mirror of
https://github.com/FreeRTOS/FreeRTOS-Kernel.git
synced 2025-04-20 05:21:59 -04:00
Remove any TCP/IP functionality from the task pool demo - the TCP/IP stack is still built as it will be used in later revisions.
This commit is contained in:
parent
2e18203bb7
commit
bb0e1f356d
|
@ -0,0 +1,596 @@
|
|||
/*
|
||||
* FreeRTOS Kernel V10.2.1
|
||||
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
* this software and associated documentation files (the "Software"), to deal in
|
||||
* the Software without restriction, including without limitation the rights to
|
||||
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||||
* the Software, and to permit persons to whom the Software is furnished to do so,
|
||||
* subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||||
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||||
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||||
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* http://www.FreeRTOS.org
|
||||
* http://aws.amazon.com/freertos
|
||||
*
|
||||
* 1 tab == 4 spaces!
|
||||
*/
|
||||
|
||||
//_RB_ Add link to docs here.
|
||||
|
||||
/* Kernel includes. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
|
||||
/* Standard includes. */
|
||||
#include <stdio.h>
|
||||
|
||||
/* IoT SDK includes. */
|
||||
#include "iot_taskpool.h"
|
||||
|
||||
/* The priority at which that tasks in the task pool (the worker tasks) get
|
||||
created. */
|
||||
#define tpTASK_POOL_WORKER_PRIORITY 1
|
||||
|
||||
/* The number of jobs created in the example functions that create more than
|
||||
one job. */
|
||||
#define tpJOBS_TO_CREATE 5
|
||||
|
||||
/*
|
||||
* Prototypes for the functions that demonstrate the task pool API.
|
||||
* See the implementation of the prvTaskPoolDemoTask() function within this file
|
||||
* for a description of the individual functions. A configASSERT() is hit if
|
||||
* any of the demos encounter any unexpected behaviour.
|
||||
*/
|
||||
static void prvExample_BasicSingleJob( void );
|
||||
static void prvExample_DeferredSingleJob( void );
|
||||
static void prvExample_BasicRecyclableJob( void );
|
||||
static void prvExample_ReuseRecyclableJobFromLowPriorityTask( void );
|
||||
static void prvExample_ReuseRecyclableJobFromHighPriorityTask( void );
|
||||
|
||||
/*
|
||||
* Prototypes of the callback functions used in the examples. The callback
|
||||
* simply sends a signal (in the form of a direct task notification) to the
|
||||
* prvTaskPoolDemoTask() task to let the task know that the callback execute.
|
||||
* The handle of the prvTaskPoolDemoTask() task is not accessed directly, but
|
||||
* instead passed into the task pool job as the job's context.
|
||||
*/
|
||||
static void prvSimpleTaskNotifyCallback( IotTaskPool_t pTaskPool, IotTaskPoolJob_t pJob, void *pUserContext );
|
||||
|
||||
/*
|
||||
* The task used to demonstrate the task pool API. This task just loops through
|
||||
* each demo in turn.
|
||||
*/
|
||||
static void prvTaskPoolDemoTask( void *pvParameters );
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Parameters used to create the system task pool - see TBD for more information
|
||||
as the task pool used in this example is a slimmed down version of the full
|
||||
library - the slimmed down version being intended specifically for FreeRTOS
|
||||
kernel use cases. */
|
||||
static const IotTaskPoolInfo_t xTaskPoolParameters = {
|
||||
/* Minimum number of threads in a task pool.
|
||||
Note the slimmed down version of the task
|
||||
pool used by this library does not autoscale
|
||||
the number of tasks in the pool so in this
|
||||
case this sets the number of tasks in the
|
||||
pool. */
|
||||
2,
|
||||
/* Maximum number of threads in a task pool.
|
||||
Note the slimmed down version of the task
|
||||
pool used by this library does not autoscale
|
||||
the number of tasks in the pool so in this
|
||||
case this parameter is just ignored. */
|
||||
2,
|
||||
/* Stack size for every task pool thread - in
|
||||
bytes, hence multiplying by the number of bytes
|
||||
in a word as configMINIMAL_STACK_SIZE is
|
||||
specified in words. */
|
||||
configMINIMAL_STACK_SIZE * sizeof( portSTACK_TYPE ),
|
||||
/* Priority for every task pool thread. */
|
||||
tpTASK_POOL_WORKER_PRIORITY,
|
||||
};
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartSimpleTaskPoolDemo( void )
|
||||
{
|
||||
/* This example uses a single application task, which in turn is used to
|
||||
create and send jobs to task pool tasks. */
|
||||
xTaskCreate( prvTaskPoolDemoTask, /* Function that implements the task. */
|
||||
"PoolDemo", /* Text name for the task - only used for debugging. */
|
||||
configMINIMAL_STACK_SIZE, /* Size of stack (in words, not bytes) to allocate for the task. */
|
||||
NULL, /* Task parameter - not used in this case. */
|
||||
tskIDLE_PRIORITY, /* Task priority, must be between 0 and configMAX_PRIORITIES - 1. */
|
||||
NULL ); /* Used to pass out a handle to the created tsak - not used in this case. */
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvTaskPoolDemoTask( void *pvParameters )
|
||||
{
|
||||
IotTaskPoolError_t xResult;
|
||||
uint32_t ulLoops = 0;
|
||||
|
||||
/* Remove compiler warnings about unused parameters. */
|
||||
( void ) pvParameters;
|
||||
|
||||
/* The task pool must be created before it can be used. The system task
|
||||
pool is the task pool managed by the task pool library itself - the storage
|
||||
used by the task pool is provided by the library. */
|
||||
xResult = IotTaskPool_CreateSystemTaskPool( &xTaskPoolParameters );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* Attempting to create the task pool again should then appear to succeed
|
||||
(in case it is initialised by more than one library), but have no effect. */
|
||||
xResult = IotTaskPool_CreateSystemTaskPool( &xTaskPoolParameters );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Demonstrate the most basic use case where a non persistent job is
|
||||
created and scheduled to run immediately. The task pool worker tasks
|
||||
(in which the job callback function executes) have a priority above the
|
||||
priority of this task so the job's callback executes as soon as it is
|
||||
scheduled. */
|
||||
prvExample_BasicSingleJob();
|
||||
|
||||
/* Demonstrate a job being scheduled to run at some time in the
|
||||
future, and how a job scheduled to run in the future can be cancelled if
|
||||
it has not yet started executing. */
|
||||
prvExample_DeferredSingleJob();
|
||||
|
||||
/* Demonstrate the most basic use of a recyclable job. This is similar
