From c07f60c383b5e90e088d4ab4dea146ff0361086f Mon Sep 17 00:00:00 2001
From: "Yuhui.Zheng" <10982575+yuhui-zheng@users.noreply.github.com>
Date: Wed, 18 Dec 2019 10:06:30 +0000
Subject: [PATCH] Adding GCC/Keil/IAR projects for NXP LPC51U68 (CM0+).
Please see readme.txt for todo items.
---
.../CORTEX_M0+_LPC51U68_LPCXpresso/.cproject | 797 +
.../CORTEX_M0+_LPC51U68_LPCXpresso/.gitignore | 13 +
.../CORTEX_M0+_LPC51U68_LPCXpresso/.project | 317 +
.../.settings/language.settings.xml | 25 +
.../CMSIS/arm_common_tables.h | 121 +
.../CMSIS/arm_const_structs.h | 66 +
.../CMSIS/arm_math.h | 7160 +
.../CMSIS/cmsis_armcc.h | 870 +
.../CMSIS/cmsis_armclang.h | 1877 +
.../CMSIS/cmsis_compiler.h | 266 +
.../CMSIS/cmsis_gcc.h | 2088 +
.../CMSIS/cmsis_iccarm.h | 913 +
.../CMSIS/cmsis_version.h | 39 +
.../CMSIS/core_cm0plus.h | 1023 +
.../CORTEX_M0+_LPC51U68_IAR.ewd | 2974 +
.../CORTEX_M0+_LPC51U68_IAR.ewp | 2467 +
.../CORTEX_M0+_LPC51U68_IAR.ewt | 2722 +
.../CORTEX_M0+_LPC51U68_IAR.eww | 7 +
.../CORTEX_M0+_LPC51U68_Keil.uvoptx | 1551 +
.../CORTEX_M0+_LPC51U68_Keil.uvprojx | 972 +
.../Debug_IAR/Obj/.ninja_deps | Bin 0 -> 16 bytes
.../Debug_IAR/Obj/.ninja_log | 54 +
.../Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR.pbd | Bin 0 -> 1552064 bytes
.../Obj/CORTEX_M0+_LPC51U68_IAR.pbd.browse | Bin 0 -> 1552064 bytes
.../Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR.pbw | 136918 +++++++++++++++
.../Obj/CORTEX_M0+_LPC51U68_IAR_part0.pbi | Bin 0 -> 847612 bytes
.../Obj/CORTEX_M0+_LPC51U68_IAR_part1.pbi | Bin 0 -> 773617 bytes
.../Obj/CORTEX_M0+_LPC51U68_IAR_part2.pbi | Bin 0 -> 772906 bytes
.../Obj/CORTEX_M0+_LPC51U68_IAR_part3.pbi | Bin 0 -> 855072 bytes
.../Obj/CORTEX_M0+_LPC51U68_IAR_part4.pbi | Bin 0 -> 378917 bytes
.../Obj/CORTEX_M0+_LPC51U68_IAR_part5.pbi | Bin 0 -> 855070 bytes
.../Obj/CORTEX_M0+_LPC51U68_IAR_part6.pbi | Bin 0 -> 754192 bytes
.../Debug_IAR/Obj/IntQueue.pbi | Bin 0 -> 156940 bytes
.../Debug_IAR/Obj/IntQueue.pbi.dep | 25 +
.../Debug_IAR/Obj/IntQueue.xcl | 363 +
.../Debug_IAR/Obj/IntQueueTimer.pbi | Bin 0 -> 745492 bytes
.../Debug_IAR/Obj/IntQueueTimer.pbi.dep | 40 +
.../Debug_IAR/Obj/IntQueueTimer.xcl | 363 +
.../Debug_IAR/Obj/blocktim.pbi | Bin 0 -> 135800 bytes
.../Debug_IAR/Obj/blocktim.pbi.dep | 22 +
.../Debug_IAR/Obj/blocktim.xcl | 363 +
.../Debug_IAR/Obj/board.pbi | Bin 0 -> 677172 bytes
.../Debug_IAR/Obj/board.pbi.dep | 35 +
.../Debug_IAR/Obj/board.xcl | 363 +
.../Debug_IAR/Obj/build.ninja | 71 +
.../Debug_IAR/Obj/clock_config.pbi | Bin 0 -> 660582 bytes
.../Debug_IAR/Obj/clock_config.pbi.dep | 32 +
.../Debug_IAR/Obj/clock_config.xcl | 363 +
.../Debug_IAR/Obj/countsem.pbi | Bin 0 -> 132091 bytes
.../Debug_IAR/Obj/countsem.pbi.dep | 23 +
.../Debug_IAR/Obj/countsem.xcl | 363 +
.../Debug_IAR/Obj/croutine.pbi | Bin 0 -> 106530 bytes
.../Debug_IAR/Obj/croutine.pbi.dep | 20 +
.../Debug_IAR/Obj/croutine.xcl | 363 +
.../Debug_IAR/Obj/event_groups.pbi | Bin 0 -> 148039 bytes
.../Debug_IAR/Obj/event_groups.pbi.dep | 25 +
.../Debug_IAR/Obj/event_groups.xcl | 363 +
.../Debug_IAR/Obj/fsl_assert.pbi | Bin 0 -> 663858 bytes
.../Debug_IAR/Obj/fsl_assert.pbi.dep | 32 +
.../Debug_IAR/Obj/fsl_assert.xcl | 363 +
.../Debug_IAR/Obj/fsl_clock.pbi | Bin 0 -> 710569 bytes
.../Debug_IAR/Obj/fsl_clock.pbi.dep | 29 +
.../Debug_IAR/Obj/fsl_clock.xcl | 363 +
.../Debug_IAR/Obj/fsl_common.pbi | Bin 0 -> 651568 bytes
.../Debug_IAR/Obj/fsl_common.pbi.dep | 28 +
.../Debug_IAR/Obj/fsl_common.xcl | 363 +
.../Debug_IAR/Obj/fsl_ctimer.pbi | Bin 0 -> 679474 bytes
.../Debug_IAR/Obj/fsl_ctimer.pbi.dep | 29 +
.../Debug_IAR/Obj/fsl_ctimer.xcl | 363 +
.../Debug_IAR/Obj/fsl_debug_console.pbi | Bin 0 -> 685748 bytes
.../Debug_IAR/Obj/fsl_debug_console.pbi.dep | 35 +
.../Debug_IAR/Obj/fsl_debug_console.xcl | 363 +
.../Debug_IAR/Obj/fsl_flexcomm.pbi | Bin 0 -> 659037 bytes
.../Debug_IAR/Obj/fsl_flexcomm.pbi.dep | 29 +
.../Debug_IAR/Obj/fsl_flexcomm.xcl | 363 +
.../Debug_IAR/Obj/fsl_gpio.pbi | Bin 0 -> 656189 bytes
.../Debug_IAR/Obj/fsl_gpio.pbi.dep | 29 +
.../Debug_IAR/Obj/fsl_gpio.xcl | 363 +
.../Debug_IAR/Obj/fsl_pint.pbi | Bin 0 -> 684335 bytes
.../Debug_IAR/Obj/fsl_pint.pbi.dep | 29 +
.../Debug_IAR/Obj/fsl_pint.xcl | 363 +
.../Debug_IAR/Obj/fsl_power.pbi | Bin 0 -> 655160 bytes
.../Debug_IAR/Obj/fsl_power.pbi.dep | 29 +
.../Debug_IAR/Obj/fsl_power.xcl | 363 +
.../Debug_IAR/Obj/fsl_reset.pbi | Bin 0 -> 650779 bytes
.../Debug_IAR/Obj/fsl_reset.pbi.dep | 28 +
.../Debug_IAR/Obj/fsl_reset.xcl | 363 +
.../Debug_IAR/Obj/fsl_str.pbi | Bin 0 -> 722469 bytes
.../Debug_IAR/Obj/fsl_str.pbi.dep | 34 +
.../Debug_IAR/Obj/fsl_str.xcl | 363 +
.../Debug_IAR/Obj/fsl_usart.pbi | Bin 0 -> 704617 bytes
.../Debug_IAR/Obj/fsl_usart.pbi.dep | 30 +
.../Debug_IAR/Obj/fsl_usart.xcl | 363 +
.../Debug_IAR/Obj/generic_list.pbi | Bin 0 -> 662362 bytes
.../Debug_IAR/Obj/generic_list.pbi.dep | 30 +
.../Debug_IAR/Obj/generic_list.xcl | 363 +
.../Debug_IAR/Obj/heap_5.pbi | Bin 0 -> 127465 bytes
.../Debug_IAR/Obj/heap_5.pbi.dep | 21 +
.../Debug_IAR/Obj/heap_5.xcl | 363 +
.../Debug_IAR/Obj/list.pbi | Bin 0 -> 92928 bytes
.../Debug_IAR/Obj/list.pbi.dep | 19 +
.../Debug_IAR/Obj/list.xcl | 363 +
.../Debug_IAR/Obj/main.pbi | Bin 0 -> 784551 bytes
.../Debug_IAR/Obj/main.pbi.dep | 50 +
.../Debug_IAR/Obj/main.xcl | 363 +
.../Debug_IAR/Obj/main_blinky.pbi | Bin 0 -> 124049 bytes
.../Debug_IAR/Obj/main_blinky.pbi.dep | 21 +
.../Debug_IAR/Obj/main_blinky.xcl | 363 +
.../Debug_IAR/Obj/main_full.pbi | Bin 0 -> 134683 bytes
.../Debug_IAR/Obj/main_full.pbi.dep | 26 +
.../Debug_IAR/Obj/main_full.xcl | 363 +
.../Debug_IAR/Obj/peripherals.pbi | Bin 0 -> 499 bytes
.../Debug_IAR/Obj/peripherals.pbi.dep | 3 +
.../Debug_IAR/Obj/peripherals.xcl | 363 +
.../Debug_IAR/Obj/pin_mux.pbi | Bin 0 -> 685122 bytes
.../Debug_IAR/Obj/pin_mux.pbi.dep | 30 +
.../Debug_IAR/Obj/pin_mux.xcl | 363 +
.../Debug_IAR/Obj/port.pbi | Bin 0 -> 199991 bytes
.../Debug_IAR/Obj/port.pbi.dep | 22 +
.../Debug_IAR/Obj/port.xcl | 363 +
.../Debug_IAR/Obj/queue.pbi | Bin 0 -> 198848 bytes
.../Debug_IAR/Obj/queue.pbi.dep | 24 +
.../Debug_IAR/Obj/queue.xcl | 363 +
.../Debug_IAR/Obj/recmutex.pbi | Bin 0 -> 132929 bytes
.../Debug_IAR/Obj/recmutex.pbi.dep | 23 +
.../Debug_IAR/Obj/recmutex.xcl | 363 +
.../Debug_IAR/Obj/serial_manager.pbi | Bin 0 -> 680808 bytes
.../Debug_IAR/Obj/serial_manager.pbi.dep | 32 +
.../Debug_IAR/Obj/serial_manager.xcl | 363 +
.../Debug_IAR/Obj/serial_port_uart.pbi | Bin 0 -> 674150 bytes
.../Debug_IAR/Obj/serial_port_uart.pbi.dep | 33 +
.../Debug_IAR/Obj/serial_port_uart.xcl | 363 +
.../Debug_IAR/Obj/stream_buffer.pbi | Bin 0 -> 160952 bytes
.../Debug_IAR/Obj/stream_buffer.pbi.dep | 22 +
.../Debug_IAR/Obj/stream_buffer.xcl | 363 +
.../Debug_IAR/Obj/system_LPC51U68.pbi | Bin 0 -> 568475 bytes
.../Debug_IAR/Obj/system_LPC51U68.pbi.dep | 17 +
.../Debug_IAR/Obj/system_LPC51U68.xcl | 363 +
.../Debug_IAR/Obj/tasks.pbi | Bin 0 -> 221805 bytes
.../Debug_IAR/Obj/tasks.pbi.dep | 25 +
.../Debug_IAR/Obj/tasks.xcl | 363 +
.../Debug_IAR/Obj/timers.pbi | Bin 0 -> 171532 bytes
.../Debug_IAR/Obj/timers.pbi.dep | 23 +
.../Debug_IAR/Obj/timers.xcl | 363 +
.../Debug_IAR/Obj/usart_adapter.pbi | Bin 0 -> 686977 bytes
.../Debug_IAR/Obj/usart_adapter.pbi.dep | 32 +
.../Debug_IAR/Obj/usart_adapter.xcl | 363 +
.../GCC_specific/RegTest.c | 195 +
.../GCC_specific/compiler_attributes.h | 29 +
.../GCC_specific/semihost_hardfault.c | 109 +
.../GCC_specific/startup_lpc51u68.c | 510 +
.../IAR_specific/LPC51U68_256.FLM | Bin 0 -> 12752 bytes
.../IAR_specific/LPC51U68_flash.icf | 92 +
.../IAR_specific/LPC51U68_ram.icf | 78 +
.../IAR_specific/RegTest_IAR.s | 207 +
.../IAR_specific/compiler_attributes.h | 29 +
.../IAR_specific/startup_LPC51U68.s | 385 +
.../Keil_specific/LPC51U68_256.FLM | Bin 0 -> 12752 bytes
.../Keil_specific/LPC51U68_flash.scf | 66 +
.../Keil_specific/LPC51U68_ram.scf | 60 +
.../Keil_specific/RegTest_Keil.s | 212 +
.../Keil_specific/compiler_attributes.h | 32 +
.../Keil_specific/keil_lib_power.lib | Bin 0 -> 8310 bytes
.../Keil_specific/startup_LPC51U68.s | 420 +
.../app/FreeRTOSConfig.h | 112 +
.../app/IntQueueTimer.c | 128 +
.../app/IntQueueTimer.h | 36 +
.../CORTEX_M0+_LPC51U68_LPCXpresso/app/main.c | 292 +
.../app/main_blinky.c | 199 +
.../app/main_full.c | 283 +
.../board/boards/board.c | 35 +
.../board/boards/board.h | 156 +
.../board/boards/clock_config.c | 253 +
.../board/boards/clock_config.h | 137 +
.../board/boards/peripherals.c | 23 +
.../board/boards/peripherals.h | 23 +
.../board/boards/pin_mux.c | 535 +
.../board/boards/pin_mux.h | 337 +
.../component/lists/generic_list.c | 423 +
.../component/lists/generic_list.h | 191 +
.../component/serial_manager/serial_manager.c | 1299 +
.../component/serial_manager/serial_manager.h | 548 +
.../serial_manager/serial_port_internal.h | 98 +
.../serial_manager/serial_port_uart.c | 371 +
.../serial_manager/serial_port_uart.h | 55 +
.../component/uart/uart.h | 475 +
.../component/uart/usart_adapter.c | 629 +
.../device/LPC51U68.h | 8088 +
.../device/LPC51U68_features.h | 236 +
.../device/fsl_device_registers.h | 34 +
.../device/system_LPC51U68.c | 343 +
.../device/system_LPC51U68.h | 97 +
.../drivers/fsl_clock.c | 1672 +
.../drivers/fsl_clock.h | 850 +
.../drivers/fsl_common.c | 147 +
.../drivers/fsl_common.h | 597 +
.../drivers/fsl_ctimer.c | 544 +
.../drivers/fsl_ctimer.h | 488 +
.../drivers/fsl_flexcomm.c | 400 +
.../drivers/fsl_flexcomm.h | 64 +
.../drivers/fsl_gpio.c | 303 +
.../drivers/fsl_gpio.h | 365 +
.../drivers/fsl_iocon.h | 288 +
.../drivers/fsl_pint.c | 855 +
.../drivers/fsl_pint.h | 579 +
.../drivers/fsl_power.c | 20 +
.../drivers/fsl_power.h | 224 +
.../drivers/fsl_reset.c | 132 +
.../drivers/fsl_reset.h | 182 +
.../drivers/fsl_usart.c | 939 +
.../drivers/fsl_usart.h | 718 +
.../CORTEX_M0+_LPC51U68_LPCXpresso/readme.txt | 6 +
.../utilities/fsl_assert.c | 33 +
.../utilities/fsl_debug_console.c | 1123 +
.../utilities/fsl_debug_console.h | 213 +
.../utilities/fsl_debug_console_conf.h | 158 +
.../utilities/fsl_str.c | 1324 +
.../utilities/fsl_str.h | 66 +
218 files changed, 208291 insertions(+)
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/.cproject
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/.gitignore
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/.project
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/.settings/language.settings.xml
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/arm_common_tables.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/arm_const_structs.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/arm_math.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_armcc.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_armclang.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_compiler.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_gcc.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_iccarm.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_version.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/core_cm0plus.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CORTEX_M0+_LPC51U68_IAR.ewd
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CORTEX_M0+_LPC51U68_IAR.ewp
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CORTEX_M0+_LPC51U68_IAR.ewt
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CORTEX_M0+_LPC51U68_IAR.eww
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CORTEX_M0+_LPC51U68_Keil.uvoptx
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CORTEX_M0+_LPC51U68_Keil.uvprojx
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/.ninja_deps
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/.ninja_log
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR.pbd
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR.pbd.browse
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR.pbw
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR_part0.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR_part1.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR_part2.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR_part3.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR_part4.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR_part5.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/CORTEX_M0+_LPC51U68_IAR_part6.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/IntQueue.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/IntQueue.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/IntQueue.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/IntQueueTimer.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/IntQueueTimer.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/IntQueueTimer.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/blocktim.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/blocktim.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/blocktim.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/board.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/board.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/board.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/build.ninja
