Add uncrustify github workflow (#659)

* Add uncrustify github workflow

* Fix exclusion pattern

* fix find expression

* exclude uncrustify files

* Uncrustify common demo and test files

* exlude white space checking files

* Fix EOL whitespace checker

* Remove whitespaces from EOL

* Fix space at EOL

* Fix find spaces at EOL

Co-authored-by: Archit Aggarwal <architag@amazon.com>
This commit is contained in:
alfred gedeon 2021-07-22 14:23:48 -07:00 committed by GitHub
parent dd80d615b5
commit ae92d8c6ee
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
191 changed files with 17540 additions and 17102 deletions

View file

@ -67,30 +67,30 @@
#include "comtest.h"
#include "partest.h"
#define comSTACK_SIZE configMINIMAL_STACK_SIZE
#define comTX_LED_OFFSET ( 0 )
#define comRX_LED_OFFSET ( 1 )
#define comTOTAL_PERMISSIBLE_ERRORS ( 2 )
#define comSTACK_SIZE configMINIMAL_STACK_SIZE
#define comTX_LED_OFFSET ( 0 )
#define comRX_LED_OFFSET ( 1 )
#define comTOTAL_PERMISSIBLE_ERRORS ( 2 )
/* The Tx task will transmit the sequence of characters at a pseudo random
interval. This is the maximum and minimum block time between sends. */
#define comTX_MAX_BLOCK_TIME ( ( TickType_t ) 0x96 )
#define comTX_MIN_BLOCK_TIME ( ( TickType_t ) 0x32 )
#define comOFFSET_TIME ( ( TickType_t ) 3 )
* interval. This is the maximum and minimum block time between sends. */
#define comTX_MAX_BLOCK_TIME ( ( TickType_t ) 0x96 )
#define comTX_MIN_BLOCK_TIME ( ( TickType_t ) 0x32 )
#define comOFFSET_TIME ( ( TickType_t ) 3 )
/* We should find that each character can be queued for Tx immediately and we
don't have to block to send. */
#define comNO_BLOCK ( ( TickType_t ) 0 )
* don't have to block to send. */
#define comNO_BLOCK ( ( TickType_t ) 0 )
/* The Rx task will block on the Rx queue for a long period. */
#define comRX_BLOCK_TIME ( ( TickType_t ) 0xffff )
#define comRX_BLOCK_TIME ( ( TickType_t ) 0xffff )
/* The sequence transmitted is from comFIRST_BYTE to and including comLAST_BYTE. */
#define comFIRST_BYTE ( 'A' )
#define comLAST_BYTE ( 'X' )
#define comFIRST_BYTE ( 'A' )
#define comLAST_BYTE ( 'X' )
#define comBUFFER_LEN ( ( UBaseType_t ) ( comLAST_BYTE - comFIRST_BYTE ) + ( UBaseType_t ) 1 )
#define comINITIAL_RX_COUNT_VALUE ( 0 )
#define comBUFFER_LEN ( ( UBaseType_t ) ( comLAST_BYTE - comFIRST_BYTE ) + ( UBaseType_t ) 1 )
#define comINITIAL_RX_COUNT_VALUE ( 0 )
/* Handle to the com port used by both tasks. */
static xComPortHandle xPort = NULL;
@ -102,164 +102,165 @@ static portTASK_FUNCTION_PROTO( vComTxTask, pvParameters );
static portTASK_FUNCTION_PROTO( vComRxTask, pvParameters );
/* The LED that should be toggled by the Rx and Tx tasks. The Rx task will
toggle LED ( uxBaseLED + comRX_LED_OFFSET). The Tx task will toggle LED
( uxBaseLED + comTX_LED_OFFSET ). */
* toggle LED ( uxBaseLED + comRX_LED_OFFSET). The Tx task will toggle LED
* ( uxBaseLED + comTX_LED_OFFSET ). */
static UBaseType_t uxBaseLED = 0;
/* Check variable used to ensure no error have occurred. The Rx task will
increment this variable after every successfully received sequence. If at any
time the sequence is incorrect the the variable will stop being incremented. */
* increment this variable after every successfully received sequence. If at any
* time the sequence is incorrect the the variable will stop being incremented. */
static volatile UBaseType_t uxRxLoops = comINITIAL_RX_COUNT_VALUE;
/*-----------------------------------------------------------*/
void vAltStartComTestTasks( UBaseType_t uxPriority, uint32_t ulBaudRate, UBaseType_t uxLED )
void vAltStartComTestTasks( UBaseType_t uxPriority,
uint32_t ulBaudRate,
UBaseType_t uxLED )
{
/* Initialise the com port then spawn the Rx and Tx tasks. */
uxBaseLED = uxLED;
xSerialPortInitMinimal( ulBaudRate, comBUFFER_LEN );
/* Initialise the com port then spawn the Rx and Tx tasks. */
uxBaseLED = uxLED;
xSerialPortInitMinimal( ulBaudRate, comBUFFER_LEN );
/* The Tx task is spawned with a lower priority than the Rx task. */
xTaskCreate( vComTxTask, "COMTx", comSTACK_SIZE, NULL, uxPriority - 1, ( TaskHandle_t * ) NULL );
xTaskCreate( vComRxTask, "COMRx", comSTACK_SIZE, NULL, uxPriority, ( TaskHandle_t * ) NULL );
/* The Tx task is spawned with a lower priority than the Rx task. */
xTaskCreate( vComTxTask, "COMTx", comSTACK_SIZE, NULL, uxPriority - 1, ( TaskHandle_t * ) NULL );
xTaskCreate( vComRxTask, "COMRx", comSTACK_SIZE, NULL, uxPriority, ( TaskHandle_t * ) NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vComTxTask, pvParameters )
{
char cByteToSend;
TickType_t xTimeToWait;
char cByteToSend;
TickType_t xTimeToWait;
/* Just to stop compiler warnings. */
( void ) pvParameters;
/* Just to stop compiler warnings. */
( void ) pvParameters;
for( ;; )
{
/* Simply transmit a sequence of characters from comFIRST_BYTE to
comLAST_BYTE. */
for( cByteToSend = comFIRST_BYTE; cByteToSend <= comLAST_BYTE; cByteToSend++ )
{
if( xSerialPutChar( xPort, cByteToSend, comNO_BLOCK ) == pdPASS )
{
vParTestToggleLED( uxBaseLED + comTX_LED_OFFSET );
}
}
for( ; ; )
{
/* Simply transmit a sequence of characters from comFIRST_BYTE to
* comLAST_BYTE. */
for( cByteToSend = comFIRST_BYTE; cByteToSend <= comLAST_BYTE; cByteToSend++ )
{
if( xSerialPutChar( xPort, cByteToSend, comNO_BLOCK ) == pdPASS )
{
vParTestToggleLED( uxBaseLED + comTX_LED_OFFSET );
}
}
/* Turn the LED off while we are not doing anything. */
vParTestSetLED( uxBaseLED + comTX_LED_OFFSET, pdFALSE );
/* Turn the LED off while we are not doing anything. */
vParTestSetLED( uxBaseLED + comTX_LED_OFFSET, pdFALSE );
/* We have posted all the characters in the string - wait before
re-sending. Wait a pseudo-random time as this will provide a better
test. */
xTimeToWait = xTaskGetTickCount() + comOFFSET_TIME;
/* We have posted all the characters in the string - wait before
* re-sending. Wait a pseudo-random time as this will provide a better
* test. */
xTimeToWait = xTaskGetTickCount() + comOFFSET_TIME;
/* Make sure we don't wait too long... */
xTimeToWait %= comTX_MAX_BLOCK_TIME;
/* Make sure we don't wait too long... */
xTimeToWait %= comTX_MAX_BLOCK_TIME;
/* ...but we do want to wait. */
if( xTimeToWait < comTX_MIN_BLOCK_TIME )
{
xTimeToWait = comTX_MIN_BLOCK_TIME;
}
/* ...but we do want to wait. */
if( xTimeToWait < comTX_MIN_BLOCK_TIME )
{
xTimeToWait = comTX_MIN_BLOCK_TIME;
}
vTaskDelay( xTimeToWait );
}
vTaskDelay( xTimeToWait );
}
} /*lint !e715 !e818 pvParameters is required for a task function even if it is not referenced. */
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vComRxTask, pvParameters )
{
signed char cExpectedByte, cByteRxed;
BaseType_t xResyncRequired = pdFALSE, xErrorOccurred = pdFALSE;
signed char cExpectedByte, cByteRxed;
BaseType_t xResyncRequired = pdFALSE, xErrorOccurred = pdFALSE;
/* Just to stop compiler warnings. */
( void ) pvParameters;
/* Just to stop compiler warnings. */
( void ) pvParameters;
for( ;; )
{
/* We expect to receive the characters from comFIRST_BYTE to
comLAST_BYTE in an incrementing order. Loop to receive each byte. */
for( cExpectedByte = comFIRST_BYTE; cExpectedByte <= comLAST_BYTE; cExpectedByte++ )
{
/* Block on the queue that contains received bytes until a byte is
available. */
if( xSerialGetChar( xPort, &cByteRxed, comRX_BLOCK_TIME ) )
{
/* Was this the byte we were expecting? If so, toggle the LED,
otherwise we are out on sync and should break out of the loop
until the expected character sequence is about to restart. */
if( cByteRxed == cExpectedByte )
{
vParTestToggleLED( uxBaseLED + comRX_LED_OFFSET );
}
else
{
xResyncRequired = pdTRUE;
break; /*lint !e960 Non-switch break allowed. */
}
}
}
for( ; ; )
{
/* We expect to receive the characters from comFIRST_BYTE to
* comLAST_BYTE in an incrementing order. Loop to receive each byte. */
for( cExpectedByte = comFIRST_BYTE; cExpectedByte <= comLAST_BYTE; cExpectedByte++ )
{
/* Block on the queue that contains received bytes until a byte is
* available. */
if( xSerialGetChar( xPort, &cByteRxed, comRX_BLOCK_TIME ) )
{
/* Was this the byte we were expecting? If so, toggle the LED,
* otherwise we are out on sync and should break out of the loop
* until the expected character sequence is about to restart. */
if( cByteRxed == cExpectedByte )
{
vParTestToggleLED( uxBaseLED + comRX_LED_OFFSET );
}
else
{
xResyncRequired = pdTRUE;
break; /*lint !e960 Non-switch break allowed. */
}
}
}
/* Turn the LED off while we are not doing anything. */
vParTestSetLED( uxBaseLED + comRX_LED_OFFSET, pdFALSE );
/* Turn the LED off while we are not doing anything. */
vParTestSetLED( uxBaseLED + comRX_LED_OFFSET, pdFALSE );
/* Did we break out of the loop because the characters were received in
an unexpected order? If so wait here until the character sequence is
about to restart. */
if( xResyncRequired == pdTRUE )
{
while( cByteRxed != comLAST_BYTE )
{
/* Block until the next char is available. */
xSerialGetChar( xPort, &cByteRxed, comRX_BLOCK_TIME );
}
/* Did we break out of the loop because the characters were received in
* an unexpected order? If so wait here until the character sequence is
* about to restart. */
if( xResyncRequired == pdTRUE )
{
while( cByteRxed != comLAST_BYTE )
{
/* Block until the next char is available. */
xSerialGetChar( xPort, &cByteRxed, comRX_BLOCK_TIME );
}
/* Note that an error occurred which caused us to have to resync.
We use this to stop incrementing the loop counter so
sAreComTestTasksStillRunning() will return false - indicating an
error. */
xErrorOccurred++;
/* Note that an error occurred which caused us to have to resync.
* We use this to stop incrementing the loop counter so
* sAreComTestTasksStillRunning() will return false - indicating an
* error. */
xErrorOccurred++;
/* We have now resynced with the Tx task and can continue. */
xResyncRequired = pdFALSE;
}
else
{
if( xErrorOccurred < comTOTAL_PERMISSIBLE_ERRORS )
{
/* Increment the count of successful loops. As error
occurring (i.e. an unexpected character being received) will
prevent this counter being incremented for the rest of the
execution. Don't worry about mutual exclusion on this
variable - it doesn't really matter as we just want it
to change. */
uxRxLoops++;
}
}
}
/* We have now resynced with the Tx task and can continue. */
xResyncRequired = pdFALSE;
}
else
{
if( xErrorOccurred < comTOTAL_PERMISSIBLE_ERRORS )
{
/* Increment the count of successful loops. As error
* occurring (i.e. an unexpected character being received) will
* prevent this counter being incremented for the rest of the
* execution. Don't worry about mutual exclusion on this
* variable - it doesn't really matter as we just want it
* to change. */
uxRxLoops++;
}
}
}
} /*lint !e715 !e818 pvParameters is required for a task function even if it is not referenced. */
/*-----------------------------------------------------------*/
BaseType_t xAreComTestTasksStillRunning( void )
{
BaseType_t xReturn;
BaseType_t xReturn;
/* If the count of successful reception loops has not changed than at
some time an error occurred (i.e. a character was received out of sequence)
and we will return false. */
if( uxRxLoops == comINITIAL_RX_COUNT_VALUE )
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
/* If the count of successful reception loops has not changed than at
* some time an error occurred (i.e. a character was received out of sequence)
* and we will return false. */
if( uxRxLoops == comINITIAL_RX_COUNT_VALUE )
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
/* Reset the count of successful Rx loops. When this function is called
again we expect this to have been incremented. */
uxRxLoops = comINITIAL_RX_COUNT_VALUE;
/* Reset the count of successful Rx loops. When this function is called
* again we expect this to have been incremented. */
uxRxLoops = comINITIAL_RX_COUNT_VALUE;
return xReturn;
return xReturn;
}