|
||||
to prvExample_BasicSingleJob() but using a recyclable job. Creating a
|
||||
recyclable job will re-use a previously created and now spare job from
|
||||
the task pool's job cache if one is available, or otherwise dynamically
|
||||
create a new job if a spare job is not available in the cache but space
|
||||
remains in the cache. */
|
||||
prvExample_BasicRecyclableJob();
|
||||
|
||||
/* Demonstrate multiple recyclable jobs being created, used, and then
|
||||
re-used. In this the task pool worker tasks (in which the job callback
|
||||
functions execute) have a priority above the priority of this task so
|
||||
the job's callback functions execute as soon as they are scheduled. */
|
||||
prvExample_ReuseRecyclableJobFromLowPriorityTask();
|
||||
|
||||
/* Again demonstrate multiple recyclable jobs being used, but this time
|
||||
the priority of the task pool worker tasks (in which the job callback
|
||||
functions execute) are lower than the priority of this task so the job's
|
||||
callback functions don't execute until this task enteres the blocked
|
||||
state. */
|
||||
prvExample_ReuseRecyclableJobFromHighPriorityTask();
|
||||
|
||||
ulLoops++;
|
||||
if( ( ulLoops % 10UL ) == 0 )
|
||||
{
|
||||
printf( "prvTaskPoolDemoTask() performed %u iterations without hitting an assert.\r\n", ulLoops );
|
||||
fflush( stdout );
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvSimpleTaskNotifyCallback( IotTaskPool_t pTaskPool, IotTaskPoolJob_t pJob, void *pUserContext )
|
||||
{
|
||||
TaskHandle_t xTaskToNotify = ( TaskHandle_t ) pUserContext;
|
||||
|
||||
/* Remove warnings about unused parameters. */
|
||||
( void ) pTaskPool;
|
||||
( void ) pJob;
|
||||
|
||||
/* Notify the task that created this job. */
|
||||
xTaskNotifyGive( xTaskToNotify );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvExample_BasicSingleJob( void )
|
||||
{
|
||||
IotTaskPoolJobStorage_t xJobStorage;
|
||||
IotTaskPoolJob_t xJob;
|
||||
IotTaskPoolError_t xResult;
|
||||
uint32_t ulReturn;
|
||||
const uint32_t ulNoFlags = 0UL;
|
||||
const TickType_t xNoDelay = ( TickType_t ) 0;
|
||||
size_t xFreeHeapBeforeCreatingJob = xPortGetFreeHeapSize();
|
||||
IotTaskPoolJobStatus_t xJobStatus;
|
||||
|
||||
/* Don't expect any notifications to be pending yet. */
|
||||
configASSERT( ulTaskNotifyTake( pdTRUE, 0 ) == 0 );
|
||||
|
||||
/* Create and schedule a job using the handle of this task as the job's
|
||||
context and the function that sends a notification to the task handle as
|
||||
the jobs callback function. This is not a recyclable job so the storage
|
||||
required to hold information about the job is provided by this task - in
|
||||
this case the storage is on the stack of this task so no memory is allocated
|
||||
dynamically but the stack frame must remain in scope for the lifetime of
|
||||
the job. */
|
||||
xResult = IotTaskPool_CreateJob( prvSimpleTaskNotifyCallback, /* Callback function. */
|
||||
( void * ) xTaskGetCurrentTaskHandle(), /* Job context. */
|
||||
&xJobStorage,
|
||||
&xJob );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* The job has been created but not scheduled so is now ready. */
|
||||
IotTaskPool_GetStatus( NULL, xJob, &xJobStatus );
|
||||
configASSERT( xJobStatus == IOT_TASKPOOL_STATUS_READY );
|
||||
|
||||
/* This is not a persistent (recyclable) job and its storage is on the
|
||||
stack of this function, so the amount of heap space available should not
|
||||
have chanced since entering this function. */
|
||||
configASSERT( xFreeHeapBeforeCreatingJob == xPortGetFreeHeapSize() );
|
||||
|
||||
/* In the full task pool implementation the first parameter is used to
|
||||
pass the handle of the task pool to schedule. The lean task pool
|
||||
implementation used in this demo only supports a single task pool, which
|
||||
is created internally within the library, so the first parameter is NULL. */
|
||||
xResult = IotTaskPool_Schedule( NULL, xJob, ulNoFlags );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* Look for the notification coming from the job's callback function. The
|
||||
priority of the task pool worker task that executes the callback is higher
|
||||
than the priority of this task so a block time is not needed - the task pool
|
||||
worker task pre-empts this task and sends the notification (from the job's
|
||||
callback) as soon as the job is scheduled. */
|
||||
ulReturn = ulTaskNotifyTake( pdTRUE, xNoDelay );
|
||||
configASSERT( ulReturn );
|
||||
|
||||
/* The job's callback has executed so the job has now completed. */
|
||||
IotTaskPool_GetStatus( NULL, xJob, &xJobStatus );
|
||||
configASSERT( xJobStatus == IOT_TASKPOOL_STATUS_COMPLETED );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvExample_DeferredSingleJob( void )
|
||||
{
|
||||
IotTaskPoolJobStorage_t xJobStorage;
|
||||
IotTaskPoolJob_t xJob;
|
||||
IotTaskPoolError_t xResult;
|
||||
uint32_t ulReturn;
|
||||
const uint32_t ulShortDelay_ms = 100UL;
|
||||
const TickType_t xNoDelay = ( TickType_t ) 0, xAllowableMargin = ( TickType_t ) 5; /* Large margin for Windows port, which is not real time. */
|
||||
TickType_t xTimeBefore, xElapsedTime, xShortDelay_ticks;
|
||||
size_t xFreeHeapBeforeCreatingJob = xPortGetFreeHeapSize();
|
||||
IotTaskPoolJobStatus_t xJobStatus;
|
||||
|
||||
/* Don't expect any notifications to be pending yet. */
|
||||
configASSERT( ulTaskNotifyTake( pdTRUE, 0 ) == 0 );
|
||||
|
||||
/* Create a job using the handle of this task as the job's context and the
|
||||
function that sends a notification to the task handle as the jobs callback
|
||||
function. The job is created using storage allocated on the stack of this
|
||||
function - so no memory is allocated. */
|
||||
xResult = IotTaskPool_CreateJob( prvSimpleTaskNotifyCallback, /* Callback function. */
|
||||
( void * ) xTaskGetCurrentTaskHandle(), /* Job context. */
|
||||
&xJobStorage,
|
||||
&xJob );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* The job has been created but not scheduled so is now ready. */
|
||||
IotTaskPool_GetStatus( NULL, xJob, &xJobStatus );
|
||||
configASSERT( xJobStatus == IOT_TASKPOOL_STATUS_READY );
|
||||
|
||||
/* This is not a persistent (recyclable) job and its storage is on the
|
||||
stack of this function, so the amount of heap space available should not
|
||||
have chanced since entering this function. */
|
||||
configASSERT( xFreeHeapBeforeCreatingJob == xPortGetFreeHeapSize() );
|
||||
|
||||
/* Schedule the job to run its callback in xShortDelay_ms milliseconds time.
|
||||
In the full task pool implementation the first parameter is used to pass the
|
||||
handle of the task pool to schedule. The lean task pool implementation used
|
||||
in this demo only supports a single task pool, which is created internally
|
||||
within the library, so the first parameter is NULL. */
|
||||
xResult = IotTaskPool_ScheduleDeferred( NULL, xJob, ulShortDelay_ms );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* The scheduled job should not have executed yet, so don't expect any
|
||||
notifications and expect the job's status to be 'deferred'. */
|
||||
ulReturn = ulTaskNotifyTake( pdTRUE, xNoDelay );
|
||||
configASSERT( ulReturn == 0 );
|
||||
IotTaskPool_GetStatus( NULL, xJob, &xJobStatus );
|
||||
configASSERT( xJobStatus == IOT_TASKPOOL_STATUS_DEFERRED );
|
||||
|
||||
/* As the job has not yet been executed it can be stopped. */
|
||||
xResult = IotTaskPool_TryCancel( NULL, xJob, &xJobStatus );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
IotTaskPool_GetStatus( NULL, xJob, &xJobStatus );
|
||||
configASSERT( xJobStatus == IOT_TASKPOOL_STATUS_CANCELED );
|
||||
|
||||
/* Schedule the job again, and this time wait until its callback is
|
||||
executed (the callback function sends a notification to this task) to see
|
||||
that it executes at the right time. */
|
||||
xTimeBefore = xTaskGetTickCount();
|
||||
xResult = IotTaskPool_ScheduleDeferred( NULL, xJob, ulShortDelay_ms );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* Wait twice the deferred execution time to ensure the callback is executed
|
||||
before the call below times out. */
|
||||
ulReturn = ulTaskNotifyTake( pdTRUE, pdMS_TO_TICKS( ulShortDelay_ms * 2UL ) );
|
||||
xElapsedTime = xTaskGetTickCount() - xTimeBefore;
|
||||
|
||||
/* A single notification should not have been received... */
|
||||
configASSERT( ulReturn == 1 );
|
||||
|
||||
/* ...and the time since scheduling the job should be greater than or
|
||||
equal to the deferred execution time - which is converted to ticks for
|
||||
comparison. */
|
||||
xShortDelay_ticks = pdMS_TO_TICKS( ulShortDelay_ms );
|
||||
configASSERT( ( xElapsedTime >= xShortDelay_ticks ) && ( xElapsedTime < ( xShortDelay_ticks + xAllowableMargin ) ) );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvExample_BasicRecyclableJob( void )
|
||||
{
|
||||
IotTaskPoolJob_t xJob;
|
||||
IotTaskPoolError_t xResult;
|
||||
uint32_t ulReturn;
|
||||
const uint32_t ulNoFlags = 0UL;
|
||||
const TickType_t xNoDelay = ( TickType_t ) 0;
|
||||
size_t xFreeHeapBeforeCreatingJob = xPortGetFreeHeapSize();
|
||||
|
||||
/* Don't expect any notifications to be pending yet. */
|
||||
configASSERT( ulTaskNotifyTake( pdTRUE, 0 ) == 0 );
|
||||
|
||||
/* Create and schedule a job using the handle of this task as the job's
|
||||
context and the function that sends a notification to the task handle as
|
||||
the jobs callback function. The job is created as a recyclable job and in
|
||||
this case the memory used to hold the job status is allocated inside the
|
||||
create function. As the job is persistent it can be used multiple times,
|
||||
as demonstrated in other examples within this demo. In the full task pool
|
||||
implementation the first parameter is used to pass the handle of the task
|
||||
pool this recyclable job is to be associated with. In the lean
|
||||
implementation of the task pool used by this demo there is only one task
|
||||
pool (the system task pool created within the task pool library) so the
|
||||
first parameter is NULL. */
|
||||
xResult = IotTaskPool_CreateRecyclableJob( NULL,
|
||||
prvSimpleTaskNotifyCallback,
|
||||
(void * ) xTaskGetCurrentTaskHandle(),
|
||||
&xJob );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* This recyclable job is persistent, and in this case created dynamically,
|
||||
so expect there to be less heap space then when entering the function. */
|
||||
configASSERT( xPortGetFreeHeapSize() < xFreeHeapBeforeCreatingJob );
|
||||
|
||||
/* In the full task pool implementation the first parameter is used to
|
||||
pass the handle of the task pool to schedule. The lean task pool
|
||||
implementation used in this demo only supports a single task pool, which
|
||||
is created internally within the library, so the first parameter is NULL. */
|
||||
xResult = IotTaskPool_Schedule( NULL, xJob, ulNoFlags );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* Look for the notification coming from the job's callback function. The
|
||||
priority of the task pool worker task that executes the callback is higher
|
||||
than the priority of this task so a block time is not needed - the task pool
|
||||
worker task pre-empts this task and sends the notification (from the job's
|
||||
callback) as soon as the job is scheduled. */
|
||||
ulReturn = ulTaskNotifyTake( pdTRUE, xNoDelay );
|
||||
configASSERT( ulReturn );
|
||||
|
||||
/* Clean up recyclable job. In the full implementation of the task pool
|
||||
the first parameter is used to pass a handle to the task pool the job is
|
||||
associated with. In the lean implementation of the task pool used by this
|
||||
demo there is only one task pool (the system task pool created in the
|
||||
task pool library itself) so the first parameter is NULL. */
|
||||
IotTaskPool_DestroyRecyclableJob( NULL, xJob );
|
||||
|
||||
/* Once the job has been deleted the memory used to hold the job is
|
||||
returned, so the available heap should be exactly as when entering this
|
||||
function. */
|
||||
configASSERT( xPortGetFreeHeapSize() == xFreeHeapBeforeCreatingJob );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvExample_ReuseRecyclableJobFromLowPriorityTask( void )
|
||||
{
|
||||
IotTaskPoolError_t xResult;
|
||||
uint32_t x, xIndex, ulNotificationValue;
|
||||
const uint32_t ulNoFlags = 0UL;
|
||||
IotTaskPoolJob_t xJobs[ tpJOBS_TO_CREATE ];
|
||||
size_t xFreeHeapBeforeCreatingJob = xPortGetFreeHeapSize();
|
||||
IotTaskPoolJobStatus_t xJobStatus;
|
||||
|
||||
/* Don't expect any notifications to be pending yet. */
|
||||
configASSERT( ulTaskNotifyTake( pdTRUE, 0 ) == 0 );
|
||||
|
||||
/* Create tpJOBS_TO_CREATE jobs using the handle of this task as the job's
|
||||
context and the function that sends a notification to the task handle as
|
||||
the jobs callback function. The jobs are created as a recyclable job and
|
||||
in this case the memory to store the job information is allocated within
|
||||
the create function as at this time there are no recyclable jobs in the
|
||||
task pool jobs cache. As the jobs are persistent they can be used multiple
|
||||
times. In the full task pool implementation the first parameter is used to
|
||||
pass the handle of the task pool this recyclable job is to be associated
|
||||
with. In the lean implementation of the task pool used by this demo there
|
||||
is only one task pool (the system task pool created within the task pool
|
||||
library) so the first parameter is NULL. */
|
||||
for( x = 0; x < tpJOBS_TO_CREATE; x++ )
|
||||
{
|
||||
xResult = IotTaskPool_CreateRecyclableJob( NULL,
|
||||
prvSimpleTaskNotifyCallback,
|
||||
(void * ) xTaskGetCurrentTaskHandle(),
|
||||
&( xJobs[ x ] ) );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* The job has been created but not scheduled so is now ready. */
|
||||
IotTaskPool_GetStatus( NULL, xJobs[ x ], &xJobStatus );
|
||||
configASSERT( xJobStatus == IOT_TASKPOOL_STATUS_READY );
|
||||
}
|
||||
|
||||
/* Demonstrate that the jobs can be recycled by performing twice the number
|
||||
of iterations of scheduling jobs than there actually are created jobs. This
|
||||
works because the task pool task priorities are above the priority of this
|
||||
task, so the tasks that run the jobs pre-empt this task as soon as a job is
|
||||
ready. */
|
||||
for( x = 0; x < ( tpJOBS_TO_CREATE * 2UL ); x++ )
|
||||
{
|
||||
/* Make sure array index does not go out of bounds. */
|
||||
xIndex = x % tpJOBS_TO_CREATE;
|
||||
|
||||
xResult = IotTaskPool_Schedule( NULL, xJobs[ xIndex ], ulNoFlags );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* The priority of the task pool task(s) is higher than the priority
|
||||
of this task, so the job's callback function should have already
|
||||
executed, sending a notification to this task, and incrementing this
|
||||
task's notification value. */
|
||||
xTaskNotifyWait( 0UL, /* Don't clear any bits on entry. */
|
||||
0UL, /* Don't clear any bits on exit. */
|
||||
&ulNotificationValue, /* Obtain the notification value. */
|
||||
0UL ); /* No block time, return immediately. */
|
||||
configASSERT( ulNotificationValue == ( x + 1 ) );
|
||||
|
||||
/* The job's callback has executed so the job is now completed. */
|
||||
IotTaskPool_GetStatus( NULL, xJobs[ xIndex ], &xJobStatus );
|
||||
configASSERT( xJobStatus == IOT_TASKPOOL_STATUS_COMPLETED );
|
||||
|
||||
/* To leave the list of jobs empty we can stop re-creating jobs half
|
||||
way through iterations of this loop. */
|
||||
if( x < tpJOBS_TO_CREATE )
|
||||
{
|
||||
/* Recycle the job so it can be used again. In the full task pool
|
||||
implementation the first parameter is used to pass the handle of the
|
||||
task pool this job will be associated with. In this lean task pool
|
||||
implementation only the system task pool exists (the task pool created
|
||||
internally to the task pool library) so the first parameter is just
|
||||
passed as NULL. *//*_RB_ Why not recycle it automatically? */
|
||||
IotTaskPool_RecycleJob( NULL, xJobs[ xIndex ] );
|
||||
xResult = IotTaskPool_CreateRecyclableJob( NULL,
|
||||
prvSimpleTaskNotifyCallback,
|
||||
(void * ) xTaskGetCurrentTaskHandle(),
|
||||
&( xJobs[ xIndex ] ) );
|
||||
}
|
||||
}
|
||||
|
||||
/* Clear all the notification value bits again. */
|
||||
xTaskNotifyWait( portMAX_DELAY, /* Clear all bits on entry - portMAX_DELAY is used as it is a portable way of having all bits set. */
|
||||
0UL, /* Don't clear any bits on exit. */
|
||||
NULL, /* Don't need the notification value this time. */
|
||||
0UL ); /* No block time, return immediately. */
|
||||
configASSERT( ulTaskNotifyTake( pdTRUE, 0 ) == 0 );
|
||||
|
||||
/* Clean up all the recyclable job. In the full implementation of the task
|
||||
pool the first parameter is used to pass a handle to the task pool the job
|
||||
is associated with. In the lean implementation of the task pool used by
|
||||
this demo there is only one task pool (the system task pool created in the
|
||||
task pool library itself) so the first parameter is NULL. */
|
||||
for( x = 0; x < tpJOBS_TO_CREATE; x++ )
|
||||
{
|
||||
xResult = IotTaskPool_DestroyRecyclableJob( NULL, xJobs[ x ] );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
}
|
||||
|
||||
/* Once the job has been deleted the memory used to hold the job is
|
||||
returned, so the available heap should be exactly as when entering this
|
||||
function. */
|
||||
configASSERT( xPortGetFreeHeapSize() == xFreeHeapBeforeCreatingJob );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvExample_ReuseRecyclableJobFromHighPriorityTask( void )
|
||||
{
|
||||
IotTaskPoolError_t xResult;
|
||||
uint32_t x, ulNotificationValue;
|
||||
const uint32_t ulNoFlags = 0UL;
|
||||
IotTaskPoolJob_t xJobs[ tpJOBS_TO_CREATE ];
|
||||
IotTaskPoolJobStorage_t xJobStorage[ tpJOBS_TO_CREATE ];
|
||||
size_t xFreeHeapBeforeCreatingJob = xPortGetFreeHeapSize();
|
||||
TickType_t xShortDelay = pdMS_TO_TICKS( 150 );
|
||||
IotTaskPoolJobStatus_t xJobStatus;
|
||||
|
||||
/* Don't expect any notifications to be pending yet. */
|
||||
configASSERT( ulTaskNotifyTake( pdTRUE, 0 ) == 0 );
|
||||
|
||||
/* prvExample_ReuseRecyclableJobFromLowPriorityTask() executes in a task
|
||||
that has a lower [task] priority than the task pool's worker tasks.
|
||||
Therefore a talk pool worker preempts the task that calls
|
||||
prvExample_ReuseRecyclableJobFromHighPriorityTask() as soon as the job is
|
||||
scheduled. prvExample_ReuseRecyclableJobFromHighPriorityTask() reverses the
|
||||
priorities - prvExample_ReuseRecyclableJobFromHighPriorityTask() raises its
|
||||
priority to above the task pool's worker tasks, so the worker tasks do not
|
||||
execute until the calling task enters the blocked state. First raise the
|
||||
priority - passing NULL means raise the priority of the calling task. */
|
||||
vTaskPrioritySet( NULL, tpTASK_POOL_WORKER_PRIORITY + 1 );
|
||||
|
||||
/* Create tpJOBS_TO_CREATE jobs using the handle of this task as the job's
|
||||
context and the function that sends a notification to the task handle as
|
||||
the jobs callback function. */
|
||||
for( x = 0; x < tpJOBS_TO_CREATE; x++ )
|
||||
{
|
||||
xResult = IotTaskPool_CreateJob( prvSimpleTaskNotifyCallback, /* Callback function. */
|
||||
( void * ) xTaskGetCurrentTaskHandle(), /* Job context. */
|
||||
&( xJobStorage[ x ] ),
|
||||
&( xJobs[ x ] ) );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* This is not a persistent (recyclable) job and its storage is on the
|
||||
stack of this function, so the amount of heap space available should not
|
||||
have chanced since entering this function. */
|
||||
configASSERT( xFreeHeapBeforeCreatingJob == xPortGetFreeHeapSize() );
|
||||
}
|
||||
|
||||
for( x = 0; x < tpJOBS_TO_CREATE; x++ )
|
||||
{
|
||||
/* Schedule the next job. */
|
||||
xResult = IotTaskPool_Schedule( NULL, xJobs[ x ], ulNoFlags );
|
||||
configASSERT( xResult == IOT_TASKPOOL_SUCCESS );
|
||||
|
||||
/* Although scheduled, the job's callback has not executed, so the job
|
||||
reports itself as scheduled. */
|
||||
IotTaskPool_GetStatus( NULL, xJobs[ x ], &xJobStatus );
|
||||
configASSERT( xJobStatus == IOT_TASKPOOL_STATUS_SCHEDULED );
|
||||
|
||||
/* The priority of the task pool task(s) is lower than the priority
|
||||
of this task, so the job's callback function should not have executed
|
||||
yes, so don't expect the notification value for this task to have
|
||||
changed. */
|
||||
xTaskNotifyWait( 0UL, /* Don't clear any bits on entry. */
|
||||
0UL, /* Don't clear any bits on exit. */
|
||||
&ulNotificationValue, /* Obtain the notification value. */
|
||||
0UL ); /* No block time, return immediately. */
|
||||
configASSERT( ulNotificationValue == 0 );
|
||||
}
|
||||
|
||||
/* At this point there are tpJOBS_TO_CREATE scheduled, but none have executed
|
||||
their callbacks because the priority of this task is higher than the
|
||||
priority of the task pool worker threads. When this task blocks to wait for
|
||||
a notification a worker thread will be able to executes - but as soon as its
|
||||
callback function sends a notification to this task this task will
|
||||
preempt it (because it has a higher priority) so this task only expects to
|
||||
receive one notification at a time. */
|
||||
for( x = 0; x < tpJOBS_TO_CREATE; x++ )
|
||||
{
|
||||
xTaskNotifyWait( 0UL, /* Don't clear any bits on entry. */
|
||||
0UL, /* Don't clear any bits on exit. */
|
||||
&ulNotificationValue, /* Obtain the notification value. */
|
||||
xShortDelay ); /* Short delay to allow a task pool worker to execute. */
|
||||
configASSERT( ulNotificationValue == ( x + 1 ) );
|
||||
}
|
||||
|
||||
/* All the scheduled jobs have now executed, so waiting for another
|
||||
notification should timeout without the notification value changing. */
|
||||
xTaskNotifyWait( 0UL, /* Don't clear any bits on entry. */
|
||||
0UL, /* Don't clear any bits on exit. */
|
||||
&ulNotificationValue, /* Obtain the notification value. */
|
||||
xShortDelay ); /* Short delay to allow a task pool worker to execute. */
|
||||
configASSERT( ulNotificationValue == x );
|
||||
|
||||
/* Reset the priority of this task and clear the notifications ready for the
|
||||
next example. */
|
||||
vTaskPrioritySet( NULL, tskIDLE_PRIORITY );
|
||||
xTaskNotifyWait( portMAX_DELAY, /* Clear all bits on entry - portMAX_DELAY is used as it is a portable way of having all bits set. */
|
||||
0UL, /* Don't clear any bits on exit. */
|
||||
NULL, /* Don't need the notification value this time. */
|
||||
0UL ); /* No block time, return immediately. */
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
|
@ -1,33 +0,0 @@
|
|||
/*
|
||||
* FreeRTOS Kernel V10.2.1
|
||||
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
* this software and associated documentation files (the "Software"), to deal in
|
||||
* the Software without restriction, including without limitation the rights to
|
||||
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||||
* the Software, and to permit persons to whom the Software is furnished to do so,
|
||||
* subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||||
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||||
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||||
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* http://www.FreeRTOS.org
|
||||
* http://aws.amazon.com/freertos
|
||||
*
|
||||
* 1 tab == 4 spaces!
|
||||
*/
|
||||
|
||||
#ifndef SIMPLE_UDP_CLIENT_AND_SERVER_H
|
||||
#define SIMPLE_UDPCLIENT_AND_SERVER_H
|
||||
|
||||
void vStartSimpleUDPClientServerTasks( uint16_t usStackSize, uint32_t ulsPort, UBaseType_t uxPriority );
|
||||
|
||||
#endif /* SIMPLE_UDPCLIENT_AND_SERVER_H */
|
|
@ -65,8 +65,8 @@
|
|||
|
||||
/* Hook function related definitions. */
|
||||
#define configUSE_TICK_HOOK 0
|
||||
#define configUSE_IDLE_HOOK 1
|
||||
#define configUSE_MALLOC_FAILED_HOOK 1
|
||||
#define configUSE_IDLE_HOOK 0
|
||||
#define configUSE_MALLOC_FAILED_HOOK 0
|
||||
#define configCHECK_FOR_STACK_OVERFLOW 0 /* Not applicable to the Win32 port. */
|
||||
|
||||
/* Software timer related definitions. */
|
||||
|
|
|
@ -53,7 +53,7 @@ out the debugging messages. */
|
|||
FreeRTOS_netstat() command, and ping replies. If ipconfigHAS_PRINTF is set to 1
|
||||
then FreeRTOS_printf should be set to the function used to print out the
|
||||
messages. */
|
||||
#define ipconfigHAS_PRINTF 1
|
||||
#define ipconfigHAS_PRINTF 0
|
||||
#if( ipconfigHAS_PRINTF == 1 )
|
||||
#define FreeRTOS_printf(X) vLoggingPrintf X
|
||||
#endif
|
||||
|
@ -76,10 +76,10 @@ used as defaults. */
|
|||
|
||||
/* Include support for LLMNR: Link-local Multicast Name Resolution
|
||||
(non-Microsoft) */
|
||||
#define ipconfigUSE_LLMNR ( 1 )
|
||||
#define ipconfigUSE_LLMNR ( 0 )
|
||||
|
||||
/* Include support for NBNS: NetBIOS Name Service (Microsoft) */
|
||||
#define ipconfigUSE_NBNS ( 1 )
|
||||
#define ipconfigUSE_NBNS ( 0 )
|
||||
|
||||
/* Include support for DNS caching. For TCP, having a small DNS cache is very
|
||||
useful. When a cache is present, ipconfigDNS_REQUEST_ATTEMPTS can be kept low
|
||||
|
|
|
@ -157,6 +157,7 @@
|
|||
<ClCompile Include="..\..\..\Source\FreeRTOS-Plus-TCP\FreeRTOS_UDP_IP.c" />
|
||||
<ClCompile Include="..\..\..\Source\FreeRTOS-Plus-TCP\portable\BufferManagement\BufferAllocation_2.c" />
|
||||
<ClCompile Include="..\..\..\Source\FreeRTOS-Plus-TCP\portable\NetworkInterface\WinPCap\NetworkInterface.c" />
|
||||
<ClCompile Include="DemoTasks\SimpleTaskPoolExamples.c" />
|
||||
<ClCompile Include="DemoTasks\SimpleUDPClientAndServer.c" />
|
||||
<ClCompile Include="demo_logging.c" />
|
||||
<ClCompile Include="main.c">
|
||||
|
|
|
@ -145,6 +145,9 @@
|
|||
<ClCompile Include="..\..\..\Source\FreeRTOS-Plus-IoT-SDK\c_sdk\standard\common\taskpool\iot_taskpool.c">
|
||||
<Filter>FreeRTOS+\FreeRTOS IoT Libraries\standard\common\task_pool</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="DemoTasks\SimpleTaskPoolExamples.c">
|
||||
<Filter>DemoTasks</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="..\..\..\Source\FreeRTOS-Plus-TCP\include\NetworkInterface.h">
|
||||
|
|
|
@ -29,10 +29,10 @@
|
|||
#define IOT_CONFIG_COMMON_H_
|
||||
|
||||
/* FreeRTOS include. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "FreeRTOS.h" //_RB_Makes common config file FreeRTOS specific
|
||||
|
||||
/* Use platform types on FreeRTOS. */
|
||||
#include "platform/iot_platform_types_afr.h"
|
||||
#include "platform/iot_platform_types_freertos.h" //_RB_Makes common config file FreeRTOS specific
|
||||
|
||||
/* Used to get the cloud broker endpoint for FreeRTOS. */
|
||||
//_RB_#include "aws_clientcredential.h"
|
||||
|
|
|
@ -36,116 +36,45 @@
|
|||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
/* Visual studio intrinsics used so the __debugbreak() function is available
|
||||
should an assert get hit. */
|
||||
#include <intrin.h>
|
||||
|
||||
/* FreeRTOS includes. */
|
||||
#include <FreeRTOS.h>
|
||||
#include "task.h"
|
||||
|
||||
/* Demo application includes. */
|
||||
/* TCP/IP stack includes. */
|
||||
#include "FreeRTOS_IP.h"
|
||||
#include "FreeRTOS_Sockets.h"
|
||||
#include "SimpleUDPClientAndServer.h"
|
||||
#include "demo_logging.h"
|
||||
|
||||
/* Simple UDP client and server task parameters. */
|
||||
#define mainSIMPLE_UDP_CLIENT_SERVER_TASK_PRIORITY ( tskIDLE_PRIORITY )
|
||||
#define mainSIMPLE_UDP_CLIENT_SERVER_PORT ( 5005UL )
|
||||
|
||||
/* Define a name that will be used for LLMNR and NBNS searches. */
|
||||
#define mainHOST_NAME "RTOSDemo"
|
||||
#define mainDEVICE_NICK_NAME "windows_demo"
|
||||
|
||||
/* Set the following constants to 1 or 0 to define which tasks to include and
|
||||
exclude:
|
||||
|
||||
mainCREATE_SIMPLE_UDP_CLIENT_SERVER_TASKS: When set to 1 two UDP client tasks
|
||||
and two UDP server tasks are created. The clients talk to the servers. One set
|
||||
of tasks use the standard sockets interface, and the other the zero copy sockets
|
||||
interface. These tasks are self checking and will trigger a configASSERT() if
|
||||
they detect a difference in the data that is received from that which was sent.
|
||||
As these tasks use UDP, and can therefore loose packets, they will cause
|
||||
configASSERT() to be called when they are run in a less than perfect networking
|
||||
environment.
|
||||
|
||||
mainCREATE_TCP_ECHO_TASKS_SINGLE: When set to 1 a set of tasks are created that
|
||||
send TCP echo requests to the standard echo port (port 7), then wait for and
|
||||
verify the echo reply, from within the same task (Tx and Rx are performed in the
|
||||
same RTOS task). The IP address of the echo server must be configured using the
|
||||
configECHO_SERVER_ADDR0 to configECHO_SERVER_ADDR3 constants in
|
||||
FreeRTOSConfig.h.
|
||||
|
||||
mainCREATE_TCP_ECHO_SERVER_TASK: When set to 1 a task is created that accepts
|
||||
connections on the standard echo port (port 7), then echos back any data
|
||||
received on that connection.
|
||||
*/
|
||||
#define mainCREATE_SIMPLE_UDP_CLIENT_SERVER_TASKS 1
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Just seeds the simple pseudo random number generator.
|
||||
* Prototypes for the demos that can be started from this project.
|
||||
*/
|
||||
static void prvSRand( UBaseType_t ulSeed );
|
||||
extern void vStartSimpleTaskPoolDemo( void );
|
||||
|
||||
/*
|
||||
* Miscellaneous initialisation including preparing the logging and seeding the
|
||||
* random number generator.
|
||||
*/
|
||||
static void prvMiscInitialisation( void );
|
||||
|
||||
/* The default IP and MAC address used by the demo. The address configuration
|
||||
defined here will be used if ipconfigUSE_DHCP is 0, or if ipconfigUSE_DHCP is
|
||||
1 but a DHCP server could not be contacted. See the online documentation for
|
||||
more information. */
|
||||
static const uint8_t ucIPAddress[ 4 ] = { configIP_ADDR0, configIP_ADDR1, configIP_ADDR2, configIP_ADDR3 };
|
||||
static const uint8_t ucNetMask[ 4 ] = { configNET_MASK0, configNET_MASK1, configNET_MASK2, configNET_MASK3 };
|
||||
static const uint8_t ucGatewayAddress[ 4 ] = { configGATEWAY_ADDR0, configGATEWAY_ADDR1, configGATEWAY_ADDR2, configGATEWAY_ADDR3 };
|
||||
static const uint8_t ucDNSServerAddress[ 4 ] = { configDNS_SERVER_ADDR0, configDNS_SERVER_ADDR1, configDNS_SERVER_ADDR2, configDNS_SERVER_ADDR3 };
|
||||
|
||||
/* Set the following constant to pdTRUE to log using the method indicated by the
|
||||
name of the constant, or pdFALSE to not log using the method indicated by the
|
||||
name of the constant. Options include to standard out (xLogToStdout), to a disk
|
||||
file (xLogToFile), and to a UDP port (xLogToUDP). If xLogToUDP is set to pdTRUE
|
||||
then UDP messages are sent to the IP address configured as the echo server
|
||||
address (see the configECHO_SERVER_ADDR0 definitions in FreeRTOSConfig.h) and
|
||||
the port number set by configPRINT_PORT in FreeRTOSConfig.h. */
|
||||
const BaseType_t xLogToStdout = pdTRUE, xLogToFile = pdFALSE, xLogToUDP = pdFALSE;
|
||||
|
||||
/* Default MAC address configuration. The demo creates a virtual network
|
||||
connection that uses this MAC address by accessing the raw Ethernet data
|
||||
to and from a real network connection on the host PC. See the
|
||||
configNETWORK_INTERFACE_TO_USE definition for information on how to configure
|
||||
the real network connection to use. */
|
||||
/* This example is the first in a sequence that adds IoT functionality into
|
||||
an existing TCP/IP project. In this first project the TCP/IP stack is not
|
||||
actually used, but it is still built, which requires this array to be
|
||||
present. */
|
||||
const uint8_t ucMACAddress[ 6 ] = { configMAC_ADDR0, configMAC_ADDR1, configMAC_ADDR2, configMAC_ADDR3, configMAC_ADDR4, configMAC_ADDR5 };
|
||||
|
||||
/* Use by the pseudo random number generator. */
|
||||
static UBaseType_t ulNextRand;
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
int main( void )
|
||||
{
|
||||
const uint32_t ulLongTime_ms = pdMS_TO_TICKS( 1000UL );
|
||||
|
||||
/*
|
||||
* Instructions for using this project are provided on:
|
||||
* http://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/examples_FreeRTOS_simulator.html
|
||||
* TBD
|
||||
*/
|
||||
|
||||
/* Miscellaneous initialisation including preparing the logging and seeding
|
||||
the random number generator. */
|
||||
prvMiscInitialisation();
|
||||
/* Create the example that demonstrates task pool functionality. Examples
|
||||
that demonstrate networking connectivity will be added in future projects
|
||||
and get started after the network has connected (from within the
|
||||
vApplicationIPNetworkEventHook() function).*/
|
||||
vStartSimpleTaskPoolDemo();
|
||||
|
||||
/* Initialise the network interface.
|
||||
|
||||
***NOTE*** Tasks that use the network are created in the network event hook
|
||||
when the network is connected and ready for use (see the definition of
|
||||
vApplicationIPNetworkEventHook() below). The address values passed in here
|
||||
are used if ipconfigUSE_DHCP is set to 0, or if ipconfigUSE_DHCP is set to 1
|
||||
but a DHCP server cannot be contacted. */
|
||||
FreeRTOS_debug_printf( ( "FreeRTOS_IPInit\n" ) );
|
||||
FreeRTOS_IPInit( ucIPAddress, ucNetMask, ucGatewayAddress, ucDNSServerAddress, ucMACAddress );
|
||||
|
||||
/* Start the RTOS scheduler. */
|
||||
FreeRTOS_debug_printf( ("vTaskStartScheduler\n") );
|
||||
/* Start the scheduler - if all is well from this point on only FreeRTOS
|
||||
tasks will execute. */
|
||||
vTaskStartScheduler();
|
||||
|
||||
/* If all is well, the scheduler will now be running, and the following
|
||||
|
@ -156,26 +85,13 @@ const uint32_t ulLongTime_ms = pdMS_TO_TICKS( 1000UL );
|
|||
really applicable to the Win32 simulator port). */
|
||||
for( ;; )
|
||||
{
|
||||
Sleep( ulLongTime_ms );
|
||||
__debugbreak();
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vApplicationIdleHook( void )
|
||||
{
|
||||
const uint32_t ulMSToSleep = 1;
|
||||
|
||||
/* This is just a trivial example of an idle hook. It is called on each
|
||||
cycle of the idle task if configUSE_IDLE_HOOK is set to 1 in
|
||||
FreeRTOSConfig.h. It must *NOT* attempt to block. In this case the
|
||||
idle task just sleeps to lower the CPU usage. */
|
||||
Sleep( ulMSToSleep );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vAssertCalled( const char *pcFile, uint32_t ulLine )
|
||||
{
|
||||
const uint32_t ulLongSleep = 1000UL;
|
||||
volatile uint32_t ulBlockVariable = 0UL;
|
||||
volatile char *pcFileName = ( volatile char * ) pcFile;
|
||||
volatile uint32_t ulLineNumber = ulLine;
|
||||
|
@ -183,7 +99,7 @@ volatile uint32_t ulLineNumber = ulLine;
|
|||
( void ) pcFileName;
|
||||
( void ) ulLineNumber;
|
||||
|
||||
FreeRTOS_debug_printf( ( "vAssertCalled( %s, %ld\n", pcFile, ulLine ) );
|
||||
printf( "vAssertCalled( %s, %u\n", pcFile, ulLine );
|
||||
|
||||
/* Setting ulBlockVariable to a non-zero value in the debugger will allow
|
||||
this function to be exited. */
|
||||
|
@ -191,7 +107,7 @@ volatile uint32_t ulLineNumber = ulLine;
|
|||
{
|
||||
while( ulBlockVariable == 0UL )
|
||||
{
|
||||
Sleep( ulLongSleep );
|
||||
__debugbreak();
|
||||
}
|
||||
}
|
||||
taskENABLE_INTERRUPTS();
|
||||
|
@ -202,162 +118,46 @@ volatile uint32_t ulLineNumber = ulLine;
|
|||
events are only received if implemented in the MAC driver. */
|
||||
void vApplicationIPNetworkEventHook( eIPCallbackEvent_t eNetworkEvent )
|
||||
{
|
||||
uint32_t ulIPAddress, ulNetMask, ulGatewayAddress, ulDNSServerAddress;
|
||||
char cBuffer[ 16 ];
|
||||
static BaseType_t xTasksAlreadyCreated = pdFALSE;
|
||||
|
||||
/* If the network has just come up...*/
|
||||
if( eNetworkEvent == eNetworkUp )
|
||||
{
|
||||
/* Create the tasks that use the IP stack if they have not already been
|
||||
created. */
|
||||
if( xTasksAlreadyCreated == pdFALSE )
|
||||
{
|
||||
/* See the comments above the definitions of these pre-processor
|
||||
macros at the top of this file for a description of the individual
|
||||
demo tasks. */
|
||||
#if( mainCREATE_SIMPLE_UDP_CLIENT_SERVER_TASKS == 1 )
|
||||
{
|
||||
vStartSimpleUDPClientServerTasks( configMINIMAL_STACK_SIZE, mainSIMPLE_UDP_CLIENT_SERVER_PORT, mainSIMPLE_UDP_CLIENT_SERVER_TASK_PRIORITY );
|
||||
}
|
||||
#endif /* mainCREATE_SIMPLE_UDP_CLIENT_SERVER_TASKS */
|
||||
|
||||
#if( mainCREATE_TCP_ECHO_TASKS_SINGLE == 1 )
|
||||
{
|
||||
vStartTCPEchoClientTasks_SingleTasks( mainECHO_CLIENT_TASK_STACK_SIZE, mainECHO_CLIENT_TASK_PRIORITY );
|
||||
}
|
||||
#endif /* mainCREATE_TCP_ECHO_TASKS_SINGLE */
|
||||
|
||||
#if( mainCREATE_TCP_ECHO_SERVER_TASK == 1 )
|
||||
{
|
||||
vStartSimpleTCPServerTasks( mainECHO_SERVER_TASK_STACK_SIZE, mainECHO_SERVER_TASK_PRIORITY );
|
||||
}
|
||||
#endif
|
||||
|
||||
xTasksAlreadyCreated = pdTRUE;
|
||||
}
|
||||
|
||||
/* Print out the network configuration, which may have come from a DHCP
|
||||
server. */
|
||||
FreeRTOS_GetAddressConfiguration( &ulIPAddress, &ulNetMask, &ulGatewayAddress, &ulDNSServerAddress );
|
||||
FreeRTOS_inet_ntoa( ulIPAddress, cBuffer );
|
||||
FreeRTOS_printf( ( "\r\n\r\nIP Address: %s\r\n", cBuffer ) );
|
||||
|
||||
FreeRTOS_inet_ntoa( ulNetMask, cBuffer );
|
||||
FreeRTOS_printf( ( "Subnet Mask: %s\r\n", cBuffer ) );
|
||||
|
||||
FreeRTOS_inet_ntoa( ulGatewayAddress, cBuffer );
|
||||
FreeRTOS_printf( ( "Gateway Address: %s\r\n", cBuffer ) );
|
||||
|
||||
FreeRTOS_inet_ntoa( ulDNSServerAddress, cBuffer );
|
||||
FreeRTOS_printf( ( "DNS Server Address: %s\r\n\r\n\r\n", cBuffer ) );
|
||||
}
|
||||
/* This example is the first in a sequence that adds IoT functionality into
|
||||
an existing TCP/IP project. In this first project the TCP/IP stack is not
|
||||
actually used, but it is still built, which requires this function to be
|
||||
present. For now this function does not need to do anything, so just ensure
|
||||
the unused parameters don't cause compiler warnings and that calls to this
|
||||
function are trapped by the debugger. */
|
||||
__debugbreak();
|
||||
( void ) eNetworkEvent;
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vApplicationMallocFailedHook( void )
|
||||
{
|
||||
/* Called if a call to pvPortMalloc() fails because there is insufficient
|
||||
free memory available in the FreeRTOS heap. pvPortMalloc() is called
|
||||
internally by FreeRTOS API functions that create tasks, queues, software
|
||||
timers, and semaphores. The size of the FreeRTOS heap is set by the
|
||||
configTOTAL_HEAP_SIZE configuration constant in FreeRTOSConfig.h. */
|
||||
vAssertCalled( __FILE__, __LINE__ );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
UBaseType_t uxRand( void )
|
||||
{
|
||||
const uint32_t ulMultiplier = 0x015a4e35UL, ulIncrement = 1UL;
|
||||
|
||||
/* Utility function to generate a pseudo random number. */
|
||||
|
||||
ulNextRand = ( ulMultiplier * ulNextRand ) + ulIncrement;
|
||||
return( ( int ) ( ulNextRand >> 16UL ) & 0x7fffUL );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvSRand( UBaseType_t ulSeed )
|
||||
{
|
||||
/* Utility function to seed the pseudo random number generator. */
|
||||
ulNextRand = ulSeed;
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvMiscInitialisation( void )
|
||||
{
|
||||
time_t xTimeNow;
|
||||
uint32_t ulLoggingIPAddress;
|
||||
|
||||
ulLoggingIPAddress = FreeRTOS_inet_addr_quick( configECHO_SERVER_ADDR0, configECHO_SERVER_ADDR1, configECHO_SERVER_ADDR2, configECHO_SERVER_ADDR3 );
|
||||
vLoggingInit( xLogToStdout, xLogToFile, xLogToUDP, ulLoggingIPAddress, configPRINT_PORT );
|
||||
|
||||
/* Seed the random number generator. */
|
||||
time( &xTimeNow );
|
||||
FreeRTOS_debug_printf( ( "Seed for randomiser: %lu\n", xTimeNow ) );
|
||||
prvSRand( ( uint32_t ) xTimeNow );
|
||||
FreeRTOS_debug_printf( ( "Random numbers: %08X %08X %08X %08X\n", ipconfigRAND32(), ipconfigRAND32(), ipconfigRAND32(), ipconfigRAND32() ) );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
#if( ipconfigUSE_LLMNR != 0 ) || ( ipconfigUSE_NBNS != 0 ) || ( ipconfigDHCP_REGISTER_HOSTNAME == 1 )
|
||||
|
||||
const char *pcApplicationHostnameHook( void )
|
||||
{
|
||||
/* Assign the name "FreeRTOS" to this network node. This function will
|
||||
be called during the DHCP: the machine will be registered with an IP
|
||||
address plus this name. */
|
||||
return mainHOST_NAME;
|
||||
}
|
||||
|
||||
#endif
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
#if( ipconfigUSE_LLMNR != 0 ) || ( ipconfigUSE_NBNS != 0 )
|
||||
|
||||
BaseType_t xApplicationDNSQueryHook( const char *pcName )
|
||||
{
|
||||
BaseType_t xReturn;
|
||||
|
||||
/* Determine if a name lookup is for this node. Two names are given
|
||||
to this node: that returned by pcApplicationHostnameHook() and that set
|
||||
by mainDEVICE_NICK_NAME. */
|
||||
if( _stricmp( pcName, pcApplicationHostnameHook() ) == 0 )
|
||||
{
|
||||
xReturn = pdPASS;
|
||||
}
|
||||
else if( _stricmp( pcName, mainDEVICE_NICK_NAME ) == 0 )
|
||||
{
|
||||
xReturn = pdPASS;
|
||||
}
|
||||
else
|
||||
{
|
||||
xReturn = pdFAIL;
|
||||
}
|
||||
|
||||
return xReturn;
|
||||
}
|
||||
|
||||
#endif
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Callback that provides the inputs necessary to generate a randomized TCP
|
||||
* Initial Sequence Number per RFC 6528. THIS IS ONLY A DUMMY IMPLEMENTATION
|
||||
* THAT RETURNS A PSEUDO RANDOM NUMBER SO IS NOT INTENDED FOR USE IN PRODUCTION
|
||||
* SYSTEMS.
|
||||
*/
|
||||
extern uint32_t ulApplicationGetNextSequenceNumber( uint32_t ulSourceAddress,
|
||||
uint16_t usSourcePort,
|
||||
uint32_t ulDestinationAddress,
|
||||
uint16_t usDestinationPort )
|
||||
{
|
||||
/* This example is the first in a sequence that adds IoT functionality into
|
||||
an existing TCP/IP project. In this first project the TCP/IP stack is not
|
||||
actually used, but it is still built, which requires this function to be
|
||||
present. For now this function does not need to do anything, so just ensure
|
||||
the unused parameters don't cause compiler warnings and that calls to this
|
||||
function are trapped by the debugger. */
|
||||
( void ) ulSourceAddress;
|
||||
( void ) usSourcePort;
|
||||
( void ) ulDestinationAddress;
|
||||
( void ) usDestinationPort;
|
||||
__debugbreak();
|
||||
return 0;
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
return uxRand();
|
||||
UBaseType_t uxRand( void )
|
||||
{
|
||||
/* This example is the first in a sequence that adds IoT functionality into
|
||||
an existing TCP/IP project. In this first project the TCP/IP stack is not
|
||||
actually used, but it is still built, which requires this function to be
|
||||
present. For now this function does not need to do anything, so just ensure
|
||||
the calls to the function are trapped by the debugger. */
|
||||
__debugbreak();
|
||||
return 0;
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
|
|
|
@ -935,7 +935,7 @@ static IotTaskPoolError_t _createTaskPool( const IotTaskPoolInfo_t * const pInfo
|
|||
|
||||
BaseType_t res = xTaskCreate( _taskPoolWorker,
|
||||
cTaskName,
|
||||
pInfo->stackSize,
|
||||
pInfo->stackSize / sizeof( portSTACK_TYPE ), /* xTaskCreate() expects the stack size to be specified in words. */
|
||||
pTaskPool,
|
||||
pInfo->priority,
|
||||
&task );
|
||||
|
|
Loading…
Reference in a new issue