor, processor family or with a specific communication
* interface. Any such modifications should be documented directly below
* this comment block.
*
* Disclaimer
* The RECORDER is being delivered to you AS IS and PERCEPIO makes no warranty
* as to its use or performance. PERCEPIO does not and cannot warrant the
* performance or results you may obtain by using the RECORDER or documentation.
* PERCEPIO make no warranties, express or implied, as to noninfringement of
* third party rights, merchantability, or fitness for any particular purpose.
* In no event will PERCEPIO, its technology partners, or distributors be liable
* to you for any consequential, incidental or special damages, including any
* lost profits or lost savings, even if a representative of PERCEPIO has been
* advised of the possibility of such damages, or for any claim by any third
* party. Some jurisdictions do not allow the exclusion or limitation of
* incidental, consequential or special damages, or the exclusion of implied
* warranties or limitations on how long an implied warranty may last, so the
* above limitations may not apply to you.
*
* Tabs are used for indent in this file (1 tab = 4 spaces)
*
* Copyright Percepio AB, 2016.
* www.percepio.com
******************************************************************************/
#ifndef TRC_CONFIG_H
#define TRC_CONFIG_H
#ifdef __cplusplus
extern "C" {
#endif
#include "trcPortDefines.h"
/******************************************************************************
* Include of processor header file
*
* Here you may need to include the header file for your processor. This is
* required at least for the ARM Cortex-M port, that uses the ARM CMSIS API.
* Try that in case of build problems. Otherwise, remove the #error line below.
*****************************************************************************/
/*#error "Trace Recorder: Please include your processor's header file here and remove this line." */
/*******************************************************************************
* Configuration Macro: TRC_CFG_HARDWARE_PORT
*
* Specify what hardware port to use (i.e., the "timestamping driver").
*
* All ARM Cortex-M MCUs are supported by "TRC_HARDWARE_PORT_ARM_Cortex_M".
* This port uses the DWT cycle counter for Cortex-M3/M4/M7 devices, which is
* available on most such devices. In case your device don't have DWT support,
* you will get an error message opening the trace. In that case, you may
* force the recorder to use SysTick timestamping instead, using this define:
*
* #define TRC_CFG_ARM_CM_USE_SYSTICK
*
* For ARM Cortex-M0/M0+ devices, SysTick mode is used automatically.
*
* See trcHardwarePort.h for available ports and information on how to
* define your own port, if not already present.
******************************************************************************/
#define TRC_CFG_HARDWARE_PORT TRC_HARDWARE_PORT_Win32
/*******************************************************************************
* Configuration Macro: TRC_CFG_RECORDER_MODE
*
* Specify what recording mode to use. Snapshot means that the data is saved in
* an internal RAM buffer, for later upload. Streaming means that the data is
* transferred continuously to the host PC.
*
* For more information, see http://percepio.com/2016/10/05/rtos-tracing/
* and the Tracealyzer User Manual.
*
* Values:
* TRC_RECORDER_MODE_SNAPSHOT
* TRC_RECORDER_MODE_STREAMING
******************************************************************************/
#define TRC_CFG_RECORDER_MODE TRC_RECORDER_MODE_SNAPSHOT
/******************************************************************************
* TRC_CFG_FREERTOS_VERSION
*
* Specify what version of FreeRTOS that is used (don't change unless using the
* trace recorder library with an older version of FreeRTOS).
*
* TRC_FREERTOS_VERSION_7_3_X If using FreeRTOS v7.3.X
* TRC_FREERTOS_VERSION_7_4_X If using FreeRTOS v7.4.X
* TRC_FREERTOS_VERSION_7_5_X If using FreeRTOS v7.5.X
* TRC_FREERTOS_VERSION_7_6_X If using FreeRTOS v7.6.X
* TRC_FREERTOS_VERSION_8_X_X If using FreeRTOS v8.X.X
* TRC_FREERTOS_VERSION_9_0_0 If using FreeRTOS v9.0.0
* TRC_FREERTOS_VERSION_9_0_1 If using FreeRTOS v9.0.1
* TRC_FREERTOS_VERSION_9_0_2 If using FreeRTOS v9.0.2
* TRC_FREERTOS_VERSION_10_0_0 If using FreeRTOS v10.0.0
* TRC_FREERTOS_VERSION_10_0_1 If using FreeRTOS v10.0.1
* TRC_FREERTOS_VERSION_10_1_0 If using FreeRTOS v10.1.0
* TRC_FREERTOS_VERSION_10_1_1 If using FreeRTOS v10.1.1
* TRC_FREERTOS_VERSION_10_2_0 If using FreeRTOS v10.2.0
* TRC_FREERTOS_VERSION_10_2_1 If using FreeRTOS v10.2.1
* TRC_FREERTOS_VERSION_10_3_0 If using FreeRTOS v10.3.0
* TRC_FREERTOS_VERSION_10_3_1 If using FreeRTOS v10.3.1
* TRC_FREERTOS_VERSION_10_4_0 If using FreeRTOS v10.4.0 or later
*****************************************************************************/
#define TRC_CFG_FREERTOS_VERSION TRC_FREERTOS_VERSION_10_4_0
/*******************************************************************************
* TRC_CFG_SCHEDULING_ONLY
*
* Macro which should be defined as an integer value.
