mirror of
https://github.com/FreeRTOS/FreeRTOS-Kernel.git
synced 2025-08-20 10:08:33 -04:00
Updated AVR32 demos and added AVR32 UC3B demo.
This commit is contained in:
parent
45e7e5ac55
commit
94c94d3c0e
164 changed files with 21458 additions and 3994 deletions
999
Demo/lwIP_AVR32_UC3/DRIVERS/MACB/macb.c
Normal file
999
Demo/lwIP_AVR32_UC3/DRIVERS/MACB/macb.c
Normal file
|
@ -0,0 +1,999 @@
|
|||
/*This file has been prepared for Doxygen automatic documentation generation.*/
|
||||
/*! \file *********************************************************************
|
||||
*
|
||||
* \brief MACB driver for EVK1100 board.
|
||||
*
|
||||
* This file defines a useful set of functions for the MACB interface on
|
||||
* AVR32 devices.
|
||||
*
|
||||
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
|
||||
* - Supported devices: All AVR32 devices with a MACB module can be used.
|
||||
* - AppNote:
|
||||
*
|
||||
* \author Atmel Corporation: http://www.atmel.com \n
|
||||
* Support and FAQ: http://support.atmel.no/
|
||||
*
|
||||
*****************************************************************************/
|
||||
|
||||
/* Copyright (c) 2007, Atmel Corporation All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. The name of ATMEL may not be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ATMEL ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND
|
||||
* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
|
||||
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <avr32/io.h>
|
||||
|
||||
|
||||
#ifdef FREERTOS_USED
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "semphr.h"
|
||||
#endif
|
||||
#include "macb.h"
|
||||
#include "gpio.h"
|
||||
#include "conf_eth.h"
|
||||
#include "intc.h"
|
||||
|
||||
|
||||
/* Size of each receive buffer - DO NOT CHANGE. */
|
||||
#define RX_BUFFER_SIZE 128
|
||||
|
||||
|
||||
/* The buffer addresses written into the descriptors must be aligned so the
|
||||
last few bits are zero. These bits have special meaning for the MACB
|
||||
peripheral and cannot be used as part of the address. */
|
||||
#define ADDRESS_MASK ( ( unsigned long ) 0xFFFFFFFC )
|
||||
|
||||
/* Bit used within the address stored in the descriptor to mark the last
|
||||
descriptor in the array. */
|
||||
#define RX_WRAP_BIT ( ( unsigned long ) 0x02 )
|
||||
|
||||
/* A short delay is used to wait for a buffer to become available, should
|
||||
one not be immediately available when trying to transmit a frame. */
|
||||
#define BUFFER_WAIT_DELAY ( 2 )
|
||||
|
||||
#ifndef FREERTOS_USED
|
||||
#define portENTER_CRITICAL Disable_global_interrupt
|
||||
#define portEXIT_CRITICAL Enable_global_interrupt
|
||||
#define portENTER_SWITCHING_ISR()
|
||||
#define portEXIT_SWITCHING_ISR()
|
||||
#endif
|
||||
|
||||
|
||||
/* Buffer written to by the MACB DMA. Must be aligned as described by the
|
||||
comment above the ADDRESS_MASK definition. */
|
||||
#if __GNUC__
|
||||
static volatile char pcRxBuffer[ ETHERNET_CONF_NB_RX_BUFFERS * RX_BUFFER_SIZE ] __attribute__ ((aligned (8)));
|
||||
#elif __ICCAVR32__
|
||||
#pragma data_alignment=8
|
||||
static volatile char pcRxBuffer[ ETHERNET_CONF_NB_RX_BUFFERS * RX_BUFFER_SIZE ];
|
||||
#endif
|
||||
|
||||
|
||||
/* Buffer read by the MACB DMA. Must be aligned as described by the comment
|
||||
above the ADDRESS_MASK definition. */
|
||||
#if __GNUC__
|
||||
static volatile char pcTxBuffer[ ETHERNET_CONF_NB_TX_BUFFERS * ETHERNET_CONF_TX_BUFFER_SIZE ] __attribute__ ((aligned (8)));
|
||||
#elif __ICCAVR32__
|
||||
#pragma data_alignment=8
|
||||
static volatile char pcTxBuffer[ ETHERNET_CONF_NB_TX_BUFFERS * ETHERNET_CONF_TX_BUFFER_SIZE ];
|
||||
#endif
|
||||
|
||||
/* Descriptors used to communicate between the program and the MACB peripheral.
|
||||
These descriptors hold the locations and state of the Rx and Tx buffers. */
|
||||
static volatile AVR32_TxTdDescriptor xTxDescriptors[ ETHERNET_CONF_NB_TX_BUFFERS ];
|
||||
static volatile AVR32_RxTdDescriptor xRxDescriptors[ ETHERNET_CONF_NB_RX_BUFFERS ];
|
||||
|
||||
/* The IP and Ethernet addresses are read from the header files. */
|
||||
char cMACAddress[ 6 ] = { ETHERNET_CONF_ETHADDR0,ETHERNET_CONF_ETHADDR1,ETHERNET_CONF_ETHADDR2,ETHERNET_CONF_ETHADDR3,ETHERNET_CONF_ETHADDR4,ETHERNET_CONF_ETHADDR5 };
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* See the header file for descriptions of public functions. */
|
||||
|
||||
/*
|
||||
* Prototype for the MACB interrupt function - called by the asm wrapper.
|
||||
*/
|
||||
#ifdef FREERTOS_USED
|
||||
#if __GNUC__
|
||||
__attribute__((naked))
|
||||
#elif __ICCAVR32__
|
||||
#pragma shadow_registers = full // Naked.
|
||||
#endif
|
||||
#else
|
||||
#if __GNUC__
|
||||
__attribute__((__interrupt__))
|
||||
#elif __ICCAVR32__
|
||||
__interrupt
|
||||
#endif
|
||||
#endif
|
||||
void vMACB_ISR( void );
|
||||
static long prvMACB_ISR_NonNakedBehaviour( void );
|
||||
|
||||
|
||||
#if ETHERNET_CONF_USE_PHY_IT
|
||||
#ifdef FREERTOS_USED
|
||||
#if __GNUC__
|
||||
__attribute__((naked))
|
||||
#elif __ICCAVR32__
|
||||
#pragma shadow_registers = full // Naked.
