CI-CD Updates (#768)

* Use new version of CI-CD Actions
* Use cSpell spell check, and use ubuntu-20.04 for formatting check
* Format and spell check all files in the portable directory
* Remove the https:// from #errors and #warnings as uncrustify attempts to change it to /*
* Use checkout@v3 instead of checkout@v2 on all jobs
---------
This commit is contained in:
Soren Ptak 2023-09-05 17:24:04 -04:00 committed by GitHub
parent d6bccb1f4c
commit 5fb9b50da8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
485 changed files with 108790 additions and 107581 deletions

View file

@ -31,8 +31,8 @@
#include "task.h"
/* The critical nesting value is initialised to a non zero value to ensure
interrupts don't accidentally become enabled before the scheduler is started. */
#define portINITIAL_CRITICAL_NESTING ( ( uint16_t ) 10 )
* interrupts don't accidentally become enabled before the scheduler is started. */
#define portINITIAL_CRITICAL_NESTING ( ( uint16_t ) 10 )
/* Initial PSW value allocated to a newly created task.
* 1100011000000000
@ -45,21 +45,21 @@ interrupts don't accidentally become enabled before the scheduler is started. */
* |--------------------- Zero Flag set
* ---------------------- Global Interrupt Flag set (enabled)
*/
#define portPSW ( 0xc6UL )
#define portPSW ( 0xc6UL )
/* The address of the pxCurrentTCB variable, but don't know or need to know its
type. */
* type. */
typedef void TCB_t;
extern volatile TCB_t * volatile pxCurrentTCB;
/* Each task maintains a count of the critical section nesting depth. Each time
a critical section is entered the count is incremented. Each time a critical
section is exited the count is decremented - with interrupts only being
re-enabled if the count is zero.
usCriticalNesting will get set to zero when the scheduler starts, but must
not be initialised to zero as that could cause problems during the startup
sequence. */
* a critical section is entered the count is incremented. Each time a critical
* section is exited the count is decremented - with interrupts only being
* re-enabled if the count is zero.
*
* usCriticalNesting will get set to zero when the scheduler starts, but must
* not be initialised to zero as that could cause problems during the startup
* sequence. */
volatile uint16_t usCriticalNesting = portINITIAL_CRITICAL_NESTING;
/*-----------------------------------------------------------*/
@ -88,35 +88,37 @@ static void prvTaskExitError( void );
*
* See the header file portable.h.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
TaskFunction_t pxCode,
void * pvParameters )
{
uint32_t *pulLocal;
uint32_t * pulLocal;
/* With large code and large data sizeof( StackType_t ) == 2, and
sizeof( StackType_t * ) == 4. With small code and small data
sizeof( StackType_t ) == 2 and sizeof( StackType_t * ) == 2. */
* sizeof( StackType_t * ) == 4. With small code and small data
* sizeof( StackType_t ) == 2 and sizeof( StackType_t * ) == 2. */
#if __DATA_MODEL__ == __DATA_MODEL_FAR__
{
/* Far pointer parameters are passed using the A:DE registers (24-bit).
Although they are stored in memory as a 32-bit value. Hence decrement
the stack pointer, so 2 bytes are left for the contents of A, before
storing the pvParameters value. */
* Although they are stored in memory as a 32-bit value. Hence decrement
* the stack pointer, so 2 bytes are left for the contents of A, before
* storing the pvParameters value. */
pxTopOfStack--;
pulLocal = ( uint32_t * ) pxTopOfStack;
pulLocal = ( uint32_t * ) pxTopOfStack;
*pulLocal = ( uint32_t ) pvParameters;
pxTopOfStack--;
/* The return address is a 32-bit value. So decrement the stack pointer
in order to make extra room needed to store the correct value. See the
comments above the prvTaskExitError() prototype at the top of this file. */
* in order to make extra room needed to store the correct value. See the
* comments above the prvTaskExitError() prototype at the top of this file. */
pxTopOfStack--;
pulLocal = ( uint32_t * ) pxTopOfStack;
*pulLocal = ( uint32_t ) prvTaskExitError;
pxTopOfStack--;
/* The task function start address combined with the PSW is also stored
as a 32-bit value. So leave a space for the second two bytes. */
* as a 32-bit value. So leave a space for the second two bytes. */
pxTopOfStack--;
pulLocal = ( uint32_t * ) pxTopOfStack;
*pulLocal = ( ( ( uint32_t ) pxCode ) | ( portPSW << 24UL ) );
@ -126,18 +128,18 @@ uint32_t *pulLocal;
*pxTopOfStack = ( StackType_t ) 0x1111;
pxTopOfStack--;
}
#else
#else /* if __DATA_MODEL__ == __DATA_MODEL_FAR__ */
{
/* The return address, leaving space for the first two bytes of the
32-bit value. See the comments above the prvTaskExitError() prototype
at the top of this file. */
* 32-bit value. See the comments above the prvTaskExitError() prototype
* at the top of this file. */
pxTopOfStack--;
pulLocal = ( uint32_t * ) pxTopOfStack;
*pulLocal = ( uint32_t ) prvTaskExitError;
pxTopOfStack--;
/* Task function. Again as it is written as a 32-bit value a space is
left on the stack for the second two bytes. */
* left on the stack for the second two bytes. */
pxTopOfStack--;
/* Task function start address combined with the PSW. */
@ -149,7 +151,7 @@ uint32_t *pulLocal;
*pxTopOfStack = ( StackType_t ) pvParameters;
pxTopOfStack--;
}
#endif
#endif /* if __DATA_MODEL__ == __DATA_MODEL_FAR__ */
/* An initial value for the HL register. */
*pxTopOfStack = ( StackType_t ) 0x2222;
@ -166,11 +168,11 @@ uint32_t *pulLocal;
pxTopOfStack--;
/* Finally the critical section nesting count is set to zero when the task
first starts. */
* first starts. */
*pxTopOfStack = ( StackType_t ) portNO_CRITICAL_SECTION_NESTING;
/* Return a pointer to the top of the stack that has been generated so
it can be stored in the task control block for the task. */
* it can be stored in the task control block for the task. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
@ -178,21 +180,24 @@ uint32_t *pulLocal;
static void prvTaskExitError( void )
{
/* A function that implements a task must not exit or attempt to return to
its caller as there is nothing to return to. If a task wants to exit it
should instead call vTaskDelete( NULL ).
Artificially force an assert() to be triggered if configASSERT() is
defined, then stop here so application writers can catch the error. */
* its caller as there is nothing to return to. If a task wants to exit it
* should instead call vTaskDelete( NULL ).
*
* Artificially force an assert() to be triggered if configASSERT() is
* defined, then stop here so application writers can catch the error. */
configASSERT( usCriticalNesting == ~0U );
portDISABLE_INTERRUPTS();
for( ;; );
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
BaseType_t xPortStartScheduler( void )
{
/* Setup the hardware to generate the tick. Interrupts are disabled when
this function is called. */
* this function is called. */
vApplicationSetupTimerInterrupt();
/* Restore the context of the first task that is going to run. */