*
* If this setting is enabled (= 1), only scheduling events are recorded.
* If disabled (= 0), all events are recorded (unless filtered in other ways).
*
* Default value is 0 (= include additional events).
******************************************************************************/
#define TRC_CFG_SCHEDULING_ONLY 0
/******************************************************************************
* TRC_CFG_INCLUDE_MEMMANG_EVENTS
*
* Macro which should be defined as either zero (0) or one (1).
*
* This controls if malloc and free calls should be traced. Set this to zero (0)
* to exclude malloc/free calls, or one (1) to include such events in the trace.
*
* Default value is 1.
*****************************************************************************/
#define TRC_CFG_INCLUDE_MEMMANG_EVENTS 1
/******************************************************************************
* TRC_CFG_INCLUDE_USER_EVENTS
*
* Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), all code related to User Events is excluded in order
* to reduce code size. Any attempts of storing User Events are then silently
* ignored.
*
* User Events are application-generated events, like "printf" but for the
* trace log, generated using vTracePrint and vTracePrintF.
* The formatting is done on host-side, by Tracealyzer. User Events are
* therefore much faster than a console printf and can often be used
* in timing critical code without problems.
*
* Note: In streaming mode, User Events are used to provide error messages
* and warnings from the recorder (in case of incorrect configuration) for
* display in Tracealyzer. Disabling user events will also disable these
* warnings. You can however still catch them by calling xTraceGetLastError
* or by putting breakpoints in prvTraceError and prvTraceWarning.
*
* Default value is 1.
*****************************************************************************/
#define TRC_CFG_INCLUDE_USER_EVENTS 1
/*****************************************************************************
* TRC_CFG_INCLUDE_ISR_TRACING
*
* Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the code for recording Interrupt Service Routines is
* excluded, in order to reduce code size.
*
* Default value is 1.
*
* Note: tracing ISRs requires that you insert calls to vTraceStoreISRBegin
* and vTraceStoreISREnd in your interrupt handlers.
*****************************************************************************/
#define TRC_CFG_INCLUDE_ISR_TRACING 1
/*****************************************************************************
* TRC_CFG_INCLUDE_READY_EVENTS
*
* Macro which should be defined as either zero (0) or one (1).
*
* If one (1), events are recorded when tasks enter scheduling state "ready".
* This allows Tracealyzer to show the initial pending time before tasks enter
* the execution state, and present accurate response times.
* If zero (0), "ready events" are not created, which allows for recording
* longer traces in the same amount of RAM.
*
* Default value is 1.
*****************************************************************************/
#define TRC_CFG_INCLUDE_READY_EVENTS 1
/*****************************************************************************
* TRC_CFG_INCLUDE_OSTICK_EVENTS
*
* Macro which should be defined as either zero (0) or one (1).
*
* If this is one (1), events will be generated whenever the OS clock is
* increased. If zero (0), OS tick events are not generated, which allows for
* recording longer traces in the same amount of RAM.
*
* Default value is 1.
*****************************************************************************/
#define TRC_CFG_INCLUDE_OSTICK_EVENTS 1
/*****************************************************************************
* TRC_CFG_INCLUDE_EVENT_GROUP_EVENTS
*
* Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the trace will exclude any "event group" events.
*
* Default value is 0 (excluded) since dependent on event_groups.c
*****************************************************************************/
#define TRC_CFG_INCLUDE_EVENT_GROUP_EVENTS 1
/*****************************************************************************
* TRC_CFG_INCLUDE_TIMER_EVENTS
*
* Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the trace will exclude any Timer events.
