Style: uncrusitfy

This commit is contained in:
Alfred Gedeon 2020-07-01 22:27:40 -07:00 committed by alfred gedeon
parent a5dbc2b1de
commit 718178c68a
406 changed files with 108795 additions and 106323 deletions

View file

@ -25,8 +25,8 @@
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the SH2A port.
*----------------------------------------------------------*/
* Implementation of functions defined in portable.h for the SH2A port.
*----------------------------------------------------------*/
/* Standard C includes. */
#include "limits.h"
@ -44,29 +44,29 @@
/*-----------------------------------------------------------*/
/* Tasks should start with interrupts enabled and in Supervisor mode, therefore
PSW is set with U and I set, and PM and IPL clear. */
#define portINITIAL_PSW ( ( StackType_t ) 0x00030000 )
* PSW is set with U and I set, and PM and IPL clear. */
#define portINITIAL_PSW ( ( StackType_t ) 0x00030000 )
/* The peripheral clock is divided by this value before being supplying the
CMT. */
* CMT. */
#if ( configUSE_TICKLESS_IDLE == 0 )
/* If tickless idle is not used then the divisor can be fixed. */
#define portCLOCK_DIVISOR 8UL
/* If tickless idle is not used then the divisor can be fixed. */
#define portCLOCK_DIVISOR 8UL
#elif ( configPERIPHERAL_CLOCK_HZ >= 12000000 )
#define portCLOCK_DIVISOR 512UL
#define portCLOCK_DIVISOR 512UL
#elif ( configPERIPHERAL_CLOCK_HZ >= 6000000 )
#define portCLOCK_DIVISOR 128UL
#define portCLOCK_DIVISOR 128UL
#elif ( configPERIPHERAL_CLOCK_HZ >= 1000000 )
#define portCLOCK_DIVISOR 32UL
#define portCLOCK_DIVISOR 32UL
#else
#define portCLOCK_DIVISOR 8UL
#define portCLOCK_DIVISOR 8UL
#endif
/* Keys required to lock and unlock access to certain system registers
respectively. */
#define portUNLOCK_KEY 0xA50B
#define portLOCK_KEY 0xA500
* respectively. */
#define portUNLOCK_KEY 0xA50B
#define portLOCK_KEY 0xA500
/*-----------------------------------------------------------*/
@ -90,9 +90,10 @@ __interrupt static void prvTickISR( void );
*/
static void prvSetupTimerInterrupt( void );
#ifndef configSETUP_TICK_INTERRUPT
/* The user has not provided their own tick interrupt configuration so use
the definition in this file (which uses the interval timer). */
#define configSETUP_TICK_INTERRUPT() prvSetupTimerInterrupt()
/* The user has not provided their own tick interrupt configuration so use
* the definition in this file (which uses the interval timer). */
#define configSETUP_TICK_INTERRUPT() prvSetupTimerInterrupt()
#endif /* configSETUP_TICK_INTERRUPT */
/*
@ -101,415 +102,420 @@ static void prvSetupTimerInterrupt( void );
* instruction.
*/
#if configUSE_TICKLESS_IDLE == 1
static void prvSleep( TickType_t xExpectedIdleTime );
static void prvSleep( TickType_t xExpectedIdleTime );
#endif /* configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
extern void *pxCurrentTCB;
extern void * pxCurrentTCB;
/*-----------------------------------------------------------*/
/* Calculate how many clock increments make up a single tick period. */
static const uint32_t ulMatchValueForOneTick = ( ( configPERIPHERAL_CLOCK_HZ / portCLOCK_DIVISOR ) / configTICK_RATE_HZ );
static const uint32_t ulMatchValueForOneTick = ( ( configPERIPHERAL_CLOCK_HZ / portCLOCK_DIVISOR ) / configTICK_RATE_HZ );
#if configUSE_TICKLESS_IDLE == 1
/* Holds the maximum number of ticks that can be suppressed - which is
basically how far into the future an interrupt can be generated. Set
during initialisation. This is the maximum possible value that the
compare match register can hold divided by ulMatchValueForOneTick. */
static const TickType_t xMaximumPossibleSuppressedTicks = USHRT_MAX / ( ( configPERIPHERAL_CLOCK_HZ / portCLOCK_DIVISOR ) / configTICK_RATE_HZ );
/* Holds the maximum number of ticks that can be suppressed - which is
* basically how far into the future an interrupt can be generated. Set
* during initialisation. This is the maximum possible value that the
* compare match register can hold divided by ulMatchValueForOneTick. */
static const TickType_t xMaximumPossibleSuppressedTicks = USHRT_MAX / ( ( configPERIPHERAL_CLOCK_HZ / portCLOCK_DIVISOR ) / configTICK_RATE_HZ );
/* Flag set from the tick interrupt to allow the sleep processing to know if
sleep mode was exited because of a tick interrupt, or an interrupt
generated by something else. */
static volatile uint32_t ulTickFlag = pdFALSE;
/* Flag set from the tick interrupt to allow the sleep processing to know if
* sleep mode was exited because of a tick interrupt, or an interrupt
* generated by something else. */
static volatile uint32_t ulTickFlag = pdFALSE;
/* The CMT counter is stopped temporarily each time it is re-programmed.