|
||||
#endif
|
||||
#else
|
||||
#if __GNUC__
|
||||
__attribute__((__interrupt__))
|
||||
#elif __ICCAVR32__
|
||||
__interrupt
|
||||
#endif
|
||||
#endif
|
||||
void vPHY_ISR( void );
|
||||
static long prvPHY_ISR_NonNakedBehaviour( void );
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialise both the Tx and Rx descriptors used by the MACB.
|
||||
*/
|
||||
static void prvSetupDescriptors(volatile avr32_macb_t * macb);
|
||||
|
||||
/*
|
||||
* Write our MAC address into the MACB.
|
||||
*/
|
||||
static void prvSetupMACAddress( volatile avr32_macb_t * macb );
|
||||
|
||||
/*
|
||||
* Configure the MACB for interrupts.
|
||||
*/
|
||||
static void prvSetupMACBInterrupt( volatile avr32_macb_t * macb );
|
||||
|
||||
/*
|
||||
* Some initialisation functions.
|
||||
*/
|
||||
static Bool prvProbePHY( volatile avr32_macb_t * macb );
|
||||
static unsigned long ulReadMDIO(volatile avr32_macb_t * macb, unsigned short usAddress);
|
||||
static void vWriteMDIO(volatile avr32_macb_t * macb, unsigned short usAddress, unsigned short usValue);
|
||||
|
||||
|
||||
#ifdef FREERTOS_USED
|
||||
/* The semaphore used by the MACB ISR to wake the MACB task. */
|
||||
static xSemaphoreHandle xSemaphore = NULL;
|
||||
#else
|
||||
static volatile Bool DataToRead = FALSE;
|
||||
#endif
|
||||
|
||||
/* Holds the index to the next buffer from which data will be read. */
|
||||
volatile unsigned long ulNextRxBuffer = 0;
|
||||
|
||||
|
||||
long lMACBSend(volatile avr32_macb_t * macb, char *pcFrom, unsigned long ulLength, long lEndOfFrame )
|
||||
{
|
||||
static unsigned long uxTxBufferIndex = 0;
|
||||
char *pcBuffer;
|
||||
unsigned long ulLastBuffer, ulDataBuffered = 0, ulDataRemainingToSend, ulLengthToSend;
|
||||
|
||||
|
||||
/* If the length of data to be transmitted is greater than each individual
|
||||
transmit buffer then the data will be split into more than one buffer.
|
||||
Loop until the entire length has been buffered. */
|
||||
while( ulDataBuffered < ulLength )
|
||||
{
|
||||
// Is a buffer available ?
|
||||
while( !( xTxDescriptors[ uxTxBufferIndex ].U_Status.status & AVR32_TRANSMIT_OK ) )
|
||||
{
|
||||
// There is no room to write the Tx data to the Tx buffer.
|
||||
// Wait a short while, then try again.
|
||||
#ifdef FREERTOS_USED
|
||||
vTaskDelay( BUFFER_WAIT_DELAY );
|
||||
#else
|
||||
__asm__ __volatile__ ("nop");
|
||||
#endif
|
||||
}
|
||||
|
||||
portENTER_CRITICAL();
|
||||
{
|
||||
// Get the address of the buffer from the descriptor,
|
||||
// then copy the data into the buffer.
|
||||
pcBuffer = ( char * ) xTxDescriptors[ uxTxBufferIndex ].addr;
|
||||
|
||||
// How much can we write to the buffer ?
|
||||
ulDataRemainingToSend = ulLength - ulDataBuffered;
|
||||
if( ulDataRemainingToSend <= ETHERNET_CONF_TX_BUFFER_SIZE )
|
||||
{
|
||||
// We can write all the remaining bytes.
|
||||
ulLengthToSend = ulDataRemainingToSend;
|
||||
}
|
||||
else
|
||||
{
|
||||
// We can't write more than ETH_TX_BUFFER_SIZE in one go.
|
||||
ulLengthToSend = ETHERNET_CONF_TX_BUFFER_SIZE;
|
||||
}
|
||||
// Copy the data into the buffer.
|
||||
memcpy( ( void * ) pcBuffer, ( void * ) &( pcFrom[ ulDataBuffered ] ), ulLengthToSend );
|
||||
ulDataBuffered += ulLengthToSend;
|
||||
// Is this the last data for the frame ?
|
||||
if( lEndOfFrame && ( ulDataBuffered >= ulLength ) )
|
||||
{
|
||||
// No more data remains for this frame so we can start the transmission.
|
||||
ulLastBuffer = AVR32_LAST_BUFFER;
|
||||
}
|
||||
else
|
||||
{
|
||||
// More data to come for this frame.
|
||||
ulLastBuffer = 0;
|
||||
}
|
||||
// Fill out the necessary in the descriptor to get the data sent,
|
||||
// then move to the next descriptor, wrapping if necessary.
|
||||
if( uxTxBufferIndex >= ( ETHERNET_CONF_NB_TX_BUFFERS - 1 ) )
|
||||
{
|
||||
xTxDescriptors[ uxTxBufferIndex ].U_Status.status = ( ulLengthToSend & ( unsigned long ) AVR32_LENGTH_FRAME )
|
||||
| ulLastBuffer
|
||||
| AVR32_TRANSMIT_WRAP;
|
||||
uxTxBufferIndex = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
xTxDescriptors[ uxTxBufferIndex ].U_Status.status = ( ulLengthToSend & ( unsigned long ) AVR32_LENGTH_FRAME )
|
||||
| ulLastBuffer;
|
||||
uxTxBufferIndex++;
|
||||
}
|
||||
/* If this is the last buffer to be sent for this frame we can
|
||||
start the transmission. */
|
||||
if( ulLastBuffer )
|
||||
{
|
||||
macb->ncr |= AVR32_MACB_TSTART_MASK;
|
||||
}
|
||||
}
|
||||
portEXIT_CRITICAL();
|
||||
}
|
||||
|
||||
return PASS;
|
||||
}
|
||||
|
||||
|
||||
unsigned long ulMACBInputLength( void )
|
||||
{
|
||||
register unsigned long ulIndex , ulLength = 0;
|
||||
unsigned int uiTemp;
|
||||
|
||||
// Skip any fragments. We are looking for the first buffer that contains
|
||||
// data and has the SOF (start of frame) bit set.