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/clock_config.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/clock_config.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/clock_config.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/countsem.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/countsem.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/countsem.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/croutine.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/croutine.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/croutine.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/event_groups.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/event_groups.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/event_groups.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_assert.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_assert.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_assert.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_clock.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_clock.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_clock.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_common.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_common.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_common.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_ctimer.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_ctimer.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_ctimer.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_debug_console.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_debug_console.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_debug_console.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_flexcomm.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_flexcomm.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_flexcomm.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_gpio.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_gpio.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_gpio.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_pint.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_pint.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_pint.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_power.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_power.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_power.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_reset.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_reset.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_reset.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_str.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_str.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_str.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_usart.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_usart.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/fsl_usart.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/generic_list.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/generic_list.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/generic_list.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/heap_5.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/heap_5.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/heap_5.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/list.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/list.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/list.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main_blinky.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main_blinky.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main_blinky.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main_full.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main_full.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/main_full.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/peripherals.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/peripherals.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/peripherals.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/pin_mux.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/pin_mux.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/pin_mux.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/port.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/port.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/port.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/queue.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/queue.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/queue.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/recmutex.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/recmutex.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/recmutex.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/serial_manager.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/serial_manager.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/serial_manager.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/serial_port_uart.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/serial_port_uart.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/serial_port_uart.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/stream_buffer.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/stream_buffer.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/stream_buffer.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/system_LPC51U68.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/system_LPC51U68.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/system_LPC51U68.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/tasks.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/tasks.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/tasks.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/timers.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/timers.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/timers.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/usart_adapter.pbi
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/usart_adapter.pbi.dep
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Debug_IAR/Obj/usart_adapter.xcl
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/GCC_specific/RegTest.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/GCC_specific/compiler_attributes.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/GCC_specific/semihost_hardfault.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/GCC_specific/startup_lpc51u68.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/IAR_specific/LPC51U68_256.FLM
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/IAR_specific/LPC51U68_flash.icf
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/IAR_specific/LPC51U68_ram.icf
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/IAR_specific/RegTest_IAR.s
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/IAR_specific/compiler_attributes.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/IAR_specific/startup_LPC51U68.s
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Keil_specific/LPC51U68_256.FLM
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Keil_specific/LPC51U68_flash.scf
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Keil_specific/LPC51U68_ram.scf
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Keil_specific/RegTest_Keil.s
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Keil_specific/compiler_attributes.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Keil_specific/keil_lib_power.lib
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/Keil_specific/startup_LPC51U68.s
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/app/FreeRTOSConfig.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/app/IntQueueTimer.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/app/IntQueueTimer.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/app/main.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/app/main_blinky.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/app/main_full.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/board/boards/board.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/board/boards/board.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/board/boards/clock_config.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/board/boards/clock_config.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/board/boards/peripherals.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/board/boards/peripherals.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/board/boards/pin_mux.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/board/boards/pin_mux.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/lists/generic_list.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/lists/generic_list.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/serial_manager/serial_manager.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/serial_manager/serial_manager.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/serial_manager/serial_port_internal.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/serial_manager/serial_port_uart.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/serial_manager/serial_port_uart.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/uart/uart.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/component/uart/usart_adapter.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/device/LPC51U68.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/device/LPC51U68_features.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/device/fsl_device_registers.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/device/system_LPC51U68.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/device/system_LPC51U68.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_clock.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_clock.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_common.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_common.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_ctimer.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_ctimer.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_flexcomm.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_flexcomm.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_gpio.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_gpio.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_iocon.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_pint.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_pint.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_power.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_power.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_reset.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_reset.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_usart.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/drivers/fsl_usart.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/readme.txt
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/utilities/fsl_assert.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/utilities/fsl_debug_console.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/utilities/fsl_debug_console.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/utilities/fsl_debug_console_conf.h
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/utilities/fsl_str.c
create mode 100644 FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/utilities/fsl_str.h
diff --git a/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/.cproject b/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/.cproject
new file mode 100644
index 000000000..7164d9ef8
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/.cproject
@@ -0,0 +1,797 @@
+
+Lib
folder.
+ * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit)
+ * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit)
+ * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit)
+ * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on)
+ * - arm_cortexM7l_math.lib (Cortex-M7, Little endian)
+ * - arm_cortexM7b_math.lib (Cortex-M7, Big endian)
+ * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit)
+ * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit)
+ * - arm_cortexM4l_math.lib (Cortex-M4, Little endian)
+ * - arm_cortexM4b_math.lib (Cortex-M4, Big endian)
+ * - arm_cortexM3l_math.lib (Cortex-M3, Little endian)
+ * - arm_cortexM3b_math.lib (Cortex-M3, Big endian)
+ * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian)
+ * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian)
+ * - arm_ARMv8MBLl_math.lib (Armv8-M Baseline, Little endian)
+ * - arm_ARMv8MMLl_math.lib (Armv8-M Mainline, Little endian)
+ * - arm_ARMv8MMLlfsp_math.lib (Armv8-M Mainline, Little endian, Single Precision Floating Point Unit)
+ * - arm_ARMv8MMLld_math.lib (Armv8-M Mainline, Little endian, DSP instructions)
+ * - arm_ARMv8MMLldfsp_math.lib (Armv8-M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit)
+ *
+ * The library functions are declared in the public file arm_math.h
which is placed in the Include
folder.
+ * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
+ * public header file arm_math.h
for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+ * Define the appropriate preprocessor macro ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
+ * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
+ * For Armv8-M cores define preprocessor macro ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML.
+ * Set preprocessor macro __DSP_PRESENT if Armv8-M Mainline core supports DSP instructions.
+ *
+ *
+ * Examples
+ * --------
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Toolchain Support
+ * ------------
+ *
+ * The library has been developed and tested with MDK version 5.14.0.0
+ * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
+ *
+ * Building the Library
+ * ------------
+ *
+ * The library installer contains a project file to rebuild libraries on MDK toolchain in the CMSIS\\DSP_Lib\\Source\\ARM
folder.
+ * - arm_cortexM_math.uvprojx
+ *
+ *
+ * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional preprocessor macros detailed above.
+ *
+ * Preprocessor Macros
+ * ------------
+ *
+ * Each library project have different preprocessor macros.
+ *
+ * - UNALIGNED_SUPPORT_DISABLE:
+ *
+ * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
+ *
+ * - ARM_MATH_BIG_ENDIAN:
+ *
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * - ARM_MATH_MATRIX_CHECK:
+ *
+ * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
+ *
+ * - ARM_MATH_ROUNDING:
+ *
+ * Define macro ARM_MATH_ROUNDING for rounding on support functions
+ *
+ * - ARM_MATH_CMx:
+ *
+ * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
+ * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
+ * ARM_MATH_CM7 for building the library on cortex-M7.
+ *
+ * - ARM_MATH_ARMV8MxL:
+ *
+ * Define macro ARM_MATH_ARMV8MBL for building the library on Armv8-M Baseline target, ARM_MATH_ARMV8MML for building library
+ * on Armv8-M Mainline target.
+ *
+ * - __FPU_PRESENT:
+ *
+ * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries.
+ *
+ * - __DSP_PRESENT:
+ *
+ * Initialize macro __DSP_PRESENT = 1 when Armv8-M Mainline core supports DSP instructions.
+ *
+ *
+ * typedef struct + * { + * uint16_t numRows; // number of rows of the matrix. + * uint16_t numCols; // number of columns of the matrix. + * float32_t *pData; // points to the data of the matrix. + * } arm_matrix_instance_f32; + *+ * There are similar definitions for Q15 and Q31 data types. + * + * The structure specifies the size of the matrix and then points to + * an array of data. The array is of size
numRows X numCols
+ * and the values are arranged in row order. That is, the
+ * matrix element (i, j) is stored at:
+ * + * pData[i*numCols + j] + *+ * + * \par Init Functions + * There is an associated initialization function for each type of matrix + * data structure. + * The initialization function sets the values of the internal structure fields. + * Refer to the function
arm_mat_init_f32()
, arm_mat_init_q31()
+ * and arm_mat_init_q15()
for floating-point, Q31 and Q15 types, respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure. For example:
+ * + *+ * wherearm_matrix_instance_f32 S = {nRows, nColumns, pData};
+ *arm_matrix_instance_q31 S = {nRows, nColumns, pData};
+ *arm_matrix_instance_q15 S = {nRows, nColumns, pData};
+ *
nRows
specifies the number of rows, nColumns
+ * specifies the number of columns, and pData
points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices. For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns. If the size check fails the functions return:
+ * + * ARM_MATH_SIZE_MISMATCH + *+ * Otherwise the functions return + *
+ * ARM_MATH_SUCCESS + *+ * There is some overhead associated with this matrix size checking. + * The matrix size checking is enabled via the \#define + *
+ * ARM_MATH_MATRIX_CHECK + *+ * within the library project settings. By default this macro is defined + * and size checking is enabled. By changing the project settings and + * undefining this macro size checking is eliminated and the functions + * run a bit faster. With size checking disabled the functions always + * return
ARM_MATH_SUCCESS
.
+ */
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+/**
+ * @defgroup groupExamples Examples
+ */
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+/* Compiler specific diagnostic adjustment */
+#if defined ( __CC_ARM )
+
+#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+
+#elif defined ( __GNUC__ )
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wsign-conversion"
+#pragma GCC diagnostic ignored "-Wconversion"
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+
+#elif defined ( __ICCARM__ )
+
+#elif defined ( __TI_ARM__ )
+
+#elif defined ( __CSMC__ )
+
+#elif defined ( __TASKING__ )
+
+#else
+ #error Unknown compiler
+#endif
+
+
+#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
+
+#if defined(ARM_MATH_CM7)
+ #include "core_cm7.h"
+ #define ARM_MATH_DSP
+#elif defined (ARM_MATH_CM4)
+ #include "core_cm4.h"
+ #define ARM_MATH_DSP
+#elif defined (ARM_MATH_CM33)
+ #include "core_cm33.h"
+ #define ARM_MATH_DSP
+#elif defined (ARM_MATH_CM3)
+ #include "core_cm3.h"
+#elif defined (ARM_MATH_CM0)
+ #include "core_cm0.h"
+ #define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_CM0PLUS)
+ #include "core_cm0plus.h"
+ #define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_ARMV8MBL)
+ #include "core_armv8mbl.h"
+ #define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_ARMV8MML)
+ #include "core_armv8mml.h"
+ #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1))
+ #define ARM_MATH_DSP
+ #endif
+#else
+ #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML"
+#endif
+
+#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
+#include "string.h"
+#include "math.h"
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+ /**
+ * @brief Macros required for reciprocal calculation in Normalized LMS
+ */
+
+#define DELTA_Q31 (0x100)
+#define DELTA_Q15 0x5
+#define INDEX_MASK 0x0000003F
+#ifndef PI
+ #define PI 3.14159265358979f
+#endif
+
+ /**
+ * @brief Macros required for SINE and COSINE Fast math approximations
+ */
+
+#define FAST_MATH_TABLE_SIZE 512
+#define FAST_MATH_Q31_SHIFT (32 - 10)
+#define FAST_MATH_Q15_SHIFT (16 - 10)
+#define CONTROLLER_Q31_SHIFT (32 - 9)
+#define TABLE_SPACING_Q31 0x400000
+#define TABLE_SPACING_Q15 0x80
+
+ /**
+ * @brief Macros required for SINE and COSINE Controller functions
+ */
+ /* 1.31(q31) Fixed value of 2/360 */
+ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING 0xB60B61
+
+ /**
+ * @brief Macro for Unaligned Support
+ */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+ #define ALIGN4
+#else
+ #if defined (__GNUC__)
+ #define ALIGN4 __attribute__((aligned(4)))
+ #else
+ #define ALIGN4 __align(4)
+ #endif
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /**
+ * @brief Error status returned by some functions in the library.
+ */
+
+ typedef enum
+ {
+ ARM_MATH_SUCCESS = 0, /**< No error */
+ ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
+ ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
+ ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
+ ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
+ ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
+ ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
+ } arm_status;
+
+ /**
+ * @brief 8-bit fractional data type in 1.7 format.
+ */
+ typedef int8_t q7_t;
+
+ /**
+ * @brief 16-bit fractional data type in 1.15 format.
+ */
+ typedef int16_t q15_t;
+
+ /**
+ * @brief 32-bit fractional data type in 1.31 format.
+ */
+ typedef int32_t q31_t;
+
+ /**
+ * @brief 64-bit fractional data type in 1.63 format.
+ */
+ typedef int64_t q63_t;
+
+ /**
+ * @brief 32-bit floating-point type definition.
+ */
+ typedef float float32_t;
+
+ /**
+ * @brief 64-bit floating-point type definition.
+ */
+ typedef double float64_t;
+
+ /**
+ * @brief definition to read/write two 16 bit values.
+ */
+#if defined ( __CC_ARM )
+ #define __SIMD32_TYPE int32_t __packed
+ #define CMSIS_UNUSED __attribute__((unused))
+ #define CMSIS_INLINE __attribute__((always_inline))
+
+#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED __attribute__((unused))
+ #define CMSIS_INLINE __attribute__((always_inline))
+
+#elif defined ( __GNUC__ )
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED __attribute__((unused))
+ #define CMSIS_INLINE __attribute__((always_inline))
+
+#elif defined ( __ICCARM__ )
+ #define __SIMD32_TYPE int32_t __packed
+ #define CMSIS_UNUSED
+ #define CMSIS_INLINE
+
+#elif defined ( __TI_ARM__ )
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED __attribute__((unused))
+ #define CMSIS_INLINE
+
+#elif defined ( __CSMC__ )
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED
+ #define CMSIS_INLINE
+
+#elif defined ( __TASKING__ )
+ #define __SIMD32_TYPE __unaligned int32_t
+ #define CMSIS_UNUSED
+ #define CMSIS_INLINE
+
+#else
+ #error Unknown compiler
+#endif
+
+#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
+#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
+#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
+#define __SIMD64(addr) (*(int64_t **) & (addr))
+
+#if !defined (ARM_MATH_DSP)
+ /**
+ * @brief definition to pack two 16 bit values.
+ */
+#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
+ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
+
+#endif /* !defined (ARM_MATH_DSP) */
+
+ /**
+ * @brief definition to pack four 8 bit values.
+ */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#else
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+
+#endif
+
+
+ /**
+ * @brief Clips Q63 to Q31 values.
+ */
+ CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+ }
+
+ /**
+ * @brief Clips Q63 to Q15 values.
+ */
+ CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+ }
+
+ /**
+ * @brief Clips Q31 to Q7 values.
+ */
+ CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+ ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+ }
+
+ /**
+ * @brief Clips Q31 to Q15 values.