The following constant offsets the CMT counter match value by the number of
CMT counts that would typically be missed while the counter was stopped to
compensate for the lost time. The large difference between the divided CMT
clock and the CPU clock means it is likely ulStoppedTimerCompensation will
equal zero - and be optimised away. */
static const uint32_t ulStoppedTimerCompensation = 100UL / ( configCPU_CLOCK_HZ / ( configPERIPHERAL_CLOCK_HZ / portCLOCK_DIVISOR ) );
/* The CMT counter is stopped temporarily each time it is re-programmed.
* The following constant offsets the CMT counter match value by the number of
* CMT counts that would typically be missed while the counter was stopped to
* compensate for the lost time. The large difference between the divided CMT
* clock and the CPU clock means it is likely ulStoppedTimerCompensation will
* equal zero - and be optimised away. */
static const uint32_t ulStoppedTimerCompensation = 100UL / ( configCPU_CLOCK_HZ / ( configPERIPHERAL_CLOCK_HZ / portCLOCK_DIVISOR ) );
#endif
#endif /* if configUSE_TICKLESS_IDLE == 1 */
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
TaskFunction_t pxCode,
void * pvParameters )
{
/* Offset to end up on 8 byte boundary. */
pxTopOfStack--;
/* Offset to end up on 8 byte boundary. */
pxTopOfStack--;
/* R0 is not included as it is the stack pointer. */
*pxTopOfStack = 0x00;
pxTopOfStack--;
/* R0 is not included as it is the stack pointer. */
*pxTopOfStack = 0x00;
pxTopOfStack--;
*pxTopOfStack = portINITIAL_PSW;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) pxCode;
pxTopOfStack--;
*pxTopOfStack = 0x00;
pxTopOfStack--;
*pxTopOfStack = portINITIAL_PSW;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) pxCode;
/* When debugging it can be useful if every register is set to a known
value. Otherwise code space can be saved by just setting the registers
that need to be set. */
#ifdef USE_FULL_REGISTER_INITIALISATION
{
pxTopOfStack--;
*pxTopOfStack = 0x12345678; /* r15. */
pxTopOfStack--;
*pxTopOfStack = 0xaaaabbbb;
pxTopOfStack--;
*pxTopOfStack = 0xdddddddd;
pxTopOfStack--;
*pxTopOfStack = 0xcccccccc;
pxTopOfStack--;
*pxTopOfStack = 0xbbbbbbbb;
pxTopOfStack--;
*pxTopOfStack = 0xaaaaaaaa;
pxTopOfStack--;
*pxTopOfStack = 0x99999999;
pxTopOfStack--;
*pxTopOfStack = 0x88888888;
pxTopOfStack--;
*pxTopOfStack = 0x77777777;
pxTopOfStack--;
*pxTopOfStack = 0x66666666;
pxTopOfStack--;
*pxTopOfStack = 0x55555555;
pxTopOfStack--;
*pxTopOfStack = 0x44444444;
pxTopOfStack--;
*pxTopOfStack = 0x33333333;
pxTopOfStack--;
*pxTopOfStack = 0x22222222;
pxTopOfStack--;
}
#else
{
/* Leave space for the registers that will get popped from the stack
when the task first starts executing. */
pxTopOfStack -= 15;
}
#endif
/* When debugging it can be useful if every register is set to a known
* value. Otherwise code space can be saved by just setting the registers
* that need to be set. */
#ifdef USE_FULL_REGISTER_INITIALISATION
{
pxTopOfStack--;
*pxTopOfStack = 0x12345678; /* r15. */
pxTopOfStack--;
*pxTopOfStack = 0xaaaabbbb;
pxTopOfStack--;
*pxTopOfStack = 0xdddddddd;
pxTopOfStack--;
*pxTopOfStack = 0xcccccccc;