|
||||
while( ( xRxDescriptors[ ulNextRxBuffer ].addr & AVR32_OWNERSHIP_BIT ) && !( xRxDescriptors[ ulNextRxBuffer ].U_Status.status & AVR32_SOF ) )
|
||||
{
|
||||
// Ignoring this buffer. Mark it as free again.
|
||||
uiTemp = xRxDescriptors[ ulNextRxBuffer ].addr;
|
||||
xRxDescriptors[ ulNextRxBuffer ].addr = uiTemp & ~( AVR32_OWNERSHIP_BIT );
|
||||
ulNextRxBuffer++;
|
||||
if( ulNextRxBuffer >= ETHERNET_CONF_NB_RX_BUFFERS )
|
||||
{
|
||||
ulNextRxBuffer = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// We are going to walk through the descriptors that make up this frame,
|
||||
// but don't want to alter ulNextRxBuffer as this would prevent vMACBRead()
|
||||
// from finding the data. Therefore use a copy of ulNextRxBuffer instead.
|
||||
ulIndex = ulNextRxBuffer;
|
||||
|
||||
// Walk through the descriptors until we find the last buffer for this frame.
|
||||
// The last buffer will give us the length of the entire frame.
|
||||
while( ( xRxDescriptors[ ulIndex ].addr & AVR32_OWNERSHIP_BIT ) && !ulLength )
|
||||
{
|
||||
ulLength = xRxDescriptors[ ulIndex ].U_Status.status & AVR32_LENGTH_FRAME;
|
||||
// Increment to the next buffer, wrapping if necessary.
|
||||
ulIndex++;
|
||||
if( ulIndex >= ETHERNET_CONF_NB_RX_BUFFERS )
|
||||
{
|
||||
ulIndex = 0;
|
||||
}
|
||||
}
|
||||
return ulLength;
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vMACBRead( char *pcTo, unsigned long ulSectionLength, unsigned long ulTotalFrameLength )
|
||||
{
|
||||
static unsigned long ulSectionBytesReadSoFar = 0, ulBufferPosition = 0, ulFameBytesReadSoFar = 0;
|
||||
static char *pcSource;
|
||||
register unsigned long ulBytesRemainingInBuffer, ulRemainingSectionBytes;
|
||||
unsigned int uiTemp;
|
||||
|
||||
// Read ulSectionLength bytes from the Rx buffers.
|
||||
// This is not necessarily any correspondence between the length of our Rx buffers,
|
||||
// and the length of the data we are returning or the length of the data being requested.
|
||||
// Therefore, between calls we have to remember not only which buffer we are currently
|
||||
// processing, but our position within that buffer.
|
||||
// This would be greatly simplified if PBUF_POOL_BUFSIZE could be guaranteed to be greater
|
||||
// than the size of each Rx buffer, and that memory fragmentation did not occur.
|
||||
|
||||
// This function should only be called after a call to ulMACBInputLength().
|
||||
// This will ensure ulNextRxBuffer is set to the correct buffer. */
|
||||
|
||||
// vMACBRead is called with pcTo set to NULL to indicate that we are about
|
||||
// to read a new frame. Any fragments remaining in the frame we were
|
||||
// processing during the last call should be dropped.
|
||||
if( pcTo == NULL )
|
||||
{
|
||||
// How many bytes are indicated as being in this buffer?
|
||||
// If none then the buffer is completely full and the frame is contained within more
|
||||
// than one buffer.
|
||||
// Reset our state variables ready for the next read from this buffer.
|
||||
pcSource = ( char * )( xRxDescriptors[ ulNextRxBuffer ].addr & ADDRESS_MASK );
|
||||
ulFameBytesReadSoFar = ( unsigned long ) 0;
|
||||
ulBufferPosition = ( unsigned long ) 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Loop until we have obtained the required amount of data.
|
||||
ulSectionBytesReadSoFar = 0;
|
||||
while( ulSectionBytesReadSoFar < ulSectionLength )
|
||||
{
|
||||
// We may have already read some data from this buffer.
|
||||
// How much data remains in the buffer?
|
||||
ulBytesRemainingInBuffer = ( RX_BUFFER_SIZE - ulBufferPosition );
|
||||
|
||||
// How many more bytes do we need to read before we have the
|
||||
// required amount of data?
|
||||
ulRemainingSectionBytes = ulSectionLength - ulSectionBytesReadSoFar;
|
||||
|
||||
// Do we want more data than remains in the buffer?
|
||||
if( ulRemainingSectionBytes > ulBytesRemainingInBuffer )
|
||||
{
|
||||
// We want more data than remains in the buffer so we can
|
||||
// write the remains of the buffer to the destination, then move
|
||||
// onto the next buffer to get the rest.
|
||||
memcpy( &( pcTo[ ulSectionBytesReadSoFar ] ), &( pcSource[ ulBufferPosition ] ), ulBytesRemainingInBuffer );
|
||||
ulSectionBytesReadSoFar += ulBytesRemainingInBuffer;
|
||||
ulFameBytesReadSoFar += ulBytesRemainingInBuffer;
|
||||
|
||||
// Mark the buffer as free again.
|
||||
uiTemp = xRxDescriptors[ ulNextRxBuffer ].addr;
|
||||
xRxDescriptors[ ulNextRxBuffer ].addr = uiTemp & ~( AVR32_OWNERSHIP_BIT );
|
||||
// Move onto the next buffer.