*
* Default value is 0 since dependent on timers.c
*****************************************************************************/
#define TRC_CFG_INCLUDE_TIMER_EVENTS 1
/*****************************************************************************
* TRC_CFG_INCLUDE_PEND_FUNC_CALL_EVENTS
*
* Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the trace will exclude any "pending function call"
* events, such as xTimerPendFunctionCall().
*
* Default value is 0 since dependent on timers.c
*****************************************************************************/
#define TRC_CFG_INCLUDE_PEND_FUNC_CALL_EVENTS 1
/*******************************************************************************
* Configuration Macro: TRC_CFG_INCLUDE_STREAM_BUFFER_EVENTS
*
* Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the trace will exclude any stream buffer or message
* buffer events.
*
* Default value is 0 since dependent on stream_buffer.c (new in FreeRTOS v10)
******************************************************************************/
#define TRC_CFG_INCLUDE_STREAM_BUFFER_EVENTS 1
/*******************************************************************************
* Configuration Macro: TRC_CFG_RECORDER_BUFFER_ALLOCATION
*
* Specifies how the recorder buffer is allocated (also in case of streaming, in
* port using the recorder's internal temporary buffer)
*
* Values:
* TRC_RECORDER_BUFFER_ALLOCATION_STATIC - Static allocation (internal)
* TRC_RECORDER_BUFFER_ALLOCATION_DYNAMIC - Malloc in vTraceEnable
* TRC_RECORDER_BUFFER_ALLOCATION_CUSTOM - Use vTraceSetRecorderDataBuffer
*
* Static and dynamic mode does the allocation for you, either in compile time
* (static) or in runtime (malloc).
* The custom mode allows you to control how and where the allocation is made,
* for details see TRC_ALLOC_CUSTOM_BUFFER and vTraceSetRecorderDataBuffer().
******************************************************************************/
#define TRC_CFG_RECORDER_BUFFER_ALLOCATION TRC_RECORDER_BUFFER_ALLOCATION_STATIC
/******************************************************************************
* TRC_CFG_MAX_ISR_NESTING
*
* Defines how many levels of interrupt nesting the recorder can handle, in
* case multiple ISRs are traced and ISR nesting is possible. If this
* is exceeded, the particular ISR will not be traced and the recorder then
* logs an error message. This setting is used to allocate an internal stack
* for keeping track of the previous execution context (4 byte per entry).
*
* This value must be a non-zero positive constant, at least 1.
*
* Default value: 8
*****************************************************************************/
#define TRC_CFG_MAX_ISR_NESTING 8
/* Specific configuration, depending on Streaming/Snapshot mode */
#if ( TRC_CFG_RECORDER_MODE == TRC_RECORDER_MODE_SNAPSHOT )
#include "trcSnapshotConfig.h"
#elif ( TRC_CFG_RECORDER_MODE == TRC_RECORDER_MODE_STREAMING )
#include "trcStreamingConfig.h"
#endif
#ifdef __cplusplus
}
#endif
#endif /* _TRC_CONFIG_H */
/*
* Trace Recorder for Tracealyzer v4.6.0
* Copyright 2021 Percepio AB
* www.percepio.com
*
* SPDX-License-Identifier: Apache-2.0
*
* Main configuration parameters for the trace recorder library.
* More settings can be found in trcStreamingConfig.h and trcSnapshotConfig.h.
*/
#ifndef TRC_CONFIG_H
#define TRC_CONFIG_H
#ifdef __cplusplus
extern "C" {
#endif
/******************************************************************************
* Include of processor header file
*
* Here you may need to include the header file for your processor. This is
* required at least for the ARM Cortex-M port, that uses the ARM CMSIS API.
* Try that in case of build problems. Otherwise, remove the #error line below.
*****************************************************************************/
/* #error "Trace Recorder: Please include your processor's header file here and remove this line." */
/**
* @def TRC_CFG_HARDWARE_PORT
* @brief Specify what hardware port to use (i.e., the "timestamping driver").
*
* All ARM Cortex-M MCUs are supported by "TRC_HARDWARE_PORT_ARM_Cortex_M".