pxTopOfStack--;
*pxTopOfStack = 0xbbbbbbbb;
pxTopOfStack--;
*pxTopOfStack = 0xaaaaaaaa;
pxTopOfStack--;
*pxTopOfStack = 0x99999999;
pxTopOfStack--;
*pxTopOfStack = 0x88888888;
pxTopOfStack--;
*pxTopOfStack = 0x77777777;
pxTopOfStack--;
*pxTopOfStack = 0x66666666;
pxTopOfStack--;
*pxTopOfStack = 0x55555555;
pxTopOfStack--;
*pxTopOfStack = 0x44444444;
pxTopOfStack--;
*pxTopOfStack = 0x33333333;
pxTopOfStack--;
*pxTopOfStack = 0x22222222;
pxTopOfStack--;
}
#else /* ifdef USE_FULL_REGISTER_INITIALISATION */
{
/* Leave space for the registers that will get popped from the stack
* when the task first starts executing. */
pxTopOfStack -= 15;
}
#endif /* ifdef USE_FULL_REGISTER_INITIALISATION */
*pxTopOfStack = ( StackType_t ) pvParameters; /* R1 */
pxTopOfStack--;
*pxTopOfStack = 0x12345678; /* Accumulator. */
pxTopOfStack--;
*pxTopOfStack = 0x87654321; /* Accumulator. */
*pxTopOfStack = ( StackType_t ) pvParameters; /* R1 */
pxTopOfStack--;
*pxTopOfStack = 0x12345678; /* Accumulator. */
pxTopOfStack--;
*pxTopOfStack = 0x87654321; /* Accumulator. */
return pxTopOfStack;
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
BaseType_t xPortStartScheduler( void )
{
/* Use pxCurrentTCB just so it does not get optimised away. */
if( pxCurrentTCB != NULL )
{
/* Call an application function to set up the timer that will generate
the tick interrupt. This way the application can decide which
peripheral to use. If tickless mode is used then the default
implementation defined in this file (which uses CMT0) should not be
overridden. */
configSETUP_TICK_INTERRUPT();
/* Use pxCurrentTCB just so it does not get optimised away. */
if( pxCurrentTCB != NULL )
{
/* Call an application function to set up the timer that will generate
* the tick interrupt. This way the application can decide which
* peripheral to use. If tickless mode is used then the default
* implementation defined in this file (which uses CMT0) should not be
* overridden. */
configSETUP_TICK_INTERRUPT();
/* Enable the software interrupt. */
_IEN( _ICU_SWINT ) = 1;
/* Enable the software interrupt. */
_IEN( _ICU_SWINT ) = 1;
/* Ensure the software interrupt is clear. */
_IR( _ICU_SWINT ) = 0;
/* Ensure the software interrupt is clear. */
_IR( _ICU_SWINT ) = 0;
/* Ensure the software interrupt is set to the kernel priority. */
_IPR( _ICU_SWINT ) = configKERNEL_INTERRUPT_PRIORITY;
/* Ensure the software interrupt is set to the kernel priority. */
_IPR( _ICU_SWINT ) = configKERNEL_INTERRUPT_PRIORITY;
/* Start the first task. */
prvStartFirstTask();
}
/* Start the first task. */
prvStartFirstTask();
}
/* Execution should not reach here as the tasks are now running!
prvSetupTimerInterrupt() is called here to prevent the compiler outputting
a warning about a statically declared function not being referenced in the
case that the application writer has provided their own tick interrupt
configuration routine (and defined configSETUP_TICK_INTERRUPT() such that
their own routine will be called in place of prvSetupTimerInterrupt()). */
prvSetupTimerInterrupt();
/* Execution should not reach here as the tasks are now running!