|
||||
ulNextRxBuffer++;
|
||||
|
||||
if( ulNextRxBuffer >= ETHERNET_CONF_NB_RX_BUFFERS )
|
||||
{
|
||||
ulNextRxBuffer = ( unsigned long ) 0;
|
||||
}
|
||||
|
||||
// Reset the variables for the new buffer.
|
||||
pcSource = ( char * )( xRxDescriptors[ ulNextRxBuffer ].addr & ADDRESS_MASK );
|
||||
ulBufferPosition = ( unsigned long ) 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// We have enough data in this buffer to send back.
|
||||
// Read out enough data and remember how far we read up to.
|
||||
memcpy( &( pcTo[ ulSectionBytesReadSoFar ] ), &( pcSource[ ulBufferPosition ] ), ulRemainingSectionBytes );
|
||||
|
||||
// There may be more data in this buffer yet.
|
||||
// Increment our position in this buffer past the data we have just read.
|
||||
ulBufferPosition += ulRemainingSectionBytes;
|
||||
ulSectionBytesReadSoFar += ulRemainingSectionBytes;
|
||||
ulFameBytesReadSoFar += ulRemainingSectionBytes;
|
||||
|
||||
// Have we now finished with this buffer?
|
||||
if( ( ulBufferPosition >= RX_BUFFER_SIZE ) || ( ulFameBytesReadSoFar >= ulTotalFrameLength ) )
|
||||
{
|
||||
// Mark the buffer as free again.
|
||||
uiTemp = xRxDescriptors[ ulNextRxBuffer ].addr;
|
||||
xRxDescriptors[ ulNextRxBuffer ].addr = uiTemp & ~( AVR32_OWNERSHIP_BIT );
|
||||
// Move onto the next buffer.
|
||||
ulNextRxBuffer++;
|
||||
|
||||
if( ulNextRxBuffer >= ETHERNET_CONF_NB_RX_BUFFERS )
|
||||
{
|
||||
ulNextRxBuffer = 0;
|
||||
}
|
||||
|
||||
pcSource = ( char * )( xRxDescriptors[ ulNextRxBuffer ].addr & ADDRESS_MASK );
|
||||
ulBufferPosition = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
void vMACBSetMACAddress(const char * MACAddress)
|
||||
{
|
||||
memcpy(cMACAddress, MACAddress, sizeof(cMACAddress));
|
||||
}
|
||||
|
||||
Bool xMACBInit( volatile avr32_macb_t * macb )
|
||||
{
|
||||
volatile unsigned long status;
|
||||
|
||||
// set up registers
|
||||
macb->ncr = 0;
|
||||
macb->tsr = ~0UL;
|
||||
macb->rsr = ~0UL;
|
||||
macb->idr = ~0UL;
|
||||
status = macb->isr;
|
||||
|
||||
|
||||
#if ETHERNET_CONF_USE_RMII_INTERFACE
|
||||
// RMII used, set 0 to the USRIO Register
|
||||
macb->usrio &= ~AVR32_MACB_RMII_MASK;
|
||||
#else
|
||||
// RMII not used, set 1 to the USRIO Register
|
||||
macb->usrio |= AVR32_MACB_RMII_MASK;
|
||||
#endif
|
||||
|
||||
// Load our MAC address into the MACB.
|
||||
prvSetupMACAddress(macb);
|
||||
|
||||
// Setup the buffers and descriptors.
|
||||
prvSetupDescriptors(macb);
|
||||
|
||||
#if ETHERNET_CONF_SYSTEM_CLOCK <= 20000000
|
||||
macb->ncfgr |= (AVR32_MACB_NCFGR_CLK_DIV8 << AVR32_MACB_NCFGR_CLK_OFFSET);
|
||||
#elif ETHERNET_CONF_SYSTEM_CLOCK <= 40000000
|
||||
macb->ncfgr |= (AVR32_MACB_NCFGR_CLK_DIV16 << AVR32_MACB_NCFGR_CLK_OFFSET);
|
||||
#elif ETHERNET_CONF_SYSTEM_CLOCK <= 80000000
|
||||
macb->ncfgr |= AVR32_MACB_NCFGR_CLK_DIV32 << AVR32_MACB_NCFGR_CLK_OFFSET;
|
||||
#elif ETHERNET_CONF_SYSTEM_CLOCK <= 160000000
|
||||
macb->ncfgr |= AVR32_MACB_NCFGR_CLK_DIV64 << AVR32_MACB_NCFGR_CLK_OFFSET;
|
||||
#else
|
||||
# error System clock too fast
|
||||
#endif
|
||||
|
||||
// Are we connected?
|
||||
if( prvProbePHY(macb) == TRUE )
|
||||
{
|
||||
// Enable the interrupt!
|
||||
portENTER_CRITICAL();
|
||||
{
|
||||
prvSetupMACBInterrupt(macb);
|
||||
}
|
||||
portEXIT_CRITICAL();
|
||||
// Enable Rx and Tx, plus the stats register.
|
||||
macb->ncr = AVR32_MACB_NCR_TE_MASK | AVR32_MACB_NCR_RE_MASK;
|
||||
return (TRUE);
|
||||
}
|
||||
return (FALSE);
|
||||
}
|
||||
|
||||
void vDisableMACBOperations(volatile avr32_macb_t * macb)
|
||||
{
|
||||
#if ETHERNET_CONF_USE_PHY_IT
|
||||
volatile avr32_gpio_t *gpio = &AVR32_GPIO;
|
||||
volatile avr32_gpio_port_t *gpio_port = &gpio->port[MACB_INTERRUPT_PIN/32];
|
||||
|
||||
gpio_port->ierc = 1 << (MACB_INTERRUPT_PIN%32);
|
||||
#endif
|
||||
|
||||
// write the MACB control register : disable Tx & Rx
|
||||
macb->ncr &= ~((1 << AVR32_MACB_RE_OFFSET) | (1 << AVR32_MACB_TE_OFFSET));
|
||||
// We no more want to interrupt on Rx and Tx events.