+ */
+ CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+ }
+
+ /**
+ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+ */
+
+ CMSIS_INLINE __STATIC_INLINE q63_t mult32x64(
+ q63_t x,
+ q31_t y)
+ {
+ return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+ (((q63_t) (x >> 32) * y)));
+ }
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
+ */
+
+ CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31(
+ q31_t in,
+ q31_t * dst,
+ q31_t * pRecipTable)
+ {
+ q31_t out;
+ uint32_t tempVal;
+ uint32_t index, i;
+ uint32_t signBits;
+
+ if (in > 0)
+ {
+ signBits = ((uint32_t) (__CLZ( in) - 1));
+ }
+ else
+ {
+ signBits = ((uint32_t) (__CLZ(-in) - 1));
+ }
+
+ /* Convert input sample to 1.31 format */
+ in = (in << signBits);
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t)(in >> 24);
+ index = (index & INDEX_MASK);
+
+ /* 1.31 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0U; i < 2U; i++)
+ {
+ tempVal = (uint32_t) (((q63_t) in * out) >> 31);
+ tempVal = 0x7FFFFFFFu - tempVal;
+ /* 1.31 with exp 1 */
+ /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
+ out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1U);
+ }
+
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15(
+ q15_t in,
+ q15_t * dst,
+ q15_t * pRecipTable)
+ {
+ q15_t out = 0;
+ uint32_t tempVal = 0;
+ uint32_t index = 0, i = 0;
+ uint32_t signBits = 0;
+
+ if (in > 0)
+ {
+ signBits = ((uint32_t)(__CLZ( in) - 17));
+ }
+ else
+ {
+ signBits = ((uint32_t)(__CLZ(-in) - 17));
+ }
+
+ /* Convert input sample to 1.15 format */
+ in = (in << signBits);
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t)(in >> 8);
+ index = (index & INDEX_MASK);
+
+ /* 1.15 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0U; i < 2U; i++)
+ {
+ tempVal = (uint32_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFFu - tempVal;
+ /* 1.15 with exp 1 */
+ out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1);
+ }
+
+
+/*
+ * @brief C custom defined intrinsic function for M3 and M0 processors
+ */
+#if !defined (ARM_MATH_DSP)
+
+ /*
+ * @brief C custom defined QADD8 for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB8 for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16(
+ uint32_t x,
+ uint32_t y)
+ {
+/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
+ q31_t r = 0, s = 0;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHADD16 for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB16 for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHSUB16 for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QASX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QASX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHASX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSAX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHSAX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SMUSDX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
+ }
+
+ /*
+ * @brief C custom defined SMUADX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined QADD for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE int32_t __QADD(
+ int32_t x,
+ int32_t y)
+ {
+ return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE int32_t __QSUB(
+ int32_t x,
+ int32_t y)
+ {
+ return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
+ }
+
+
+ /*
+ * @brief C custom defined SMLAD for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLADX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLSDX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLALD for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
+ {
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q63_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLALDX for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
+ {
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q63_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMUAD for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMUSD for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined SXTB16 for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16(
+ uint32_t x)
+ {
+ return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
+ ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
+ }
+
+ /*
+ * @brief C custom defined SMMLA for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA(
+ int32_t x,
+ int32_t y,
+ int32_t sum)
+ {
+ return (sum + (int32_t) (((int64_t) x * y) >> 32));
+ }
+
+#endif /* !defined (ARM_MATH_DSP) */
+
+
+ /**
+ * @brief Instance structure for the Q7 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q7 FIR filter.
+ * @param[in] S points to an instance of the Q7 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 FIR filter.
+ * @param[in,out] S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
+ */
+ void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] S points to an instance of the Q15 FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR filter.
+ * @param[in,out] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
+ * numTaps
is not a supported value.
+ */
+ arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR filter.
+ * @param[in] S points to an instance of the Q31 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR filter.
+ * @param[in,out] S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+ } arm_biquad_casd_df1_inst_q15;
+
+ /**
+ * @brief Instance structure for the Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+ } arm_biquad_casd_df1_inst_q31;
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_casd_df1_inst_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 Biquad cascade filter.
+ * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift);
+
+
+ /**
+ * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 Biquad cascade filter
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 Biquad cascade filter.
+ * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift);
+
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float32_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f32;
+
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float64_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f64;
+
+ /**
+ * @brief Instance structure for the Q15 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q15_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q31_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q31;
+
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+
+ /**
+ * @brief Q31 matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_cmplx_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_cmplx_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Q31, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_cmplx_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+
+ /**
+ * @brief Q31 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+
+ /**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+
+ /**
+ * @brief Q31 matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix scaling.
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst);
+
+
+ /**
+ * @brief Q31 matrix scaling.
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
+ */
+ arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Q31 matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+ void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t * pData);
+
+
+ /**
+ * @brief Q15 matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+ void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t * pData);
+
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+ void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t * pData);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 PID Control.
+ */
+ typedef struct
+ {
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+#if !defined (ARM_MATH_DSP)
+ q15_t A1;
+ q15_t A2;
+#else
+ q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+#endif
+ q15_t state[3]; /**< The state array of length 3. */
+ q15_t Kp; /**< The proportional gain. */
+ q15_t Ki; /**< The integral gain. */
+ q15_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 PID Control.
+ */
+ typedef struct
+ {
+ q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ q31_t A2; /**< The derived gain, A2 = Kd . */
+ q31_t state[3]; /**< The state array of length 3. */
+ q31_t Kp; /**< The proportional gain. */
+ q31_t Ki; /**< The integral gain. */
+ q31_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point PID Control.
+ */
+ typedef struct
+ {
+ float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ float32_t A2; /**< The derived gain, A2 = Kd . */
+ float32_t state[3]; /**< The state array of length 3. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_f32;
+
+
+
+ /**
+ * @brief Initialization function for the floating-point PID Control.
+ * @param[in,out] S points to an instance of the PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_f32(
+ arm_pid_instance_f32 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the floating-point PID Control.
+ * @param[in,out] S is an instance of the floating-point PID Control structure
+ */
+ void arm_pid_reset_f32(
+ arm_pid_instance_f32 * S);
+
+
+ /**
+ * @brief Initialization function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_q31(
+ arm_pid_instance_q31 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q31 PID Control structure
+ */
+
+ void arm_pid_reset_q31(
+ arm_pid_instance_q31 * S);
+
+
+ /**
+ * @brief Initialization function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_q15(
+ arm_pid_instance_q15 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the q15 PID Control structure
+ */
+ void arm_pid_reset_q15(
+ arm_pid_instance_q15 * S);
+
+
+ /**
+ * @brief Instance structure for the floating-point Linear Interpolate function.
+ */
+ typedef struct
+ {
+ uint32_t nValues; /**< nValues */
+ float32_t x1; /**< x1 */
+ float32_t xSpacing; /**< xSpacing */
+ float32_t *pYData; /**< pointer to the table of Y values */
+ } arm_linear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ float32_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q31_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q15_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q7_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q7;
+
+
+ /**
+ * @brief Q7 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q15;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_q15(
+ arm_cfft_radix2_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_q15(
+ const arm_cfft_radix2_instance_q15 * S,
+ q15_t * pSrc);
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q15;
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_q15(
+ arm_cfft_radix4_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_q15(
+ const arm_cfft_radix4_instance_q15 * S,
+ q15_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q31;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_q31(
+ arm_cfft_radix2_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_q31(
+ const arm_cfft_radix2_instance_q31 * S,
+ q31_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Q31 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q31;
+
+/* Deprecated */
+ void arm_cfft_radix4_q31(
+ const arm_cfft_radix4_instance_q31 * S,
+ q31_t * pSrc);
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_q31(
+ arm_cfft_radix4_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix2_instance_f32;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_f32(
+ arm_cfft_radix2_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_f32(
+ const arm_cfft_radix2_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f32;
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_f32(
+ arm_cfft_radix4_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_f32(
+ const arm_cfft_radix4_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_q15;
+
+void arm_cfft_q15(
+ const arm_cfft_instance_q15 * S,
+ q15_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_q31;
+
+void arm_cfft_q31(
+ const arm_cfft_instance_q31 * S,
+ q31_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_f32;
+
+ void arm_cfft_f32(
+ const arm_cfft_instance_f32 * S,
+ float32_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the Q15 RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q15;
+
+ arm_status arm_rfft_init_q15(
+ arm_rfft_instance_q15 * S,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst);
+
+ /**
+ * @brief Instance structure for the Q31 RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q31;
+
+ arm_status arm_rfft_init_q31(
+ arm_rfft_instance_q31 * S,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q31(
+ const arm_rfft_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint16_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_f32;
+
+ arm_status arm_rfft_init_f32(
+ arm_rfft_instance_f32 * S,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_f32(
+ const arm_rfft_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+typedef struct
+ {
+ arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f32 ;
+
+arm_status arm_rfft_fast_init_f32 (
+ arm_rfft_fast_instance_f32 * S,
+ uint16_t fftLen);
+
+void arm_rfft_fast_f32(
+ arm_rfft_fast_instance_f32 * S,
+ float32_t * p, float32_t * pOut,
+ uint8_t ifftFlag);
+
+ /**
+ * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ float32_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_f32;
+
+
+ /**
+ * @brief Initialization function for the floating-point DCT4/IDCT4.
+ * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal
is not a supported transform length.
+ */
+ arm_status arm_dct4_init_f32(
+ arm_dct4_instance_f32 * S,
+ arm_rfft_instance_f32 * S_RFFT,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ float32_t normalize);
+
+
+ /**
+ * @brief Processing function for the floating-point DCT4/IDCT4.
+ * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_f32(
+ const arm_dct4_instance_f32 * S,
+ float32_t * pState,
+ float32_t * pInlineBuffer);
+
+
+ /**
+ * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ q31_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q31;
+
+
+ /**
+ * @brief Initialization function for the Q31 DCT4/IDCT4.
+ * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N
is not a supported transform length.
+ */
+ arm_status arm_dct4_init_q31(
+ arm_dct4_instance_q31 * S,
+ arm_rfft_instance_q31 * S_RFFT,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q31_t normalize);
+
+
+ /**
+ * @brief Processing function for the Q31 DCT4/IDCT4.
+ * @param[in] S points to an instance of the Q31 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_q31(
+ const arm_dct4_instance_q31 * S,
+ q31_t * pState,
+ q31_t * pInlineBuffer);
+
+
+ /**
+ * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ q15_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 DCT4/IDCT4.
+ * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N
is not a supported transform length.
+ */
+ arm_status arm_dct4_init_q15(
+ arm_dct4_instance_q15 * S,
+ arm_rfft_instance_q15 * S_RFFT,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q15_t normalize);
+
+
+ /**
+ * @brief Processing function for the Q15 DCT4/IDCT4.
+ * @param[in] S points to an instance of the Q15 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_q15(
+ const arm_dct4_instance_q15 * S,
+ q15_t * pState,
+ q15_t * pInlineBuffer);
+
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q7 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q7 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_f32(
+ float32_t * pSrc,
+ float32_t scale,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q7 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q7(
+ q7_t * pSrc,
+ q7_t scaleFract,
+ int8_t shift,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q15 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q15(
+ q15_t * pSrc,
+ q15_t scaleFract,
+ int8_t shift,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q31 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q31(
+ q31_t * pSrc,
+ q31_t scaleFract,
+ int8_t shift,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q7 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * result);
+
+
+ /**
+ * @brief Dot product of Q7 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * result);
+
+
+ /**
+ * @brief Dot product of Q15 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+
+ /**
+ * @brief Dot product of Q31 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+
+ /**
+ * @brief Shifts the elements of a Q7 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q7(
+ q7_t * pSrc,
+ int8_t shiftBits,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Shifts the elements of a Q15 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q15(
+ q15_t * pSrc,
+ int8_t shiftBits,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Shifts the elements of a Q31 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q31(
+ q31_t * pSrc,
+ int8_t shiftBits,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_f32(
+ float32_t * pSrc,
+ float32_t offset,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q7 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q7(
+ q7_t * pSrc,
+ q7_t offset,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q15 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q15(
+ q15_t * pSrc,
+ q15_t offset,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q31 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q31(
+ q31_t * pSrc,
+ q31_t offset,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q7 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q15 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q31 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q7 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q15 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q31 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_f32(
+ float32_t value,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q7 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q7(
+ q7_t value,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q15 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q15(
+ q15_t value,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q31 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q31(
+ q31_t value,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ */
+ void arm_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
+ void arm_conv_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
+ void arm_conv_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
+ void arm_conv_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q7 sequences
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point FIR decimator.