* prvSetupTimerInterrupt() is called here to prevent the compiler outputting
* a warning about a statically declared function not being referenced in the
* case that the application writer has provided their own tick interrupt
* configuration routine (and defined configSETUP_TICK_INTERRUPT() such that
* their own routine will be called in place of prvSetupTimerInterrupt()). */
prvSetupTimerInterrupt();
/* Should not get here. */
return pdFAIL;
/* Should not get here. */
return pdFAIL;
}
/*-----------------------------------------------------------*/
#pragma vector = configTICK_VECTOR
__interrupt static void prvTickISR( void )
{
/* Re-enable interrupts. */
__enable_interrupt();
/* Re-enable interrupts. */
__enable_interrupt();
/* Increment the tick, and perform any processing the new tick value
necessitates. */
__set_interrupt_level( configMAX_SYSCALL_INTERRUPT_PRIORITY );
{
if( xTaskIncrementTick() != pdFALSE )
{
taskYIELD();
}
}
__set_interrupt_level( configKERNEL_INTERRUPT_PRIORITY );
/* Increment the tick, and perform any processing the new tick value
* necessitates. */
__set_interrupt_level( configMAX_SYSCALL_INTERRUPT_PRIORITY );
{
if( xTaskIncrementTick() != pdFALSE )
{
taskYIELD();
}
}
__set_interrupt_level( configKERNEL_INTERRUPT_PRIORITY );
#if configUSE_TICKLESS_IDLE == 1
{
/* The CPU woke because of a tick. */
ulTickFlag = pdTRUE;
#if configUSE_TICKLESS_IDLE == 1
{
/* The CPU woke because of a tick. */
ulTickFlag = pdTRUE;
/* If this is the first tick since exiting tickless mode then the CMT
compare match value needs resetting. */
CMT0.CMCOR = ( uint16_t ) ulMatchValueForOneTick;
}
#endif
/* If this is the first tick since exiting tickless mode then the CMT
* compare match value needs resetting. */
CMT0.CMCOR = ( uint16_t ) ulMatchValueForOneTick;
}
#endif
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented in ports where there is nothing to return to.
Artificially force an assert. */
configASSERT( pxCurrentTCB == NULL );
/* Not implemented in ports where there is nothing to return to.
* Artificially force an assert. */
configASSERT( pxCurrentTCB == NULL );
}
/*-----------------------------------------------------------*/
static void prvSetupTimerInterrupt( void )
{
/* Unlock. */
SYSTEM.PRCR.WORD = portUNLOCK_KEY;
/* Unlock. */
SYSTEM.PRCR.WORD = portUNLOCK_KEY;
/* Enable CMT0. */
MSTP( CMT0 ) = 0;
/* Enable CMT0. */
MSTP( CMT0 ) = 0;
/* Lock again. */
SYSTEM.PRCR.WORD = portLOCK_KEY;
/* Lock again. */
SYSTEM.PRCR.WORD = portLOCK_KEY;
/* Interrupt on compare match. */
CMT0.CMCR.BIT.CMIE = 1;
/* Interrupt on compare match. */
CMT0.CMCR.BIT.CMIE = 1;
/* Set the compare match value. */
CMT0.CMCOR = ( uint16_t ) ulMatchValueForOneTick;
/* Set the compare match value. */
CMT0.CMCOR = ( uint16_t ) ulMatchValueForOneTick;
/* Divide the PCLK. */
#if portCLOCK_DIVISOR == 512
{
CMT0.CMCR.BIT.CKS = 3;
}
#elif portCLOCK_DIVISOR == 128
{
CMT0.CMCR.BIT.CKS = 2;
}
#elif portCLOCK_DIVISOR == 32
{
CMT0.CMCR.BIT.CKS = 1;
}
#elif portCLOCK_DIVISOR == 8
{
CMT0.CMCR.BIT.CKS = 0;
}
#else
{
#error Invalid portCLOCK_DIVISOR setting
}
#endif
/* Divide the PCLK. */
#if portCLOCK_DIVISOR == 512
{
CMT0.CMCR.BIT.CKS = 3;
}
#elif portCLOCK_DIVISOR == 128
{
CMT0.CMCR.BIT.CKS = 2;
}
#elif portCLOCK_DIVISOR == 32
{
CMT0.CMCR.BIT.CKS = 1;
}
#elif portCLOCK_DIVISOR == 8
{
CMT0.CMCR.BIT.CKS = 0;
}
#else /* if portCLOCK_DIVISOR == 512 */
{
#error Invalid portCLOCK_DIVISOR setting
}
#endif /* if portCLOCK_DIVISOR == 512 */
/* Enable the interrupt... */
_IEN( _CMT0_CMI0 ) = 1;
/* Enable the interrupt... */