|
||||
macb->idr = AVR32_MACB_IER_RCOMP_MASK | AVR32_MACB_IER_TCOMP_MASK;
|
||||
}
|
||||
|
||||
|
||||
void vClearMACBTxBuffer( void )
|
||||
{
|
||||
static unsigned long uxNextBufferToClear = 0;
|
||||
|
||||
// Called on Tx interrupt events to set the AVR32_TRANSMIT_OK bit in each
|
||||
// Tx buffer within the frame just transmitted. This marks all the buffers
|
||||
// as available again.
|
||||
|
||||
// The first buffer in the frame should have the bit set automatically. */
|
||||
if( xTxDescriptors[ uxNextBufferToClear ].U_Status.status & AVR32_TRANSMIT_OK )
|
||||
{
|
||||
// Loop through the other buffers in the frame.
|
||||
while( !( xTxDescriptors[ uxNextBufferToClear ].U_Status.status & AVR32_LAST_BUFFER ) )
|
||||
{
|
||||
uxNextBufferToClear++;
|
||||
|
||||
if( uxNextBufferToClear >= ETHERNET_CONF_NB_TX_BUFFERS )
|
||||
{
|
||||
uxNextBufferToClear = 0;
|
||||
}
|
||||
|
||||
xTxDescriptors[ uxNextBufferToClear ].U_Status.status |= AVR32_TRANSMIT_OK;
|
||||
}
|
||||
|
||||
// Start with the next buffer the next time a Tx interrupt is called.
|
||||
uxNextBufferToClear++;
|
||||
|
||||
// Do we need to wrap back to the first buffer?
|
||||
if( uxNextBufferToClear >= ETHERNET_CONF_NB_TX_BUFFERS )
|
||||
{
|
||||
uxNextBufferToClear = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void prvSetupDescriptors(volatile avr32_macb_t * macb)
|
||||
{
|
||||
unsigned long xIndex;
|
||||
unsigned long ulAddress;
|
||||
|
||||
// Initialise xRxDescriptors descriptor.
|
||||
for( xIndex = 0; xIndex < ETHERNET_CONF_NB_RX_BUFFERS; ++xIndex )
|
||||
{
|
||||
// Calculate the address of the nth buffer within the array.
|
||||
ulAddress = ( unsigned long )( pcRxBuffer + ( xIndex * RX_BUFFER_SIZE ) );
|
||||
|
||||
// Write the buffer address into the descriptor.
|
||||
// The DMA will place the data at this address when this descriptor is being used.
|
||||
// Mask off the bottom bits of the address as these have special meaning.
|
||||
xRxDescriptors[ xIndex ].addr = ulAddress & ADDRESS_MASK;
|
||||
}
|
||||
|
||||
// The last buffer has the wrap bit set so the MACB knows to wrap back
|
||||
// to the first buffer.
|
||||
xRxDescriptors[ ETHERNET_CONF_NB_RX_BUFFERS - 1 ].addr |= RX_WRAP_BIT;
|
||||
|
||||
// Initialise xTxDescriptors.
|
||||
for( xIndex = 0; xIndex < ETHERNET_CONF_NB_TX_BUFFERS; ++xIndex )
|
||||
{
|
||||
// Calculate the address of the nth buffer within the array.
|
||||
ulAddress = ( unsigned long )( pcTxBuffer + ( xIndex * ETHERNET_CONF_TX_BUFFER_SIZE ) );
|
||||
|
||||
// Write the buffer address into the descriptor.
|
||||
// The DMA will read data from here when the descriptor is being used.
|
||||
xTxDescriptors[ xIndex ].addr = ulAddress & ADDRESS_MASK;
|
||||
xTxDescriptors[ xIndex ].U_Status.status = AVR32_TRANSMIT_OK;
|
||||
}
|
||||
|
||||
// The last buffer has the wrap bit set so the MACB knows to wrap back
|
||||
// to the first buffer.
|
||||
xTxDescriptors[ ETHERNET_CONF_NB_TX_BUFFERS - 1 ].U_Status.status = AVR32_TRANSMIT_WRAP | AVR32_TRANSMIT_OK;
|
||||
|
||||
// Tell the MACB where to find the descriptors.
|
||||
macb->rbqp = ( unsigned long )xRxDescriptors;
|
||||
macb->tbqp = ( unsigned long )xTxDescriptors;
|
||||
|
||||
// Enable the copy of data into the buffers, ignore broadcasts,
|
||||
// and don't copy FCS.
|
||||
macb->ncfgr |= (AVR32_MACB_CAF_MASK | AVR32_MACB_NBC_MASK | AVR32_MACB_NCFGR_DRFCS_MASK);
|
||||
|
||||
}
|
||||
|
||||
static void prvSetupMACAddress( volatile avr32_macb_t * macb )
|
||||
{
|
||||
// Must be written SA1L then SA1H.
|
||||
macb->sa1b = ( ( unsigned long ) cMACAddress[ 3 ] << 24 ) |
|
||||
( ( unsigned long ) cMACAddress[ 2 ] << 16 ) |
|
||||
( ( unsigned long ) cMACAddress[ 1 ] << 8 ) |
|
||||
cMACAddress[ 0 ];
|
||||
|
||||
macb->sa1t = ( ( unsigned long ) cMACAddress[ 5 ] << 8 ) |
|
||||
cMACAddress[ 4 ];
|
||||
}
|
||||
|
||||
static void prvSetupMACBInterrupt( volatile avr32_macb_t * macb )
|
||||
{
|
||||
#ifdef FREERTOS_USED
|
||||
// Create the semaphore used to trigger the MACB task.
|
||||
if (xSemaphore == NULL)
|
||||
{
|
||||
vSemaphoreCreateBinary( xSemaphore );
|
||||
}
|
||||
#else
|
||||
// Create the flag used to trigger the MACB polling task.
|
||||
DataToRead = FALSE;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef FREERTOS_USED
|
||||
if( xSemaphore != NULL)
|
||||
{
|
||||
// We start by 'taking' the semaphore so the ISR can 'give' it when the
|
||||
// first interrupt occurs.