+ * @param[in] S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR decimator.
+ * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+ arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+ arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_fast_q31(
+ arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize
is not a multiple of M
.
+ */
+ arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ } arm_fir_interpolate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+ arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+ arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps
is not a multiple of the interpolation factor L
.
+ */
+ arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
+ } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+ /**
+ * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_stereo_df2T_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f64;
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_stereo_df2T_f32(
+ const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f64(
+ const arm_biquad_cascade_df2T_instance_f64 * S,
+ float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_stereo_df2T_init_f32(
+ arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f64(
+ arm_biquad_cascade_df2T_instance_f64 * S,
+ uint8_t numStages,
+ float64_t * pCoeffs,
+ float64_t * pState);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_f32;
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pkCoeffs,
+ float32_t * pvCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pkCoeffs,
+ q31_t * pvCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ */
+ void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pkCoeffs,
+ q15_t * pvCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the floating-point LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } arm_lms_instance_f32;
+
+
+ /**
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q31;
+
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+
+ /**
+ * @brief Instance structure for the floating-point normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_f32;
+
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q31_t *recipTable; /**< points to the reciprocal initial value table. */
+ q31_t energy; /**< saves previous frame energy. */
+ q31_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q31;
+
+
+ /**
+ * @brief Processing function for Q31 normalized LMS filter.
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Instance structure for the Q15 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q15;
+
+
+ /**
+ * @brief Processing function for Q15 normalized LMS filter.
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q15 sequences
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ */
+ void arm_correlate_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Correlation of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+
+ void arm_correlate_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+
+ void arm_correlate_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ */
+ void arm_correlate_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
+ void arm_correlate_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Instance structure for the floating-point sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q7 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q7;
+
+
+ /**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point sin_cos function.
+ * @param[in] theta input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cos output.
+ */
+ void arm_sin_cos_f32(
+ float32_t theta,
+ float32_t * pSinVal,
+ float32_t * pCosVal);
+
+
+ /**
+ * @brief Q31 sin_cos function.
+ * @param[in] theta scaled input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cosine output.
+ */
+ void arm_sin_cos_q31(
+ q31_t theta,
+ q31_t * pSinVal,
+ q31_t * pCosVal);
+
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup PID PID Motor Control
+ *
+ * A Proportional Integral Derivative (PID) controller is a generic feedback control
+ * loop mechanism widely used in industrial control systems.
+ * A PID controller is the most commonly used type of feedback controller.
+ *
+ * This set of functions implements (PID) controllers
+ * for Q15, Q31, and floating-point data types. The functions operate on a single sample
+ * of data and each call to the function returns a single processed value.
+ * S
points to an instance of the PID control data structure. in
+ * is the input sample value. The functions return the output value.
+ *
+ * \par Algorithm:
+ * + * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] + * A0 = Kp + Ki + Kd + * A1 = (-Kp ) - (2 * Kd ) + * A2 = Kd+ * + * \par + * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant + * + * \par + * \image html PID.gif "Proportional Integral Derivative Controller" + * + * \par + * The PID controller calculates an "error" value as the difference between + * the measured output and the reference input. + * The controller attempts to minimize the error by adjusting the process control inputs. + * The proportional value determines the reaction to the current error, + * the integral value determines the reaction based on the sum of recent errors, + * and the derivative value determines the reaction based on the rate at which the error has been changing. + * + * \par Instance Structure + * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. + * A separate instance structure must be defined for each PID Controller. + * There are separate instance structure declarations for each of the 3 supported data types. + * + * \par Reset Functions + * There is also an associated reset function for each data type which clears the state array. + * + * \par Initialization Functions + * There is also an associated initialization function for each data type. + * The initialization function performs the following operations: + * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. + * - Zeros out the values in the state buffer. + * + * \par + * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. + * + * \par Fixed-Point Behavior + * Care must be taken when using the fixed-point versions of the PID Controller functions. + * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup PID + * @{ + */ + + /** + * @brief Process function for the floating-point PID Control. + * @param[in,out] S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + */ + CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32( + arm_pid_instance_f32 * S, + float32_t in) + { + float32_t out; + + /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ + out = (S->A0 * in) + + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @brief Process function for the Q31 PID Control. + * @param[in,out] S points to an instance of the Q31 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * Scaling and Overflow Behavior: + * \par + * The function is implemented using an internal 64-bit accumulator. + * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. + * Thus, if the accumulator result overflows it wraps around rather than clip. + * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. + * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. + */ + CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31( + arm_pid_instance_q31 * S, + q31_t in) + { + q63_t acc; + q31_t out; + + /* acc = A0 * x[n] */ + acc = (q63_t) S->A0 * in; + + /* acc += A1 * x[n-1] */ + acc += (q63_t) S->A1 * S->state[0]; + + /* acc += A2 * x[n-2] */ + acc += (q63_t) S->A2 * S->state[1]; + + /* convert output to 1.31 format to add y[n-1] */ + out = (q31_t) (acc >> 31U); + + /* out += y[n-1] */ + out += S->state[2]; + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + } + + + /** + * @brief Process function for the Q15 PID Control. + * @param[in,out] S points to an instance of the Q15 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * Scaling and Overflow Behavior: + * \par + * The function is implemented using a 64-bit internal accumulator. + * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. + * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. + * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. + * Lastly, the accumulator is saturated to yield a result in 1.15 format. + */ + CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15( + arm_pid_instance_q15 * S, + q15_t in) + { + q63_t acc; + q15_t out; + +#if defined (ARM_MATH_DSP) + __SIMD32_TYPE *vstate; + + /* Implementation of PID controller */ + + /* acc = A0 * x[n] */ + acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + vstate = __SIMD32_CONST(S->state); + acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); +#else + /* acc = A0 * x[n] */ + acc = ((q31_t) S->A0) * in; + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc += (q31_t) S->A1 * S->state[0]; + acc += (q31_t) S->A2 * S->state[1]; +#endif + + /* acc += y[n-1] */ + acc += (q31_t) S->state[2] << 15; + + /* saturate the output */ + out = (q15_t) (__SSAT((acc >> 15), 16)); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + } + + /** + * @} end of PID group + */ + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * dst); + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f64( + const arm_matrix_instance_f64 * src, + arm_matrix_instance_f64 * dst); + + + + /** + * @ingroup groupController + */ + + /** + * @defgroup clarke Vector Clarke Transform + * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. + * Generally the Clarke transform uses three-phase currents
Ia, Ib and Ic
to calculate currents
+ * in the two-phase orthogonal stator axis Ialpha
and Ibeta
.
+ * When Ialpha
is superposed with Ia
as shown in the figure below
+ * \image html clarke.gif Stator current space vector and its components in (a,b).
+ * and Ia + Ib + Ic = 0
, in this condition Ialpha
and Ibeta
+ * can be calculated using only Ia
and Ib
.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeFormula.gif
+ * where Ia
and Ib
are the instantaneous stator phases and
+ * pIalpha
and pIbeta
are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup clarke
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point Clarke transform
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32(
+ float32_t Ia,
+ float32_t Ib,
+ float32_t * pIalpha,
+ float32_t * pIbeta)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+ *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
+ }
+
+
+ /**
+ * @brief Clarke transform for Q31 version
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31(
+ q31_t Ia,
+ q31_t Ib,
+ q31_t * pIalpha,
+ q31_t * pIbeta)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+ /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+ /* pIbeta is calculated by adding the intermediate products */
+ *pIbeta = __QADD(product1, product2);
+ }
+
+ /**
+ * @} end of clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q31 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_q7_to_q31(
+ q7_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_clarke Vector Inverse Clarke Transform
+ * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeInvFormula.gif
+ * where pIa
and pIb
are the instantaneous stator phases and
+ * Ialpha
and Ibeta
are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_clarke
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Clarke transform
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] pIa points to output three-phase coordinate a
+ * @param[out] pIb points to output three-phase coordinate b
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pIa,
+ float32_t * pIb)
+ {
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+ *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
+ }
+
+
+ /**
+ * @brief Inverse Clarke transform for Q31 version
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] pIa points to output three-phase coordinate a
+ * @param[out] pIb points to output three-phase coordinate b
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the subtraction, hence there is no risk of overflow.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pIa,
+ q31_t * pIb)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+ /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+ /* pIb is calculated by subtracting the products */
+ *pIb = __QSUB(product2, product1);
+ }
+
+ /**
+ * @} end of inv_clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q15 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_q7_to_q15(
+ q7_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup park Vector Park Transform
+ *
+ * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+ * The Park transform can be used to realize the transformation of the Ialpha
and the Ibeta
currents
+ * from the stationary to the moving reference frame and control the spatial relationship between
+ * the stator vector current and rotor flux vector.
+ * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+ * current vector and the relationship from the two reference frames:
+ * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkFormula.gif
+ * where Ialpha
and Ibeta
are the stator vector components,
+ * pId
and pIq
are rotor vector components and cosVal
and sinVal
are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Park transform
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] pId points to output rotor reference frame d
+ * @param[out] pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ *
+ * The function implements the forward Park transform.
+ *
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_park_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pId,
+ float32_t * pIq,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+ *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+ *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+ }
+
+
+ /**
+ * @brief Park transform for Q31 version
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] pId points to output rotor reference frame d
+ * @param[out] pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition and subtraction, hence there is no risk of overflow.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_park_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pId,
+ q31_t * pIq,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Ialpha * cosVal) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * sinVal) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Ialpha * sinVal) */
+ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * cosVal) */
+ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+ /* Calculate pId by adding the two intermediate products 1 and 2 */
+ *pId = __QADD(product1, product2);
+
+ /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+ *pIq = __QSUB(product4, product3);
+ }
+
+ /**
+ * @} end of park group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q7_to_float(
+ q7_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_park Vector Inverse Park transform
+ * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkInvFormula.gif
+ * where pIalpha
and pIbeta
are the stator vector components,
+ * Id
and Iq
are rotor vector components and cosVal
and sinVal
are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Park transform
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32(
+ float32_t Id,
+ float32_t Iq,
+ float32_t * pIalpha,
+ float32_t * pIbeta,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+ *pIalpha = Id * cosVal - Iq * sinVal;
+
+ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+ *pIbeta = Id * sinVal + Iq * cosVal;
+ }
+
+
+ /**
+ * @brief Inverse Park transform for Q31 version
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31(
+ q31_t Id,
+ q31_t Iq,
+ q31_t * pIalpha,
+ q31_t * pIbeta,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Id * cosVal) */
+ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * sinVal) */
+ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Id * sinVal) */
+ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * cosVal) */
+ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+ /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+ *pIalpha = __QSUB(product1, product2);
+
+ /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+ *pIbeta = __QADD(product4, product3);
+ }
+
+ /**
+ * @} end of Inverse park group
+ */
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_float(
+ q31_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup LinearInterpolate Linear Interpolation
+ *
+ * Linear interpolation is a method of curve fitting using linear polynomials.
+ * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
+ *
+ * \par
+ * \image html LinearInterp.gif "Linear interpolation"
+ *
+ * \par
+ * A Linear Interpolate function calculates an output value(y), for the input(x)
+ * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
+ *
+ * \par Algorithm:
+ * + * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) + * where x0, x1 are nearest values of input x + * y0, y1 are nearest values to output y + *+ * + * \par + * This set of functions implements Linear interpolation process + * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single + * sample of data and each call to the function returns a single processed value. + *
S
points to an instance of the Linear Interpolate function data structure.
+ * x
is the input sample value. The functions returns the output value.
+ *
+ * \par
+ * if x is outside of the table boundary, Linear interpolation returns first value of the table
+ * if x is below input range and returns last value of table if x is above range.
+ */
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+ CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32(
+ arm_linear_interp_instance_f32 * S,
+ float32_t x)
+ {
+ float32_t y;
+ float32_t x0, x1; /* Nearest input values */
+ float32_t y0, y1; /* Nearest output values */
+ float32_t xSpacing = S->xSpacing; /* spacing between input values */
+ int32_t i; /* Index variable */
+ float32_t *pYData = S->pYData; /* pointer to output table */
+
+ /* Calculation of index */
+ i = (int32_t) ((x - S->x1) / xSpacing);
+
+ if (i < 0)
+ {
+ /* Iniatilize output for below specified range as least output value of table */
+ y = pYData[0];
+ }
+ else if ((uint32_t)i >= S->nValues)
+ {
+ /* Iniatilize output for above specified range as last output value of table */
+ y = pYData[S->nValues - 1];
+ }
+ else
+ {
+ /* Calculation of nearest input values */
+ x0 = S->x1 + i * xSpacing;
+ x1 = S->x1 + (i + 1) * xSpacing;
+
+ /* Read of nearest output values */
+ y0 = pYData[i];
+ y1 = pYData[i + 1];
+
+ /* Calculation of output */
+ y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
+
+ }
+
+ /* returns output value */
+ return (y);
+ }
+
+
+ /**
+ *
+ * @brief Process function for the Q31 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+ CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31(
+ q31_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q31_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & (q31_t)0xFFF00000) >> 20);
+
+ if (index >= (int32_t)(nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else if (index < 0)
+ {
+ return (pYData[0]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* shift left by 11 to keep fract in 1.31 format */
+ fract = (x & 0x000FFFFF) << 11;
+
+ /* Read two nearest output values from the index in 1.31(q31) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1];
+
+ /* Calculation of y0 * (1-fract) and y is in 2.30 format */
+ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
+
+ /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
+ y += ((q31_t) (((q63_t) y1 * fract) >> 32));
+
+ /* Convert y to 1.31 format */
+ return (y << 1U);
+ }
+ }
+
+
+ /**
+ *
+ * @brief Process function for the Q15 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+ CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15(
+ q15_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q63_t y; /* output */
+ q15_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & (int32_t)0xFFF00000) >> 20);
+
+ if (index >= (int32_t)(nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else if (index < 0)
+ {
+ return (pYData[0]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ y0 = pYData[index];
+ y1 = pYData[index + 1];
+
+ /* Calculation of y0 * (1-fract) and y is in 13.35 format */
+ y = ((q63_t) y0 * (0xFFFFF - fract));
+
+ /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
+ y += ((q63_t) y1 * (fract));
+
+ /* convert y to 1.15 format */
+ return (q15_t) (y >> 20);
+ }
+ }
+
+
+ /**
+ *
+ * @brief Process function for the Q7 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x
is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ */
+ CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7(
+ q7_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q7_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ uint32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ if (x < 0)
+ {
+ return (pYData[0]);
+ }
+ index = (x >> 20) & 0xfff;
+
+ if (index >= (nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index and are in 1.7(q7) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1];
+
+ /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
+ y = ((y0 * (0xFFFFF - fract)));
+
+ /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
+ y += (y1 * fract);
+
+ /* convert y to 1.7(q7) format */
+ return (q7_t) (y >> 20);
+ }
+ }
+
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return sin(x).
+ */
+ float32_t arm_sin_f32(
+ float32_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+ q31_t arm_sin_q31(
+ q31_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+ q15_t arm_sin_q15(
+ q15_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return cos(x).
+ */
+ float32_t arm_cos_f32(
+ float32_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+ q31_t arm_cos_q31(
+ q31_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+ q15_t arm_cos_q15(
+ q15_t x);
+
+
+ /**
+ * @ingroup groupFastMath
+ */
+
+
+ /**
+ * @defgroup SQRT Square Root
+ *
+ * Computes the square root of a number.
+ * There are separate functions for Q15, Q31, and floating-point data types.
+ * The square root function is computed using the Newton-Raphson algorithm.
+ * This is an iterative algorithm of the form:
+ * + * x1 = x0 - f(x0)/f'(x0) + *+ * where
x1
is the current estimate,
+ * x0
is the previous estimate, and
+ * f'(x0)
is the derivative of f()
evaluated at x0
.
+ * For the square root function, the algorithm reduces to:
+ * + * x0 = in/2 [initial guess] + * x1 = 1/2 * ( x0 + in / x0) [each iteration] + *+ */ + + + /** + * @addtogroup SQRT + * @{ + */ + + /** + * @brief Floating-point square root function. + * @param[in] in input value. + * @param[out] pOut square root of input value. + * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if + *
in
is negative value and returns zero output for negative values.
+ */
+ CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32(
+ float32_t in,
+ float32_t * pOut)
+ {
+ if (in >= 0.0f)
+ {
+
+#if (__FPU_USED == 1) && defined ( __CC_ARM )
+ *pOut = __sqrtf(in);
+#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
+ *pOut = __builtin_sqrtf(in);
+#elif (__FPU_USED == 1) && defined(__GNUC__)
+ *pOut = __builtin_sqrtf(in);
+#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
+ __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
+#else
+ *pOut = sqrtf(in);
+#endif
+
+ return (ARM_MATH_SUCCESS);
+ }
+ else
+ {
+ *pOut = 0.0f;
+ return (ARM_MATH_ARGUMENT_ERROR);
+ }
+ }
+
+
+ /**
+ * @brief Q31 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
+ * @param[out] pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q31(
+ q31_t in,
+ q31_t * pOut);
+
+
+ /**
+ * @brief Q15 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
+ * @param[out] pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in
is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q15(
+ q15_t in,
+ q15_t * pOut);
+
+ /**
+ * @} end of SQRT group
+ */
+
+
+ /**
+ * @brief floating-point Circular write function.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const int32_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+
+ /**
+ * @brief floating-point Circular Read function.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ int32_t * dst,
+ int32_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == (int32_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q15 Circular write function.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q15_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+ /**
+ * @brief Q15 Circular Read function.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q15_t * dst,
+ q15_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == (q15_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular write function.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q7_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular Read function.
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q7_t * dst,
+ q7_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == (q7_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Floating-point complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t numSamples,
+ q31_t * realResult,
+ q31_t * imagResult);
+
+
+ /**
+ * @brief Q31 complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t numSamples,
+ q63_t * realResult,
+ q63_t * imagResult);
+
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t numSamples,
+ float32_t * realResult,
+ float32_t * imagResult);
+
+
+ /**
+ * @brief Q15 complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_q15(
+ q15_t * pSrcCmplx,
+ q15_t * pSrcReal,
+ q15_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_q31(
+ q31_t * pSrcCmplx,
+ q31_t * pSrcReal,
+ q31_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_f32(
+ float32_t * pSrcCmplx,
+ float32_t * pSrcReal,
+ float32_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Minimum value of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+
+ /**
+ * @brief Minimum value of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[in] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+
+ /**
+ * @brief Minimum value of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q7 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q15 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q31 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+
+ /**
+ * @brief Q15 complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q31 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q31(
+ float32_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q15 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q15(
+ float32_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q7 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q7 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q7(
+ float32_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_q15(
+ q31_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_q7(
+ q31_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_float(
+ q15_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_q31(
+ q15_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_q7(
+ q15_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup BilinearInterpolate Bilinear Interpolation
+ *
+ * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
+ * The underlying function f(x, y)
is sampled on a regular grid and the interpolation process
+ * determines values between the grid points.
+ * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
+ * Bilinear interpolation is often used in image processing to rescale images.
+ * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
+ *
+ * Algorithm
+ * \par
+ * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
+ * For floating-point, the instance structure is defined as:
+ * + * typedef struct + * { + * uint16_t numRows; + * uint16_t numCols; + * float32_t *pData; + * } arm_bilinear_interp_instance_f32; + *+ * + * \par + * where
numRows
specifies the number of rows in the table;
+ * numCols
specifies the number of columns in the table;
+ * and pData
points to an array of size numRows*numCols
values.
+ * The data table pTable
is organized in row order and the supplied data values fall on integer indexes.
+ * That is, table element (x,y) is located at pTable[x + y*numCols]
where x and y are integers.