_IEN( _CMT0_CMI0 ) = 1;
/* ...and set its priority to the application defined kernel priority. */
_IPR( _CMT0_CMI0 ) = configKERNEL_INTERRUPT_PRIORITY;
/* ...and set its priority to the application defined kernel priority. */
_IPR( _CMT0_CMI0 ) = configKERNEL_INTERRUPT_PRIORITY;
/* Start the timer. */
CMT.CMSTR0.BIT.STR0 = 1;
/* Start the timer. */
CMT.CMSTR0.BIT.STR0 = 1;
}
/*-----------------------------------------------------------*/
#if configUSE_TICKLESS_IDLE == 1
static void prvSleep( TickType_t xExpectedIdleTime )
{
/* Allow the application to define some pre-sleep processing. */
configPRE_SLEEP_PROCESSING( xExpectedIdleTime );
static void prvSleep( TickType_t xExpectedIdleTime )
{
/* Allow the application to define some pre-sleep processing. */
configPRE_SLEEP_PROCESSING( xExpectedIdleTime );
/* xExpectedIdleTime being set to 0 by configPRE_SLEEP_PROCESSING()
means the application defined code has already executed the WAIT
instruction. */
if( xExpectedIdleTime > 0 )
{
__wait_for_interrupt();
}
/* xExpectedIdleTime being set to 0 by configPRE_SLEEP_PROCESSING()
* means the application defined code has already executed the WAIT
* instruction. */
if( xExpectedIdleTime > 0 )
{
__wait_for_interrupt();
}
/* Allow the application to define some post sleep processing. */
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
}
/* Allow the application to define some post sleep processing. */
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
}
#endif /* configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
#if configUSE_TICKLESS_IDLE == 1
void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulMatchValue, ulCompleteTickPeriods, ulCurrentCount;
eSleepModeStatus eSleepAction;
void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulMatchValue, ulCompleteTickPeriods, ulCurrentCount;
eSleepModeStatus eSleepAction;
/* THIS FUNCTION IS CALLED WITH THE SCHEDULER SUSPENDED. */
/* THIS FUNCTION IS CALLED WITH THE SCHEDULER SUSPENDED. */
/* Make sure the CMT reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Make sure the CMT reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Calculate the reload value required to wait xExpectedIdleTime tick
periods. */
ulMatchValue = ulMatchValueForOneTick * xExpectedIdleTime;
if( ulMatchValue > ulStoppedTimerCompensation )
{
/* Compensate for the fact that the CMT is going to be stopped
momentarily. */
ulMatchValue -= ulStoppedTimerCompensation;
}
/* Calculate the reload value required to wait xExpectedIdleTime tick
* periods. */
ulMatchValue = ulMatchValueForOneTick * xExpectedIdleTime;
/* Stop the CMT momentarily. The time the CMT is stopped for is
accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
CMT.CMSTR0.BIT.STR0 = 0;
while( CMT.CMSTR0.BIT.STR0 == 1 )
{
/* Nothing to do here. */
}
if( ulMatchValue > ulStoppedTimerCompensation )
{
/* Compensate for the fact that the CMT is going to be stopped
* momentarily. */
ulMatchValue -= ulStoppedTimerCompensation;
}
/* Critical section using the global interrupt bit as the i bit is
automatically reset by the WAIT instruction. */
__disable_interrupt();
/* Stop the CMT momentarily. The time the CMT is stopped for is
* accounted for as best it can be, but using the tickless mode will
* inevitably result in some tiny drift of the time maintained by the
* kernel with respect to calendar time. */
CMT.CMSTR0.BIT.STR0 = 0;
/* The tick flag is set to false before sleeping. If it is true when
sleep mode is exited then sleep mode was probably exited because the
tick was suppressed for the entire xExpectedIdleTime period. */
ulTickFlag = pdFALSE;
while( CMT.CMSTR0.BIT.STR0 == 1 )
{
/* Nothing to do here. */
}
/* If a context switch is pending then abandon the low power entry as
the context switch might have been pended by an external interrupt that
requires processing. */
eSleepAction = eTaskConfirmSleepModeStatus();
if( eSleepAction == eAbortSleep )
{
/* Restart tick. */
CMT.CMSTR0.BIT.STR0 = 1;
__enable_interrupt();
}
else if( eSleepAction == eNoTasksWaitingTimeout )
{
/* Protection off. */
SYSTEM.PRCR.WORD = portUNLOCK_KEY;
/* Critical section using the global interrupt bit as the i bit is
* automatically reset by the WAIT instruction. */
__disable_interrupt();
/* Ready for software standby with all clocks stopped. */
SYSTEM.SBYCR.BIT.SSBY = 1;
/* The tick flag is set to false before sleeping. If it is true when
* sleep mode is exited then sleep mode was probably exited because the
* tick was suppressed for the entire xExpectedIdleTime period. */
ulTickFlag = pdFALSE;
/* Protection on. */
SYSTEM.PRCR.WORD = portLOCK_KEY;
/* If a context switch is pending then abandon the low power entry as
* the context switch might have been pended by an external interrupt that
* requires processing. */
eSleepAction = eTaskConfirmSleepModeStatus();
/* Sleep until something happens. Calling prvSleep() will
automatically reset the i bit in the PSW. */
prvSleep( xExpectedIdleTime );
if( eSleepAction == eAbortSleep )
{
/* Restart tick. */
CMT.CMSTR0.BIT.STR0 = 1;
__enable_interrupt();
}
else if( eSleepAction == eNoTasksWaitingTimeout )
{
/* Protection off. */
SYSTEM.PRCR.WORD = portUNLOCK_KEY;
/* Restart the CMT. */
CMT.CMSTR0.BIT.STR0 = 1;
}
else
{
/* Protection off. */
SYSTEM.PRCR.WORD = portUNLOCK_KEY;
/* Ready for software standby with all clocks stopped. */
SYSTEM.SBYCR.BIT.SSBY = 1;
/* Ready for deep sleep mode. */
SYSTEM.MSTPCRC.BIT.DSLPE = 1;
SYSTEM.MSTPCRA.BIT.MSTPA28 = 1;
SYSTEM.SBYCR.BIT.SSBY = 0;
/* Protection on. */
SYSTEM.PRCR.WORD = portLOCK_KEY;
/* Protection on. */
SYSTEM.PRCR.WORD = portLOCK_KEY;
/* Sleep until something happens. Calling prvSleep() will
* automatically reset the i bit in the PSW. */
prvSleep( xExpectedIdleTime );
/* Adjust the match value to take into account that the current
time slice is already partially complete. */
ulMatchValue -= ( uint32_t ) CMT0.CMCNT;
CMT0.CMCOR = ( uint16_t ) ulMatchValue;
/* Restart the CMT. */
CMT.CMSTR0.BIT.STR0 = 1;
}
else
{
/* Protection off. */
SYSTEM.PRCR.WORD = portUNLOCK_KEY;
/* Restart the CMT to count up to the new match value. */
CMT0.CMCNT = 0;
CMT.CMSTR0.BIT.STR0 = 1;
/* Ready for deep sleep mode. */
SYSTEM.MSTPCRC.BIT.DSLPE = 1;
SYSTEM.MSTPCRA.BIT.MSTPA28 = 1;
SYSTEM.SBYCR.BIT.SSBY = 0;
/* Sleep until something happens. Calling prvSleep() will
automatically reset the i bit in the PSW. */
prvSleep( xExpectedIdleTime );
/* Protection on. */
SYSTEM.PRCR.WORD = portLOCK_KEY;
/* Stop CMT. Again, the time the SysTick is stopped for is
accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
CMT.CMSTR0.BIT.STR0 = 0;
while( CMT.CMSTR0.BIT.STR0 == 1 )
{
/* Nothing to do here. */
}
/* Adjust the match value to take into account that the current
* time slice is already partially complete. */
ulMatchValue -= ( uint32_t ) CMT0.CMCNT;
CMT0.CMCOR = ( uint16_t ) ulMatchValue;
ulCurrentCount = ( uint32_t ) CMT0.CMCNT;
/* Restart the CMT to count up to the new match value. */
CMT0.CMCNT = 0;
CMT.CMSTR0.BIT.STR0 = 1;
if( ulTickFlag != pdFALSE )
{
/* The tick interrupt has already executed, although because
this function is called with the scheduler suspended the actual