|
||||
xSemaphoreTake( xSemaphore, 0 );
|
||||
#endif
|
||||
// Setup the interrupt for MACB.
|
||||
// Register the interrupt handler to the interrupt controller at interrupt level 2
|
||||
INTC_register_interrupt((__int_handler)&vMACB_ISR, AVR32_MACB_IRQ, INT2);
|
||||
|
||||
#if ETHERNET_CONF_USE_PHY_IT
|
||||
/* GPIO enable interrupt upon rising edge */
|
||||
gpio_enable_pin_interrupt(MACB_INTERRUPT_PIN, GPIO_FALLING_EDGE);
|
||||
// Setup the interrupt for PHY.
|
||||
// Register the interrupt handler to the interrupt controller at interrupt level 2
|
||||
INTC_register_interrupt((__int_handler)&vPHY_ISR, (AVR32_GPIO_IRQ_0 + (MACB_INTERRUPT_PIN/8)), INT2);
|
||||
/* enable interrupts on INT pin */
|
||||
vWriteMDIO( macb, PHY_MICR , ( MICR_INTEN | MICR_INTOE ));
|
||||
/* enable "link change" interrupt for Phy */
|
||||
vWriteMDIO( macb, PHY_MISR , MISR_LINK_INT_EN );
|
||||
#endif
|
||||
|
||||
// We want to interrupt on Rx and Tx events
|
||||
macb->ier = AVR32_MACB_IER_RCOMP_MASK | AVR32_MACB_IER_TCOMP_MASK;
|
||||
#ifdef FREERTOS_USED
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*! Read a register on MDIO bus (access to the PHY)
|
||||
* This function is looping until PHY gets ready
|
||||
*
|
||||
* \param macb Input. instance of the MACB to use
|
||||
* \param usAddress Input. register to set.
|
||||
*
|
||||
* \return unsigned long data that has been read
|
||||
*/
|
||||
static unsigned long ulReadMDIO(volatile avr32_macb_t * macb, unsigned short usAddress)
|
||||
{
|
||||
unsigned long value, status;
|
||||
|
||||
// initiate transaction : enable management port
|
||||
macb->ncr |= AVR32_MACB_NCR_MPE_MASK;
|
||||
// Write the PHY configuration frame to the MAN register
|
||||
macb->man = (AVR32_MACB_SOF_MASK & (0x01<<AVR32_MACB_SOF_OFFSET)) // SOF
|
||||
| (2 << AVR32_MACB_CODE_OFFSET) // Code
|
||||
| (2 << AVR32_MACB_RW_OFFSET) // Read operation
|
||||
| ((ETHERNET_CONF_PHY_ADDR & 0x1f) << AVR32_MACB_PHYA_OFFSET) // Phy Add
|
||||
| (usAddress << AVR32_MACB_REGA_OFFSET); // Reg Add
|
||||
// wait for PHY to be ready
|
||||
do {
|
||||
status = macb->nsr;
|
||||
} while (!(status & AVR32_MACB_NSR_IDLE_MASK));
|
||||
// read the register value in maintenance register
|
||||
value = macb->man & 0x0000ffff;
|
||||
// disable management port
|
||||
macb->ncr &= ~AVR32_MACB_NCR_MPE_MASK;
|
||||
// return the read value
|
||||
return (value);
|
||||
}
|
||||
|
||||
/*! Write a given value to a register on MDIO bus (access to the PHY)
|
||||
* This function is looping until PHY gets ready
|
||||
*
|
||||
* \param *macb Input. instance of the MACB to use
|
||||
* \param usAddress Input. register to set.
|
||||
* \param usValue Input. value to write.
|
||||
*
|
||||
*/
|
||||
static void vWriteMDIO(volatile avr32_macb_t * macb, unsigned short usAddress, unsigned short usValue)
|
||||
{
|
||||
unsigned long status;
|
||||
|
||||
// initiate transaction : enable management port
|
||||
macb->ncr |= AVR32_MACB_NCR_MPE_MASK;
|
||||
// Write the PHY configuration frame to the MAN register
|
||||
macb->man = (( AVR32_MACB_SOF_MASK & (0x01<<AVR32_MACB_SOF_OFFSET)) // SOF
|
||||
| (2 << AVR32_MACB_CODE_OFFSET) // Code
|
||||
| (1 << AVR32_MACB_RW_OFFSET) // Write operation
|
||||
| ((ETHERNET_CONF_PHY_ADDR & 0x1f) << AVR32_MACB_PHYA_OFFSET) // Phy Add
|
||||
| (usAddress << AVR32_MACB_REGA_OFFSET)) // Reg Add
|
||||
| (usValue & 0xffff); // Data
|
||||
// wait for PHY to be ready
|
||||
do {
|
||||
status = macb->nsr;
|
||||
} while (!(status & AVR32_MACB_NSR_IDLE_MASK));
|
||||
// disable management port
|
||||
macb->ncr &= ~AVR32_MACB_NCR_MPE_MASK;
|
||||
}
|
||||
|
||||
static Bool prvProbePHY( volatile avr32_macb_t * macb )
|
||||
{
|
||||
volatile unsigned long mii_status, phy_ctrl;
|
||||
volatile unsigned long config;
|
||||
unsigned long upper, lower, mode, advertise, lpa;
|
||||
volatile unsigned long physID;
|
||||
|
||||
// Read Phy Identifier register 1 & 2
|
||||
lower = ulReadMDIO(macb, PHY_PHYSID2);
|
||||
upper = ulReadMDIO(macb, PHY_PHYSID1);
|
||||
// get Phy ID, ignore Revision
|
||||
physID = ((upper << 16) & 0xFFFF0000) | (lower & 0xFFF0);
|
||||
// check if it match config
|
||||