* This port uses the DWT cycle counter for Cortex-M3/M4/M7 devices, which is
* available on most such devices. In case your device don't have DWT support,
* you will get an error message opening the trace. In that case, you may
* force the recorder to use SysTick timestamping instead, using this define:
*
* #define TRC_CFG_ARM_CM_USE_SYSTICK
*
* For ARM Cortex-M0/M0+ devices, SysTick mode is used automatically.
*
* See trcHardwarePort.h for available ports and information on how to
* define your own port, if not already present.
*/
#define TRC_CFG_HARDWARE_PORT TRC_HARDWARE_PORT_Win64
/**
* @def TRC_CFG_SCHEDULING_ONLY
* @brief Macro which should be defined as an integer value.
*
* If this setting is enabled (= 1), only scheduling events are recorded.
* If disabled (= 0), all events are recorded (unless filtered in other ways).
*
* Default value is 0 (= include additional events).
*/
#define TRC_CFG_SCHEDULING_ONLY 0
/**
* @def TRC_CFG_INCLUDE_MEMMANG_EVENTS
* @brief Macro which should be defined as either zero (0) or one (1).
*
* This controls if malloc and free calls should be traced. Set this to zero (0)
* to exclude malloc/free calls, or one (1) to include such events in the trace.
*
* Default value is 1.
*/
#define TRC_CFG_INCLUDE_MEMMANG_EVENTS 1
/**
* @def TRC_CFG_INCLUDE_USER_EVENTS
* @brief Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), all code related to User Events is excluded in order
* to reduce code size. Any attempts of storing User Events are then silently
* ignored.
*
* User Events are application-generated events, like "printf" but for the
* trace log, generated using vTracePrint and vTracePrintF.
* The formatting is done on host-side, by Tracealyzer. User Events are
* therefore much faster than a console printf and can often be used
* in timing critical code without problems.
*
* Note: In streaming mode, User Events are used to provide error messages
* and warnings from the recorder (in case of incorrect configuration) for
* display in Tracealyzer. Disabling user events will also disable these
* warnings. You can however still catch them by calling xTraceErrorGetLast
* or by putting breakpoints in xTraceError and xTraceWarning.
*
* Default value is 1.
*/
#define TRC_CFG_INCLUDE_USER_EVENTS 1
/**
* @def TRC_CFG_INCLUDE_ISR_TRACING
* @brief Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the code for recording Interrupt Service Routines is
* excluded, in order to reduce code size. This means that any calls to
* vTraceStoreISRBegin/vTraceStoreISREnd will be ignored.
* This does not completely disable ISR tracing, in cases where an ISR is
* calling a traced kernel service. These events will still be recorded and
* show up in anonymous ISR instances in Tracealyzer, with names such as
* "ISR sending to <queue name>".
* To disable such tracing, please refer to vTraceSetFilterGroup and
* vTraceSetFilterMask.
*
* Default value is 1.
*
* Note: tracing ISRs requires that you insert calls to vTraceStoreISRBegin
* and vTraceStoreISREnd in your interrupt handlers.
*/
#define TRC_CFG_INCLUDE_ISR_TRACING 1
/**
* @def TRC_CFG_INCLUDE_READY_EVENTS
* @brief Macro which should be defined as either zero (0) or one (1).
*
* If one (1), events are recorded when tasks enter scheduling state "ready".
* This allows Tracealyzer to show the initial pending time before tasks enter
* the execution state, and present accurate response times.
* If zero (0), "ready events" are not created, which allows for recording
* longer traces in the same amount of RAM.
*
* Default value is 1.
*/
#define TRC_CFG_INCLUDE_READY_EVENTS 1
/**
* @def TRC_CFG_INCLUDE_OSTICK_EVENTS
* @brief Macro which should be defined as either zero (0) or one (1).
*
* If this is one (1), events will be generated whenever the OS clock is
* increased. If zero (0), OS tick events are not generated, which allows for
* recording longer traces in the same amount of RAM.
*
* Default value is 1.
*/
#define TRC_CFG_INCLUDE_OSTICK_EVENTS 1
/**
* @def TRC_CFG_ENABLE_STACK_MONITOR
* @brief If enabled (1), the recorder periodically reports the unused stack space of
* all active tasks.
* The stack monitoring runs in the Tracealyzer Control task, TzCtrl. This task
* is always created by the recorder when in streaming mode.
* In snapshot mode, the TzCtrl task is only used for stack monitoring and is
* not created unless this is enabled.
*/
#define TRC_CFG_ENABLE_STACK_MONITOR 1
/**
* @def TRC_CFG_STACK_MONITOR_MAX_TASKS
* @brief Macro which should be defined as a non-zero integer value.
*
* This controls how many tasks that can be monitored by the stack monitor.
* If this is too small, some tasks will be excluded and a warning is shown.
*
* Default value is 10.
*/
#define TRC_CFG_STACK_MONITOR_MAX_TASKS 10
/**
* @def TRC_CFG_STACK_MONITOR_MAX_REPORTS
* @brief Macro which should be defined as a non-zero integer value.
*
* This defines how many tasks that will be subject to stack usage analysis for
* each execution of the Tracealyzer Control task (TzCtrl). Note that the stack
* monitoring cycles between the tasks, so this does not affect WHICH tasks that
* are monitored, but HOW OFTEN each task stack is analyzed.
*
* This setting can be combined with TRC_CFG_CTRL_TASK_DELAY to tune the
* frequency of the stack monitoring. This is motivated since the stack analysis
* can take some time to execute.
* However, note that the stack analysis runs in a separate task (TzCtrl) that
* can be executed on low priority. This way, you can avoid that the stack
* analysis disturbs any time-sensitive tasks.
*
* Default value is 1.
*/
#define TRC_CFG_STACK_MONITOR_MAX_REPORTS 1
/**
* @def TRC_CFG_CTRL_TASK_PRIORITY
* @brief The scheduling priority of the Tracealyzer Control (TzCtrl) task.
*
* In streaming mode, TzCtrl is used to receive start/stop commands from
* Tracealyzer and in some cases also to transmit the trace data (for stream
* ports that uses the internal buffer, like TCP/IP). For such stream ports,
* make sure the TzCtrl priority is high enough to ensure reliable periodic
* execution and transfer of the data, but low enough to avoid disturbing any
* time-sensitive functions.
*
* In Snapshot mode, TzCtrl is only used for the stack usage monitoring and is
* not created if stack monitoring is disabled. TRC_CFG_CTRL_TASK_PRIORITY should
* be low, to avoid disturbing any time-sensitive tasks.
*/
#define TRC_CFG_CTRL_TASK_PRIORITY 1
/**
* @def TRC_CFG_CTRL_TASK_DELAY
* @brief The delay between loops of the TzCtrl task (see TRC_CFG_CTRL_TASK_PRIORITY),
* which affects the frequency of the stack monitoring.
*
* In streaming mode, this also affects the trace data transfer if you are using
* a stream port leveraging the internal buffer (like TCP/IP). A shorter delay
* increases the CPU load of TzCtrl somewhat, but may improve the performance of
* of the trace streaming, especially if the trace buffer is small.
*/
#define TRC_CFG_CTRL_TASK_DELAY 2
/**
* @def TRC_CFG_CTRL_TASK_STACK_SIZE
* @brief The stack size of the Tracealyzer Control (TzCtrl) task.
* See TRC_CFG_CTRL_TASK_PRIORITY for further information about TzCtrl.
*/
#define TRC_CFG_CTRL_TASK_STACK_SIZE 1024
/**
* @def TRC_CFG_RECORDER_BUFFER_ALLOCATION
* @brief Specifies how the recorder buffer is allocated (also in case of streaming, in
* port using the recorder's internal temporary buffer)
*
* Values:
* TRC_RECORDER_BUFFER_ALLOCATION_STATIC - Static allocation (internal)
* TRC_RECORDER_BUFFER_ALLOCATION_DYNAMIC - Malloc in vTraceEnable
* TRC_RECORDER_BUFFER_ALLOCATION_CUSTOM - Use vTraceSetRecorderDataBuffer
*
* Static and dynamic mode does the allocation for you, either in compile time
* (static) or in runtime (malloc).
* The custom mode allows you to control how and where the allocation is made,
* for details see TRC_ALLOC_CUSTOM_BUFFER and vTraceSetRecorderDataBuffer().
*/
#define TRC_CFG_RECORDER_BUFFER_ALLOCATION TRC_RECORDER_BUFFER_ALLOCATION_STATIC
/**
* @def TRC_CFG_MAX_ISR_NESTING
* @brief Defines how many levels of interrupt nesting the recorder can handle, in
* case multiple ISRs are traced and ISR nesting is possible. If this
* is exceeded, the particular ISR will not be traced and the recorder then
* logs an error message. This setting is used to allocate an internal stack
* for keeping track of the previous execution context (4 byte per entry).
*
* This value must be a non-zero positive constant, at least 1.
*
* Default value: 8
*/
#define TRC_CFG_MAX_ISR_NESTING 8
/**
* @def TRC_CFG_ISR_TAILCHAINING_THRESHOLD
* @brief Macro which should be defined as an integer value.
*
* If tracing multiple ISRs, this setting allows for accurate display of the
* context-switching also in cases when the ISRs execute in direct sequence.
*
* vTraceStoreISREnd normally assumes that the ISR returns to the previous
* context, i.e., a task or a preempted ISR. But if another traced ISR
* executes in direct sequence, Tracealyzer may incorrectly display a minimal
* fragment of the previous context in between the ISRs.
*
* By using TRC_CFG_ISR_TAILCHAINING_THRESHOLD you can avoid this. This is
* however a threshold value that must be measured for your specific setup.
* See http://percepio.com/2014/03/21/isr_tailchaining_threshold/
*
* The default setting is 0, meaning "disabled" and that you may get an
* extra fragments of the previous context in between tail-chained ISRs.
*
* Note: This setting has separate definitions in trcSnapshotConfig.h and
* trcStreamingConfig.h, since it is affected by the recorder mode.
*/
#define TRC_CFG_ISR_TAILCHAINING_THRESHOLD 0
/**
* @def TRC_CFG_RECORDER_DATA_INIT
* @brief Macro which states wether the recorder data should have an initial value.
*
* In very specific cases where traced objects are created before main(),
* the recorder will need to be started even before that. In these cases,
* the recorder data would be initialized by vTraceEnable(TRC_INIT) but could
* then later be overwritten by the initialization value.
* If this is an issue for you, set TRC_CFG_RECORDER_DATA_INIT to 0.
* The following code can then be used before any traced objects are created:
*
* extern uint32_t RecorderEnabled;
* RecorderEnabled = 0;
* xTraceInitialize();
*
* After the clocks are properly initialized, use vTraceEnable(...) to start
* the tracing.
*
* Default value is 1.
*/
#define TRC_CFG_RECORDER_DATA_INIT 1
/**
* @def TRC_CFG_RECORDER_DATA_ATTRIBUTE
* @brief When setting TRC_CFG_RECORDER_DATA_INIT to 0, you might also need to make
* sure certain recorder data is placed in a specific RAM section to avoid being
* zeroed out after initialization. Define TRC_CFG_RECORDER_DATA_ATTRIBUTE as
* that attribute.
*
* Example:
* #define TRC_CFG_RECORDER_DATA_ATTRIBUTE __attribute__((section(".bss.trace_recorder_data")))
*
* Default value is empty.
*/
#define TRC_CFG_RECORDER_DATA_ATTRIBUTE
/**
* @def TRC_CFG_USE_TRACE_ASSERT
* @brief Enable or disable debug asserts. Information regarding any assert that is
* triggered will be in trcAssert.c.
*/
#define TRC_CFG_USE_TRACE_ASSERT 0
#ifdef __cplusplus
}
#endif
#endif /* _TRC_CONFIG_H */

View file

@ -0,0 +1,116 @@
/*
* Trace Recorder for Tracealyzer v4.6.0
* Copyright 2021 Percepio AB
* www.percepio.com
*
* SPDX-License-Identifier: Apache-2.0
*
* Configuration parameters for the kernel port.
* More settings can be found in trcKernelPortStreamingConfig.h and
* trcKernelPortSnapshotConfig.h.
*/
#ifndef TRC_KERNEL_PORT_CONFIG_H
#define TRC_KERNEL_PORT_CONFIG_H
#ifdef __cplusplus
extern "C" {
#endif
/**
* @def TRC_CFG_RECORDER_MODE
* @brief Specify what recording mode to use. Snapshot means that the data is saved in
* an internal RAM buffer, for later upload. Streaming means that the data is
* transferred continuously to the host PC.
*
* For more information, see http://percepio.com/2016/10/05/rtos-tracing/
* and the Tracealyzer User Manual.
*
* Values:
* TRC_RECORDER_MODE_SNAPSHOT
* TRC_RECORDER_MODE_STREAMING
*/
#define TRC_CFG_RECORDER_MODE TRC_RECORDER_MODE_SNAPSHOT
/**
* @def TRC_CFG_FREERTOS_VERSION
* @brief Specify what version of FreeRTOS that is used (don't change unless using the
* trace recorder library with an older version of FreeRTOS).
*
* TRC_FREERTOS_VERSION_7_3_X If using FreeRTOS v7.3.X
* TRC_FREERTOS_VERSION_7_4_X If using FreeRTOS v7.4.X
* TRC_FREERTOS_VERSION_7_5_X If using FreeRTOS v7.5.X
* TRC_FREERTOS_VERSION_7_6_X If using FreeRTOS v7.6.X
* TRC_FREERTOS_VERSION_8_X_X If using FreeRTOS v8.X.X
* TRC_FREERTOS_VERSION_9_0_0 If using FreeRTOS v9.0.0
* TRC_FREERTOS_VERSION_9_0_1 If using FreeRTOS v9.0.1
* TRC_FREERTOS_VERSION_9_0_2 If using FreeRTOS v9.0.2
* TRC_FREERTOS_VERSION_10_0_0 If using FreeRTOS v10.0.0
* TRC_FREERTOS_VERSION_10_0_1 If using FreeRTOS v10.0.1
* TRC_FREERTOS_VERSION_10_1_0 If using FreeRTOS v10.1.0
* TRC_FREERTOS_VERSION_10_1_1 If using FreeRTOS v10.1.1
* TRC_FREERTOS_VERSION_10_2_0 If using FreeRTOS v10.2.0
* TRC_FREERTOS_VERSION_10_2_1 If using FreeRTOS v10.2.1
* TRC_FREERTOS_VERSION_10_3_0 If using FreeRTOS v10.3.0
* TRC_FREERTOS_VERSION_10_3_1 If using FreeRTOS v10.3.1
* TRC_FREERTOS_VERSION_10_4_0 If using FreeRTOS v10.4.0
* TRC_FREERTOS_VERSION_10_4_1 If using FreeRTOS v10.4.1 or later
*/
#define TRC_CFG_FREERTOS_VERSION TRC_FREERTOS_VERSION_10_4_1
/**
* @def TRC_CFG_INCLUDE_EVENT_GROUP_EVENTS
* @brief Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the trace will exclude any "event group" events.
*
* Default value is 0 (excluded) since dependent on event_groups.c
*/
#define TRC_CFG_INCLUDE_EVENT_GROUP_EVENTS 1
/**
* @def TRC_CFG_INCLUDE_TIMER_EVENTS
* @brief Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the trace will exclude any Timer events.
*
* Default value is 0 since dependent on timers.c
*/
#define TRC_CFG_INCLUDE_TIMER_EVENTS 1
/**
* @def TRC_CFG_INCLUDE_PEND_FUNC_CALL_EVENTS
* @brief Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the trace will exclude any "pending function call"
* events, such as xTimerPendFunctionCall().
*
* Default value is 0 since dependent on timers.c
*/
#define TRC_CFG_INCLUDE_PEND_FUNC_CALL_EVENTS 1
/**
* @def TRC_CFG_INCLUDE_STREAM_BUFFER_EVENTS
* @brief Macro which should be defined as either zero (0) or one (1).
*
* If this is zero (0), the trace will exclude any stream buffer or message
* buffer events.
*
* Default value is 0 since dependent on stream_buffer.c (new in FreeRTOS v10)
*/
#define TRC_CFG_INCLUDE_STREAM_BUFFER_EVENTS 1
/**
* @def TRC_CFG_ACKNOWLEDGE_QUEUE_SET_SEND
* @brief When using FreeRTOS v10.3.0 or v10.3.1, please make sure that the trace
* point in prvNotifyQueueSetContainer() in queue.c is renamed from
* traceQUEUE_SEND to traceQUEUE_SET_SEND in order to tell them apart from
* other traceQUEUE_SEND trace points. Then set this to TRC_ACKNOWLEDGED.
*/
#define TRC_CFG_ACKNOWLEDGE_QUEUE_SET_SEND 0 /* TRC_ACKNOWLEDGED */
#ifdef __cplusplus
}
#endif
#endif /* TRC_KERNEL_PORT_CONFIG_H */

View file

@ -52,8 +52,6 @@
extern "C" {
#endif
#include "trcPortDefines.h"
/******************************************************************************
* Include of processor header file
*

View file

@ -52,8 +52,6 @@
extern "C" {
#endif
#include "trcPortDefines.h"
/******************************************************************************
* Include of processor header file
*