tick processing will not occur until after this function has
exited. Reset the match value with whatever remains of this
tick period. */
ulMatchValue = ulMatchValueForOneTick - ulCurrentCount;
CMT0.CMCOR = ( uint16_t ) ulMatchValue;
/* Sleep until something happens. Calling prvSleep() will
* automatically reset the i bit in the PSW. */
prvSleep( xExpectedIdleTime );
/* The tick interrupt handler will already have pended the tick
processing in the kernel. As the pending tick will be
processed as soon as this function exits, the tick value
maintained by the tick is stepped forward by one less than the
time spent sleeping. The actual stepping of the tick appears
later in this function. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
}
else
{
/* Something other than the tick interrupt ended the sleep.
How many complete tick periods passed while the processor was
sleeping? */
ulCompleteTickPeriods = ulCurrentCount / ulMatchValueForOneTick;
/* Stop CMT. Again, the time the SysTick is stopped for is
* accounted for as best it can be, but using the tickless mode will
* inevitably result in some tiny drift of the time maintained by the
* kernel with respect to calendar time. */
CMT.CMSTR0.BIT.STR0 = 0;
/* The match value is set to whatever fraction of a single tick
period remains. */
ulMatchValue = ulCurrentCount - ( ulCompleteTickPeriods * ulMatchValueForOneTick );
CMT0.CMCOR = ( uint16_t ) ulMatchValue;
}
while( CMT.CMSTR0.BIT.STR0 == 1 )
{
/* Nothing to do here. */
}
/* Restart the CMT so it runs up to the match value. The match value
will get set to the value required to generate exactly one tick period
the next time the CMT interrupt executes. */
CMT0.CMCNT = 0;
CMT.CMSTR0.BIT.STR0 = 1;
ulCurrentCount = ( uint32_t ) CMT0.CMCNT;
/* Wind the tick forward by the number of tick periods that the CPU
remained in a low power state. */
vTaskStepTick( ulCompleteTickPeriods );
}
}
if( ulTickFlag != pdFALSE )
{
/* The tick interrupt has already executed, although because
* this function is called with the scheduler suspended the actual
* tick processing will not occur until after this function has
* exited. Reset the match value with whatever remains of this
* tick period. */
ulMatchValue = ulMatchValueForOneTick - ulCurrentCount;
CMT0.CMCOR = ( uint16_t ) ulMatchValue;
/* The tick interrupt handler will already have pended the tick
* processing in the kernel. As the pending tick will be
* processed as soon as this function exits, the tick value
* maintained by the tick is stepped forward by one less than the
* time spent sleeping. The actual stepping of the tick appears
* later in this function. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
}
else
{
/* Something other than the tick interrupt ended the sleep.
* How many complete tick periods passed while the processor was
* sleeping? */
ulCompleteTickPeriods = ulCurrentCount / ulMatchValueForOneTick;
/* The match value is set to whatever fraction of a single tick
* period remains. */
ulMatchValue = ulCurrentCount - ( ulCompleteTickPeriods * ulMatchValueForOneTick );
CMT0.CMCOR = ( uint16_t ) ulMatchValue;
}
/* Restart the CMT so it runs up to the match value. The match value
* will get set to the value required to generate exactly one tick period
* the next time the CMT interrupt executes. */
CMT0.CMCNT = 0;
CMT.CMSTR0.BIT.STR0 = 1;
/* Wind the tick forward by the number of tick periods that the CPU
* remained in a low power state. */
vTaskStepTick( ulCompleteTickPeriods );
}
}
#endif /* configUSE_TICKLESS_IDLE */