if (physID == ETHERNET_CONF_PHY_ID)
|
||||
{
|
||||
// read RBR
|
||||
mode = ulReadMDIO(macb, PHY_RBR);
|
||||
// set RMII mode if not done
|
||||
if ((mode & RBR_RMII) != RBR_RMII)
|
||||
{
|
||||
// force RMII flag if strap options are wrong
|
||||
mode |= RBR_RMII;
|
||||
vWriteMDIO(macb, PHY_RBR, mode);
|
||||
}
|
||||
|
||||
// set advertise register
|
||||
#if ETHERNET_CONF_AN_ENABLE == 1
|
||||
advertise = ADVERTISE_CSMA | ADVERTISE_ALL;
|
||||
#else
|
||||
advertise = ADVERTISE_CSMA;
|
||||
#if ETHERNET_CONF_USE_100MB
|
||||
#if ETHERNET_CONF_USE_FULL_DUPLEX
|
||||
advertise |= ADVERTISE_100FULL;
|
||||
#else
|
||||
advertise |= ADVERTISE_100HALF;
|
||||
#endif
|
||||
#else
|
||||
#if ETHERNET_CONF_USE_FULL_DUPLEX
|
||||
advertise |= ADVERTISE_10FULL;
|
||||
#else
|
||||
advertise |= ADVERTISE_10HALF;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
// write advertise register
|
||||
vWriteMDIO(macb, PHY_ADVERTISE, advertise);
|
||||
// read Control register
|
||||
config = ulReadMDIO(macb, PHY_BMCR);
|
||||
// read Phy Control register
|
||||
phy_ctrl = ulReadMDIO(macb, PHY_PHYCR);
|
||||
#if ETHERNET_CONF_AN_ENABLE
|
||||
#if ETHERNET_CONF_AUTO_CROSS_ENABLE
|
||||
// enable Auto MDIX
|
||||
phy_ctrl |= PHYCR_MDIX_EN;
|
||||
#else
|
||||
// disable Auto MDIX
|
||||
phy_ctrl &= ~PHYCR_MDIX_EN;
|
||||
#if ETHERNET_CONF_CROSSED_LINK
|
||||
// force direct link = Use crossed RJ45 cable
|
||||
phy_ctrl &= ~PHYCR_MDIX_FORCE;
|
||||
#else
|
||||
// force crossed link = Use direct RJ45 cable
|
||||
phy_ctrl |= PHYCR_MDIX_FORCE;
|
||||
#endif
|
||||
#endif
|
||||
// reset auto-negociation capability
|
||||
config |= (BMCR_ANRESTART | BMCR_ANENABLE);
|
||||
#else
|
||||
// disable Auto MDIX
|
||||
phy_ctrl &= ~PHYCR_MDIX_EN;
|
||||
#if ETHERNET_CONF_CROSSED_LINK
|
||||
// force direct link = Use crossed RJ45 cable
|
||||
phy_ctrl &= ~PHYCR_MDIX_FORCE;
|
||||
#else
|
||||
// force crossed link = Use direct RJ45 cable
|
||||
phy_ctrl |= PHYCR_MDIX_FORCE;
|
||||
#endif
|
||||
// clear AN bit
|
||||
config &= ~BMCR_ANENABLE;
|
||||
|
||||
#if ETHERNET_CONF_USE_100MB
|
||||
config |= BMCR_SPEED100;
|
||||
#else
|
||||
config &= ~BMCR_SPEED100;
|
||||
#endif
|
||||
#if ETHERNET_CONF_USE_FULL_DUPLEX
|
||||
config |= BMCR_FULLDPLX;
|
||||
#else
|
||||
config &= ~BMCR_FULLDPLX;
|
||||
#endif
|
||||
#endif
|
||||
// update Phy ctrl register
|
||||
vWriteMDIO(macb, PHY_PHYCR, phy_ctrl);
|
||||
|
||||
// update ctrl register
|
||||
vWriteMDIO(macb, PHY_BMCR, config);
|
||||
|
||||
// loop while link status isn't OK
|
||||
do {
|
||||
mii_status = ulReadMDIO(macb, PHY_BMSR);
|
||||
} while (!(mii_status & BMSR_LSTATUS));
|
||||
|
||||
// read the LPA configuration of the PHY
|
||||
lpa = ulReadMDIO(macb, PHY_LPA);
|
||||
|
||||
// read the MACB config register
|
||||
config = AVR32_MACB.ncfgr;
|
||||
|
||||
// if 100MB needed
|
||||
if ((lpa & advertise) & (LPA_100HALF | LPA_100FULL))
|
||||
{
|
||||
config |= AVR32_MACB_SPD_MASK;
|
||||
}
|
||||
else
|
||||
{
|
||||
config &= ~(AVR32_MACB_SPD_MASK);
|
||||
}
|
||||
|
||||
// if FULL DUPLEX needed
|
||||
if ((lpa & advertise) & (LPA_10FULL | LPA_100FULL))
|
||||
{
|
||||
config |= AVR32_MACB_FD_MASK;
|
||||
}
|
||||
else
|
||||
{
|
||||
config &= ~(AVR32_MACB_FD_MASK);
|
||||
}
|
||||
|
||||
// write the MACB config register
|
||||
macb->ncfgr = config;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
|
||||
void vMACBWaitForInput( unsigned long ulTimeOut )
|
||||
{
|
||||
#ifdef FREERTOS_USED
|
||||
// Just wait until we are signled from an ISR that data is available, or
|
||||
// we simply time out.
|
||||
xSemaphoreTake( xSemaphore, ulTimeOut );
|
||||
#else
|
||||
unsigned long i;
|
||||
gpio_clr_gpio_pin(LED0_GPIO);
|
||||
i = ulTimeOut * 1000;
|
||||
// wait for an interrupt to occurs
|
||||
do
|
||||
{
|
||||
if ( DataToRead == TRUE )
|
||||
{
|
||||
// IT occurs, reset interrupt flag
|
||||
portENTER_CRITICAL();
|
||||
DataToRead = FALSE;
|
||||
portEXIT_CRITICAL();
|
||||
break;
|
||||
}
|
||||
i--;
|
||||
}
|
||||
while(i != 0);
|
||||
gpio_set_gpio_pin(LED0_GPIO);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The MACB ISR. Handles both Tx and Rx complete interrupts.