+ *
+ * \par
+ * Let (x, y)
specify the desired interpolation point. Then define:
+ * + * XF = floor(x) + * YF = floor(y) + *+ * \par + * The interpolated output point is computed as: + *
+ * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) + * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) + * + f(XF, YF+1) * (1-(x-XF))*(y-YF) + * + f(XF+1, YF+1) * (x-XF)*(y-YF) + *+ * Note that the coordinates (x, y) contain integer and fractional components. + * The integer components specify which portion of the table to use while the + * fractional components control the interpolation processor. + * + * \par + * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. + */ + + /** + * @addtogroup BilinearInterpolate + * @{ + */ + + + /** + * + * @brief Floating-point bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. + * @return out interpolated value. + */ + CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32( + const arm_bilinear_interp_instance_f32 * S, + float32_t X, + float32_t Y) + { + float32_t out; + float32_t f00, f01, f10, f11; + float32_t *pData = S->pData; + int32_t xIndex, yIndex, index; + float32_t xdiff, ydiff; + float32_t b1, b2, b3, b4; + + xIndex = (int32_t) X; + yIndex = (int32_t) Y; + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) + { + return (0); + } + + /* Calculation of index for two nearest points in X-direction */ + index = (xIndex - 1) + (yIndex - 1) * S->numCols; + + + /* Read two nearest points in X-direction */ + f00 = pData[index]; + f01 = pData[index + 1]; + + /* Calculation of index for two nearest points in Y-direction */ + index = (xIndex - 1) + (yIndex) * S->numCols; + + + /* Read two nearest points in Y-direction */ + f10 = pData[index]; + f11 = pData[index + 1]; + + /* Calculation of intermediate values */ + b1 = f00; + b2 = f01 - f00; + b3 = f10 - f00; + b4 = f00 - f01 - f10 + f11; + + /* Calculation of fractional part in X */ + xdiff = X - xIndex; + + /* Calculation of fractional part in Y */ + ydiff = Y - yIndex; + + /* Calculation of bi-linear interpolated output */ + out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; + + /* return to application */ + return (out); + } + + + /** + * + * @brief Q31 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31( + arm_bilinear_interp_instance_q31 * S, + q31_t X, + q31_t Y) + { + q31_t out; /* Temporary output */ + q31_t acc = 0; /* output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q31_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q31_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* shift left xfract by 11 to keep 1.31 format */ + xfract = (X & 0x000FFFFF) << 11U; + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; + x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; + + /* 20 bits for the fractional part */ + /* shift left yfract by 11 to keep 1.31 format */ + yfract = (Y & 0x000FFFFF) << 11U; + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; + y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ + out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); + acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); + + /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); + + /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* Convert acc to 1.31(q31) format */ + return ((q31_t)(acc << 2)); + } + + + /** + * @brief Q15 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15( + arm_bilinear_interp_instance_q15 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q15_t x1, x2, y1, y2; /* Nearest output values */ + q31_t xfract, yfract; /* X, Y fractional parts */ + int32_t rI, cI; /* Row and column indices */ + q15_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ + + /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ + /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ + out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4U); + acc = ((q63_t) out * (0xFFFFF - yfract)); + + /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4U); + acc += ((q63_t) out * (xfract)); + + /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4U); + acc += ((q63_t) out * (yfract)); + + /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y2 * (xfract)) >> 4U); + acc += ((q63_t) out * (yfract)); + + /* acc is in 13.51 format and down shift acc by 36 times */ + /* Convert out to 1.15 format */ + return ((q15_t)(acc >> 36)); + } + + + /** + * @brief Q7 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7( + arm_bilinear_interp_instance_q7 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q7_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q7_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & (q31_t)0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & (q31_t)0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ + out = ((x1 * (0xFFFFF - xfract))); + acc = (((q63_t) out * (0xFFFFF - yfract))); + + /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ + out = ((x2 * (0xFFFFF - yfract))); + acc += (((q63_t) out * (xfract))); + + /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y1 * (0xFFFFF - xfract))); + acc += (((q63_t) out * (yfract))); + + /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y2 * (yfract))); + acc += (((q63_t) out * (xfract))); + + /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ + return ((q7_t)(acc >> 40)); + } + + /** + * @} end of BilinearInterpolate group + */ + + +/* SMMLAR */ +#define multAcc_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) + +/* SMMLSR */ +#define multSub_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) + +/* SMMULR */ +#define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) + +/* SMMLA */ +#define multAcc_32x32_keep32(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + +/* SMMLS */ +#define multSub_32x32_keep32(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +/* SMMUL */ +#define mult_32x32_keep32(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + + +#if defined ( __CC_ARM ) + /* Enter low optimization region - place directly above function definition */ + #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + #else + #define LOW_OPTIMIZATION_EXIT + #endif + + /* Enter low optimization region - place directly above function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __GNUC__ ) + #define LOW_OPTIMIZATION_ENTER \ + __attribute__(( optimize("-O1") )) + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __ICCARM__ ) + /* Enter low optimization region - place directly above function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #define LOW_OPTIMIZATION_EXIT + + /* Enter low optimization region - place directly above function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __TI_ARM__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __CSMC__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __TASKING__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#endif + + +#ifdef __cplusplus +} +#endif + +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __GNUC__ ) +#pragma GCC diagnostic pop + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#else + #error Unknown compiler +#endif + +#endif /* _ARM_MATH_H */ + +/** + * + * End of file. + */ diff --git a/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_armcc.h b/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_armcc.h new file mode 100644 index 000000000..f204e241c --- /dev/null +++ b/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_armcc.h @@ -0,0 +1,870 @@ +/**************************************************************************//** + * @file cmsis_armcc.h + * @brief CMSIS compiler ARMCC (Arm Compiler 5) header file + * @version V5.0.4 + * @date 10. January 2018 + ******************************************************************************/ +/* + * Copyright (c) 2009-2018 Arm Limited. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef __CMSIS_ARMCC_H +#define __CMSIS_ARMCC_H + + +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677) + #error "Please use Arm Compiler Toolchain V4.0.677 or later!" +#endif + +/* CMSIS compiler control architecture macros */ +#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \ + (defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) ) + #define __ARM_ARCH_6M__ 1 +#endif + +#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1)) + #define __ARM_ARCH_7M__ 1 +#endif + +#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1)) + #define __ARM_ARCH_7EM__ 1 +#endif + + /* __ARM_ARCH_8M_BASE__ not applicable */ + /* __ARM_ARCH_8M_MAIN__ not applicable */ + + +/* CMSIS compiler specific defines */ +#ifndef __ASM + #define __ASM __asm +#endif +#ifndef __INLINE + #define __INLINE __inline +#endif +#ifndef __STATIC_INLINE + #define __STATIC_INLINE static __inline +#endif +#ifndef __STATIC_FORCEINLINE + #define __STATIC_FORCEINLINE static __forceinline +#endif +#ifndef __NO_RETURN + #define __NO_RETURN __declspec(noreturn) +#endif +#ifndef __USED + #define __USED __attribute__((used)) +#endif +#ifndef __WEAK + #define __WEAK __attribute__((weak)) +#endif +#ifndef __PACKED + #define __PACKED __attribute__((packed)) +#endif +#ifndef __PACKED_STRUCT + #define __PACKED_STRUCT __packed struct +#endif +#ifndef __PACKED_UNION + #define __PACKED_UNION __packed union +#endif +#ifndef __UNALIGNED_UINT32 /* deprecated */ + #define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x))) +#endif +#ifndef __UNALIGNED_UINT16_WRITE + #define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val)) +#endif +#ifndef __UNALIGNED_UINT16_READ + #define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr))) +#endif +#ifndef __UNALIGNED_UINT32_WRITE + #define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val)) +#endif +#ifndef __UNALIGNED_UINT32_READ + #define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr))) +#endif +#ifndef __ALIGNED + #define __ALIGNED(x) __attribute__((aligned(x))) +#endif +#ifndef __RESTRICT + #define __RESTRICT __restrict +#endif + +/* ########################### Core Function Access ########################### */ +/** \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions + @{ + */ + +/** + \brief Enable IRQ Interrupts + \details Enables IRQ interrupts by clearing the I-bit in the CPSR. + Can only be executed in Privileged modes. + */ +/* intrinsic void __enable_irq(); */ + + +/** + \brief Disable IRQ Interrupts + \details Disables IRQ interrupts by setting the I-bit in the CPSR. + Can only be executed in Privileged modes. + */ +/* intrinsic void __disable_irq(); */ + +/** + \brief Get Control Register + \details Returns the content of the Control Register. + \return Control Register value + */ +__STATIC_INLINE uint32_t __get_CONTROL(void) +{ + register uint32_t __regControl __ASM("control"); + return(__regControl); +} + + +/** + \brief Set Control Register + \details Writes the given value to the Control Register. + \param [in] control Control Register value to set + */ +__STATIC_INLINE void __set_CONTROL(uint32_t control) +{ + register uint32_t __regControl __ASM("control"); + __regControl = control; +} + + +/** + \brief Get IPSR Register + \details Returns the content of the IPSR Register. + \return IPSR Register value + */ +__STATIC_INLINE uint32_t __get_IPSR(void) +{ + register uint32_t __regIPSR __ASM("ipsr"); + return(__regIPSR); +} + + +/** + \brief Get APSR Register + \details Returns the content of the APSR Register. + \return APSR Register value + */ +__STATIC_INLINE uint32_t __get_APSR(void) +{ + register uint32_t __regAPSR __ASM("apsr"); + return(__regAPSR); +} + + +/** + \brief Get xPSR Register + \details Returns the content of the xPSR Register. + \return xPSR Register value + */ +__STATIC_INLINE uint32_t __get_xPSR(void) +{ + register uint32_t __regXPSR __ASM("xpsr"); + return(__regXPSR); +} + + +/** + \brief Get Process Stack Pointer + \details Returns the current value of the Process Stack Pointer (PSP). + \return PSP Register value + */ +__STATIC_INLINE uint32_t __get_PSP(void) +{ + register uint32_t __regProcessStackPointer __ASM("psp"); + return(__regProcessStackPointer); +} + + +/** + \brief Set Process Stack Pointer + \details Assigns the given value to the Process Stack Pointer (PSP). + \param [in] topOfProcStack Process Stack Pointer value to set + */ +__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) +{ + register uint32_t __regProcessStackPointer __ASM("psp"); + __regProcessStackPointer = topOfProcStack; +} + + +/** + \brief Get Main Stack Pointer + \details Returns the current value of the Main Stack Pointer (MSP). + \return MSP Register value + */ +__STATIC_INLINE uint32_t __get_MSP(void) +{ + register uint32_t __regMainStackPointer __ASM("msp"); + return(__regMainStackPointer); +} + + +/** + \brief Set Main Stack Pointer + \details Assigns the given value to the Main Stack Pointer (MSP). + \param [in] topOfMainStack Main Stack Pointer value to set + */ +__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) +{ + register uint32_t __regMainStackPointer __ASM("msp"); + __regMainStackPointer = topOfMainStack; +} + + +/** + \brief Get Priority Mask + \details Returns the current state of the priority mask bit from the Priority Mask Register. + \return Priority Mask value + */ +__STATIC_INLINE uint32_t __get_PRIMASK(void) +{ + register uint32_t __regPriMask __ASM("primask"); + return(__regPriMask); +} + + +/** + \brief Set Priority Mask + \details Assigns the given value to the Priority Mask Register. + \param [in] priMask Priority Mask + */ +__STATIC_INLINE void __set_PRIMASK(uint32_t priMask) +{ + register uint32_t __regPriMask __ASM("primask"); + __regPriMask = (priMask); +} + + +#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) + +/** + \brief Enable FIQ + \details Enables FIQ interrupts by clearing the F-bit in the CPSR. + Can only be executed in Privileged modes. + */ +#define __enable_fault_irq __enable_fiq + + +/** + \brief Disable FIQ + \details Disables FIQ interrupts by setting the F-bit in the CPSR. + Can only be executed in Privileged modes. + */ +#define __disable_fault_irq __disable_fiq + + +/** + \brief Get Base Priority + \details Returns the current value of the Base Priority register. + \return Base Priority register value + */ +__STATIC_INLINE uint32_t __get_BASEPRI(void) +{ + register uint32_t __regBasePri __ASM("basepri"); + return(__regBasePri); +} + + +/** + \brief Set Base Priority + \details Assigns the given value to the Base Priority register. + \param [in] basePri Base Priority value to set + */ +__STATIC_INLINE void __set_BASEPRI(uint32_t basePri) +{ + register uint32_t __regBasePri __ASM("basepri"); + __regBasePri = (basePri & 0xFFU); +} + + +/** + \brief Set Base Priority with condition + \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, + or the new value increases the BASEPRI priority level. + \param [in] basePri Base Priority value to set + */ +__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri) +{ + register uint32_t __regBasePriMax __ASM("basepri_max"); + __regBasePriMax = (basePri & 0xFFU); +} + + +/** + \brief Get Fault Mask + \details Returns the current value of the Fault Mask register. + \return Fault Mask register value + */ +__STATIC_INLINE uint32_t __get_FAULTMASK(void) +{ + register uint32_t __regFaultMask __ASM("faultmask"); + return(__regFaultMask); +} + + +/** + \brief Set Fault Mask + \details Assigns the given value to the Fault Mask register. + \param [in] faultMask Fault Mask value to set + */ +__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) +{ + register uint32_t __regFaultMask __ASM("faultmask"); + __regFaultMask = (faultMask & (uint32_t)1U); +} + +#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ + + +#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) + +/** + \brief Get FPSCR + \details Returns the current value of the Floating Point Status/Control register. + \return Floating Point Status/Control register value + */ +__STATIC_INLINE uint32_t __get_FPSCR(void) +{ +#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ + (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) + register uint32_t __regfpscr __ASM("fpscr"); + return(__regfpscr); +#else + return(0U); +#endif +} + + +/** + \brief Set FPSCR + \details Assigns the given value to the Floating Point Status/Control register. + \param [in] fpscr Floating Point Status/Control value to set + */ +__STATIC_INLINE void __set_FPSCR(uint32_t fpscr) +{ +#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ + (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) + register uint32_t __regfpscr __ASM("fpscr"); + __regfpscr = (fpscr); +#else + (void)fpscr; +#endif +} + +#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ + + + +/*@} end of CMSIS_Core_RegAccFunctions */ + + +/* ########################## Core Instruction Access ######################### */ +/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface + Access to dedicated instructions + @{ +*/ + +/** + \brief No Operation + \details No Operation does nothing. This instruction can be used for code alignment purposes. + */ +#define __NOP __nop + + +/** + \brief Wait For Interrupt + \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. + */ +#define __WFI __wfi + + +/** + \brief Wait For Event + \details Wait For Event is a hint instruction that permits the processor to enter + a low-power state until one of a number of events occurs. + */ +#define __WFE __wfe + + +/** + \brief Send Event + \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. + */ +#define __SEV __sev + + +/** + \brief Instruction Synchronization Barrier + \details Instruction Synchronization Barrier flushes the pipeline in the processor, + so that all instructions following the ISB are fetched from cache or memory, + after the instruction has been completed. + */ +#define __ISB() do {\ + __schedule_barrier();\ + __isb(0xF);\ + __schedule_barrier();\ + } while (0U) + +/** + \brief Data Synchronization Barrier + \details Acts as a special kind of Data Memory Barrier. + It completes when all explicit memory accesses before this instruction complete. + */ +#define __DSB() do {\ + __schedule_barrier();\ + __dsb(0xF);\ + __schedule_barrier();\ + } while (0U) + +/** + \brief Data Memory Barrier + \details Ensures the apparent order of the explicit memory operations before + and after the instruction, without ensuring their completion. + */ +#define __DMB() do {\ + __schedule_barrier();\ + __dmb(0xF);\ + __schedule_barrier();\ + } while (0U) + + +/** + \brief Reverse byte order (32 bit) + \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. + \param [in] value Value to reverse + \return Reversed value + */ +#define __REV __rev + + +/** + \brief Reverse byte order (16 bit) + \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. + \param [in] value Value to reverse + \return Reversed value + */ +#ifndef __NO_EMBEDDED_ASM +__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value) +{ + rev16 r0, r0 + bx lr +} +#endif + + +/** + \brief Reverse byte order (16 bit) + \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. + \param [in] value Value to reverse + \return Reversed value + */ +#ifndef __NO_EMBEDDED_ASM +__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value) +{ + revsh r0, r0 + bx lr +} +#endif + + +/** + \brief Rotate Right in unsigned value (32 bit) + \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. + \param [in] op1 Value to rotate + \param [in] op2 Number of Bits to rotate + \return Rotated value + */ +#define __ROR __ror + + +/** + \brief Breakpoint + \details Causes the processor to enter Debug state. + Debug tools can use this to investigate system state when the instruction at a particular address is reached. + \param [in] value is ignored by the processor. + If required, a debugger can use it to store additional information about the breakpoint. + */ +#define __BKPT(value) __breakpoint(value) + + +/** + \brief Reverse bit order of value + \details Reverses the bit order of the given value. + \param [in] value Value to reverse + \return Reversed value + */ +#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) + #define __RBIT __rbit +#else +__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) +{ + uint32_t result; + uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */ + + result = value; /* r will be reversed bits of v; first get LSB of v */ + for (value >>= 1U; value != 0U; value >>= 1U) + { + result <<= 1U; + result |= value & 1U; + s--; + } + result <<= s; /* shift when v's highest bits are zero */ + return result; +} +#endif + + +/** + \brief Count leading zeros + \details Counts the number of leading zeros of a data value. + \param [in] value Value to count the leading zeros + \return number of leading zeros in value + */ +#define __CLZ __clz + + +#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) + +/** + \brief LDR Exclusive (8 bit) + \details Executes a exclusive LDR instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) + #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr)) +#else + #define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop") +#endif + + +/** + \brief LDR Exclusive (16 bit) + \details Executes a exclusive LDR instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) + #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr)) +#else + #define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop") +#endif + + +/** + \brief LDR Exclusive (32 bit) + \details Executes a exclusive LDR instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) + #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr)) +#else + #define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop") +#endif + + +/** + \brief STR Exclusive (8 bit) + \details Executes a exclusive STR instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) + #define __STREXB(value, ptr) __strex(value, ptr) +#else + #define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") +#endif + + +/** + \brief STR Exclusive (16 bit) + \details Executes a exclusive STR instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) + #define __STREXH(value, ptr) __strex(value, ptr) +#else + #define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") +#endif + + +/** + \brief STR Exclusive (32 bit) + \details Executes a exclusive STR instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) + #define __STREXW(value, ptr) __strex(value, ptr) +#else + #define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") +#endif + + +/** + \brief Remove the exclusive lock + \details Removes the exclusive lock which is created by LDREX. + */ +#define __CLREX __clrex + + +/** + \brief Signed Saturate + \details Saturates a signed value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (1..32) + \return Saturated value + */ +#define __SSAT __ssat + + +/** + \brief Unsigned Saturate + \details Saturates an unsigned value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (0..31) + \return Saturated value + */ +#define __USAT __usat + + +/** + \brief Rotate Right with Extend (32 bit) + \details Moves each bit of a bitstring right by one bit. + The carry input is shifted in at the left end of the bitstring. + \param [in] value Value to rotate + \return Rotated value + */ +#ifndef __NO_EMBEDDED_ASM +__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value) +{ + rrx r0, r0 + bx lr +} +#endif + + +/** + \brief LDRT Unprivileged (8 bit) + \details Executes a Unprivileged LDRT instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr)) + + +/** + \brief LDRT Unprivileged (16 bit) + \details Executes a Unprivileged LDRT instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr)) + + +/** + \brief LDRT Unprivileged (32 bit) + \details Executes a Unprivileged LDRT instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr)) + + +/** + \brief STRT Unprivileged (8 bit) + \details Executes a Unprivileged STRT instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +#define __STRBT(value, ptr) __strt(value, ptr) + + +/** + \brief STRT Unprivileged (16 bit) + \details Executes a Unprivileged STRT instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +#define __STRHT(value, ptr) __strt(value, ptr) + + +/** + \brief STRT Unprivileged (32 bit) + \details Executes a Unprivileged STRT instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +#define __STRT(value, ptr) __strt(value, ptr) + +#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ + +/** + \brief Signed Saturate + \details Saturates a signed value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (1..32) + \return Saturated value + */ +__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat) +{ + if ((sat >= 1U) && (sat <= 32U)) + { + const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); + const int32_t min = -1 - max ; + if (val > max) + { + return max; + } + else if (val < min) + { + return min; + } + } + return val; +} + +/** + \brief Unsigned Saturate + \details Saturates an unsigned value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (0..31) + \return Saturated value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat) +{ + if (sat <= 31U) + { + const uint32_t max = ((1U << sat) - 1U); + if (val > (int32_t)max) + { + return max; + } + else if (val < 0) + { + return 0U; + } + } + return (uint32_t)val; +} + +#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ + +/*@}*/ /* end of group CMSIS_Core_InstructionInterface */ + + +/* ################### Compiler specific Intrinsics ########################### */ +/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics + Access to dedicated SIMD instructions + @{ +*/ + +#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) + +#define __SADD8 __sadd8 +#define __QADD8 __qadd8 +#define __SHADD8 __shadd8 +#define __UADD8 __uadd8 +#define __UQADD8 __uqadd8 +#define __UHADD8 __uhadd8 +#define __SSUB8 __ssub8 +#define __QSUB8 __qsub8 +#define __SHSUB8 __shsub8 +#define __USUB8 __usub8 +#define __UQSUB8 __uqsub8 +#define __UHSUB8 __uhsub8 +#define __SADD16 __sadd16 +#define __QADD16 __qadd16 +#define __SHADD16 __shadd16 +#define __UADD16 __uadd16 +#define __UQADD16 __uqadd16 +#define __UHADD16 __uhadd16 +#define __SSUB16 __ssub16 +#define __QSUB16 __qsub16 +#define __SHSUB16 __shsub16 +#define __USUB16 __usub16 +#define __UQSUB16 __uqsub16 +#define __UHSUB16 __uhsub16 +#define __SASX __sasx +#define __QASX __qasx +#define __SHASX __shasx +#define __UASX __uasx +#define __UQASX __uqasx +#define __UHASX __uhasx +#define __SSAX __ssax +#define __QSAX __qsax +#define __SHSAX __shsax +#define __USAX __usax +#define __UQSAX __uqsax +#define __UHSAX __uhsax +#define __USAD8 __usad8 +#define __USADA8 __usada8 +#define __SSAT16 __ssat16 +#define __USAT16 __usat16 +#define __UXTB16 __uxtb16 +#define __UXTAB16 __uxtab16 +#define __SXTB16 __sxtb16 +#define __SXTAB16 __sxtab16 +#define __SMUAD __smuad +#define __SMUADX __smuadx +#define __SMLAD __smlad +#define __SMLADX __smladx +#define __SMLALD __smlald +#define __SMLALDX __smlaldx +#define __SMUSD __smusd +#define __SMUSDX __smusdx +#define __SMLSD __smlsd +#define __SMLSDX __smlsdx +#define __SMLSLD __smlsld +#define __SMLSLDX __smlsldx +#define __SEL __sel +#define __QADD __qadd +#define __QSUB __qsub + +#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ + ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) + +#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ + ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) + +#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \ + ((int64_t)(ARG3) << 32U) ) >> 32U)) + +#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ +/*@} end of group CMSIS_SIMD_intrinsics */ + + +#endif /* __CMSIS_ARMCC_H */ diff --git a/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_armclang.h b/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_armclang.h new file mode 100644 index 000000000..f79b4120d --- /dev/null +++ b/FreeRTOS/Demo/CORTEX_M0+_LPC51U68_LPCXpresso/CMSIS/cmsis_armclang.h @@ -0,0 +1,1877 @@ +/**************************************************************************//** + * @file cmsis_armclang.h + * @brief CMSIS compiler armclang (Arm Compiler 6) header file + * @version V5.0.4 + * @date 10. January 2018 + ******************************************************************************/ +/* + * Copyright (c) 2009-2018 Arm Limited. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */ + +#ifndef __CMSIS_ARMCLANG_H +#define __CMSIS_ARMCLANG_H + +#pragma clang system_header /* treat file as system include file */ + +#ifndef __ARM_COMPAT_H +#include
iJ2epfi8dD rZTkP}9M~2WYcSGVs+OJPU
zWVCB&KOcTaaF)1Wukt~RQlfhMWXJ{6eSNz4(3L*ZeMyF#;qEh7E=cDePw~Nn<-s04
ze?nQ9R%dCSqR>Z9tRPy6$h<P`5)Ug6d2k^Hc);wp#donfn9
zt|7N43$$Egte&qH*6d2He$$H|so0fD^VO{R>L078iQjpCAxsky)s0%CbF;mAC`Iz`
zD>mB++^7xvFy=M4D@Fspy=Rif*6!DC2VdKph*f8gr})B9&W4}9Ue
q?$z