|
||||
*/
|
||||
#ifdef FREERTOS_USED
|
||||
#if __GNUC__
|
||||
__attribute__((naked))
|
||||
#elif __ICCAVR32__
|
||||
#pragma shadow_registers = full // Naked.
|
||||
#endif
|
||||
#else
|
||||
#if __GNUC__
|
||||
__attribute__((__interrupt__))
|
||||
#elif __ICCAVR32__
|
||||
__interrupt
|
||||
#endif
|
||||
#endif
|
||||
void vMACB_ISR( void )
|
||||
{
|
||||
// This ISR can cause a context switch, so the first statement must be a
|
||||
// call to the portENTER_SWITCHING_ISR() macro. This must be BEFORE any
|
||||
// variable declarations.
|
||||
portENTER_SWITCHING_ISR();
|
||||
|
||||
// the return value is used by FreeRTOS to change the context if needed after rete instruction
|
||||
// in standalone use, this value should be ignored
|
||||
prvMACB_ISR_NonNakedBehaviour();
|
||||
|
||||
// Exit the ISR. If a task was woken by either a character being received
|
||||
// or transmitted then a context switch will occur.
|
||||
portEXIT_SWITCHING_ISR();
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
#if __GNUC__
|
||||
__attribute__((__noinline__))
|
||||
#elif __ICCAVR32__
|
||||
#pragma optimize = no_inline
|
||||
#endif
|
||||
static long prvMACB_ISR_NonNakedBehaviour( void )
|
||||
{
|
||||
|
||||
// Variable definitions can be made now.
|
||||
volatile unsigned long ulIntStatus, ulEventStatus;
|
||||
long xSwitchRequired = FALSE;
|
||||
|
||||
// Find the cause of the interrupt.
|
||||
ulIntStatus = AVR32_MACB.isr;
|
||||
ulEventStatus = AVR32_MACB.rsr;
|
||||
|
||||
if( ( ulIntStatus & AVR32_MACB_IDR_RCOMP_MASK ) || ( ulEventStatus & AVR32_MACB_REC_MASK ) )
|
||||
{
|
||||
// A frame has been received, signal the IP task so it can process
|
||||
// the Rx descriptors.
|
||||
portENTER_CRITICAL();
|
||||
#ifdef FREERTOS_USED
|
||||
xSwitchRequired = xSemaphoreGiveFromISR( xSemaphore, FALSE );
|
||||
#else
|
||||
DataToRead = TRUE;
|
||||
#endif
|
||||
portEXIT_CRITICAL();
|
||||
AVR32_MACB.rsr = AVR32_MACB_REC_MASK;
|
||||
AVR32_MACB.rsr;
|
||||
}
|
||||
|
||||
if( ulIntStatus & AVR32_MACB_TCOMP_MASK )
|
||||
{
|
||||
// A frame has been transmitted. Mark all the buffers used by the
|
||||
// frame just transmitted as free again.
|
||||
vClearMACBTxBuffer();
|
||||
AVR32_MACB.tsr = AVR32_MACB_TSR_COMP_MASK;
|
||||
AVR32_MACB.tsr;
|
||||
}
|
||||
|
||||
return ( xSwitchRequired );
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if ETHERNET_CONF_USE_PHY_IT
|
||||
/*
|
||||
* The PHY ISR. Handles Phy interrupts.
|
||||
*/
|
||||
#ifdef FREERTOS_USED
|
||||
#if __GNUC__
|
||||
__attribute__((naked))
|
||||
#elif __ICCAVR32__
|
||||
#pragma shadow_registers = full // Naked.
|
||||
#endif
|
||||
#else
|
||||
#if __GNUC__
|
||||
__attribute__((__interrupt__))
|
||||
#elif __ICCAVR32__
|
||||
__interrupt
|
||||
#endif
|
||||
#endif
|
||||
void vPHY_ISR( void )
|
||||
{
|
||||
// This ISR can cause a context switch, so the first statement must be a
|
||||
// call to the portENTER_SWITCHING_ISR() macro. This must be BEFORE any
|
||||
// variable declarations.
|
||||
portENTER_SWITCHING_ISR();
|
||||
|
||||
// the return value is used by FreeRTOS to change the context if needed after rete instruction
|
||||
// in standalone use, this value should be ignored
|
||||
prvPHY_ISR_NonNakedBehaviour();
|
||||
|
||||
// Exit the ISR. If a task was woken by either a character being received
|
||||
// or transmitted then a context switch will occur.
|
||||
portEXIT_SWITCHING_ISR();
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
#if __GNUC__
|
||||
__attribute__((__noinline__))
|
||||
#elif __ICCAVR32__
|
||||
#pragma optimize = no_inline
|
||||
#endif
|
||||
static long prvPHY_ISR_NonNakedBehaviour( void )
|
||||
{
|
||||
|
||||
// Variable definitions can be made now.
|
||||
volatile unsigned long ulIntStatus, ulEventStatus;
|
||||
long xSwitchRequired = FALSE;
|
||||
volatile avr32_gpio_t *gpio = &AVR32_GPIO;
|
||||
volatile avr32_gpio_port_t *gpio_port = &gpio->port[MACB_INTERRUPT_PIN/32];
|
||||
|
||||
// read Phy Interrupt register Status
|
||||
ulIntStatus = ulReadMDIO(&AVR32_MACB, PHY_MISR);
|
||||
|
||||
// read Phy status register
|
||||
ulEventStatus = ulReadMDIO(&AVR32_MACB, PHY_BMSR);
|
||||
// dummy read
|
||||
ulEventStatus = ulReadMDIO(&AVR32_MACB, PHY_BMSR);
|
||||
|
||||
// clear interrupt flag on GPIO
|
||||
gpio_port->ifrc = 1 << (MACB_INTERRUPT_PIN%32);
|
||||
|
||||
return ( xSwitchRequired );
|
||||
}
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue