Cosmetic work towards MISRA compliance statement pre release of V7.

This commit is contained in:
Richard Barry 2011-04-05 20:19:54 +00:00
parent a1842621eb
commit 37de268af4
10 changed files with 278 additions and 294 deletions

View file

@ -173,8 +173,7 @@ typedef portBASE_TYPE (*pdTASK_HOOK_CODE)( void * );
#endif
#if configMAX_TASK_NAME_LEN < 1
#undef configMAX_TASK_NAME_LEN
#define configMAX_TASK_NAME_LEN 1
#error configMAX_TASK_NAME_LEN must be set to a minimum of 1 in FreeRTOSConfig.h
#endif
#ifndef INCLUDE_xTaskResumeFromISR
@ -188,9 +187,6 @@ typedef portBASE_TYPE (*pdTASK_HOOK_CODE)( void * );
/* The timers module relies on xTaskGetSchedulerState(). */
#if configUSE_TIMERS == 1
#undef INCLUDE_xTaskGetSchedulerState
#define INCLUDE_xTaskGetSchedulerState 1
#ifndef configTIMER_TASK_PRIORITY
#error If configUSE_TIMERS is set to 1 then configTIMER_TASK_PRIORITY must also be defined.
#endif /* configTIMER_TASK_PRIORITY */
@ -209,15 +205,8 @@ typedef portBASE_TYPE (*pdTASK_HOOK_CODE)( void * );
#define INCLUDE_xTaskGetSchedulerState 0
#endif
#if ( configUSE_MUTEXES == 1 )
/* xTaskGetCurrentTaskHandle is used by the priority inheritance mechanism
within the mutex implementation so must be available if mutexes are used. */
#undef INCLUDE_xTaskGetCurrentTaskHandle
#define INCLUDE_xTaskGetCurrentTaskHandle 1
#else
#ifndef INCLUDE_xTaskGetCurrentTaskHandle
#define INCLUDE_xTaskGetCurrentTaskHandle 0
#endif
#ifndef INCLUDE_xTaskGetCurrentTaskHandle
#define INCLUDE_xTaskGetCurrentTaskHandle 0
#endif
@ -231,11 +220,10 @@ typedef portBASE_TYPE (*pdTASK_HOOK_CODE)( void * );
#ifndef configQUEUE_REGISTRY_SIZE
#define configQUEUE_REGISTRY_SIZE 0
#define configQUEUE_REGISTRY_SIZE 0U
#endif
#if configQUEUE_REGISTRY_SIZE < 1
#define configQUEUE_REGISTRY_SIZE 0
#if ( configQUEUE_REGISTRY_SIZE < 1U )
#define vQueueAddToRegistry( xQueue, pcName )
#define vQueueUnregisterQueue( xQueue )
#endif

View file

@ -142,23 +142,23 @@
#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) && ( portSTACK_GROWTH > 0 ) )
#define taskSECOND_CHECK_FOR_STACK_OVERFLOW() \
{ \
char *pcEndOfStack = ( char * ) pxCurrentTCB->pxEndOfStack; \
static const unsigned char ucExpectedStackBytes[] = { tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE }; \
\
\
pcEndOfStack -= sizeof( ucExpectedStackBytes ); \
\
/* Has the extremity of the task stack ever been written over? */ \
if( memcmp( ( void * ) pcEndOfStack, ( void * ) ucExpectedStackBytes, sizeof( ucExpectedStackBytes ) ) != 0 ) \
{ \
vApplicationStackOverflowHook( ( xTaskHandle ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
} \
#define taskSECOND_CHECK_FOR_STACK_OVERFLOW() \
{ \
char *pcEndOfStack = ( char * ) pxCurrentTCB->pxEndOfStack; \
static const unsigned char ucExpectedStackBytes[] = { tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE }; \
\
\
pcEndOfStack -= sizeof( ucExpectedStackBytes ); \
\
/* Has the extremity of the task stack ever been written over? */ \
if( memcmp( ( void * ) pcEndOfStack, ( void * ) ucExpectedStackBytes, sizeof( ucExpectedStackBytes ) ) != 0 ) \
{ \
vApplicationStackOverflowHook( ( xTaskHandle ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
} \
}
#endif /* #if( configCHECK_FOR_STACK_OVERFLOW > 1 ) */

View file

@ -406,7 +406,7 @@ void vCoRoutineSchedule( void );
#define crQUEUE_SEND( xHandle, pxQueue, pvItemToQueue, xTicksToWait, pxResult ) \
{ \
*( pxResult ) = xQueueCRSend( ( pxQueue) , ( pvItemToQueue) , ( xTicksToWait ) ); \
if( *pxResult == errQUEUE_BLOCKED ) \
if( *( pxResult ) == errQUEUE_BLOCKED ) \
{ \
crSET_STATE0( ( xHandle ) ); \
*pxResult = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), 0 ); \

View file

@ -33,9 +33,9 @@
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
@ -51,16 +51,14 @@
licensing and training services.
*/
#ifndef INC_FREERTOS_H
#error "#include FreeRTOS.h" must appear in source files before "#include queue.h"
#endif
#ifndef QUEUE_H
#define QUEUE_H
#ifndef INC_FREERTOS_H
#error "#include FreeRTOS.h" must appear in source files before "#include queue.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
@ -219,7 +217,7 @@ xQueueHandle xQueueCreate( unsigned portBASE_TYPE uxQueueLength, unsigned portBA
* \defgroup xQueueSend xQueueSend
* \ingroup QueueManagement
*/
#define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( xQueue, pvItemToQueue, xTicksToWait, queueSEND_TO_FRONT )
#define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
/**
* queue. h
@ -301,7 +299,7 @@ xQueueHandle xQueueCreate( unsigned portBASE_TYPE uxQueueLength, unsigned portBA
* \defgroup xQueueSend xQueueSend
* \ingroup QueueManagement
*/
#define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( xQueue, pvItemToQueue, xTicksToWait, queueSEND_TO_BACK )
#define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
/**
* queue. h
@ -385,7 +383,7 @@ xQueueHandle xQueueCreate( unsigned portBASE_TYPE uxQueueLength, unsigned portBA
* \defgroup xQueueSend xQueueSend
* \ingroup QueueManagement
*/
#define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( xQueue, pvItemToQueue, xTicksToWait, queueSEND_TO_BACK )
#define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
/**
@ -567,7 +565,7 @@ signed portBASE_TYPE xQueueGenericSend( xQueueHandle pxQueue, const void * const
* \defgroup xQueueReceive xQueueReceive
* \ingroup QueueManagement
*/
#define xQueuePeek( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( xQueue, pvBuffer, xTicksToWait, pdTRUE )
#define xQueuePeek( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
/**
* queue. h
@ -660,7 +658,7 @@ signed portBASE_TYPE xQueueGenericSend( xQueueHandle pxQueue, const void * const
* \defgroup xQueueReceive xQueueReceive
* \ingroup QueueManagement
*/
#define xQueueReceive( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( xQueue, pvBuffer, xTicksToWait, pdFALSE )
#define xQueueReceive( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
/**
@ -858,7 +856,7 @@ void vQueueDelete( xQueueHandle pxQueue );
* \defgroup xQueueSendFromISR xQueueSendFromISR
* \ingroup QueueManagement
*/
#define xQueueSendToFrontFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken, queueSEND_TO_FRONT )
#define xQueueSendToFrontFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_FRONT )
/**
@ -929,7 +927,7 @@ void vQueueDelete( xQueueHandle pxQueue );
* \defgroup xQueueSendFromISR xQueueSendFromISR
* \ingroup QueueManagement
*/
#define xQueueSendToBackFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken, queueSEND_TO_BACK )
#define xQueueSendToBackFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
/**
* queue. h
@ -1003,7 +1001,7 @@ void vQueueDelete( xQueueHandle pxQueue );
* \defgroup xQueueSendFromISR xQueueSendFromISR
* \ingroup QueueManagement
*/
#define xQueueSendFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken, queueSEND_TO_BACK )
#define xQueueSendFromISR( pxQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
/**
* queue. h
@ -1197,10 +1195,10 @@ unsigned portBASE_TYPE uxQueueMessagesWaitingFromISR( const xQueueHandle pxQueue
*/
signed portBASE_TYPE xQueueAltGenericSend( xQueueHandle pxQueue, const void * const pvItemToQueue, portTickType xTicksToWait, portBASE_TYPE xCopyPosition );
signed portBASE_TYPE xQueueAltGenericReceive( xQueueHandle pxQueue, void * const pvBuffer, portTickType xTicksToWait, portBASE_TYPE xJustPeeking );
#define xQueueAltSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( xQueue, pvItemToQueue, xTicksToWait, queueSEND_TO_FRONT )
#define xQueueAltSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( xQueue, pvItemToQueue, xTicksToWait, queueSEND_TO_BACK )
#define xQueueAltReceive( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( xQueue, pvBuffer, xTicksToWait, pdFALSE )
#define xQueueAltPeek( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( xQueue, pvBuffer, xTicksToWait, pdTRUE )
#define xQueueAltSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
#define xQueueAltSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
#define xQueueAltReceive( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
#define xQueueAltPeek( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
/*
* The functions defined above are for passing data to and from tasks. The
@ -1250,7 +1248,7 @@ portBASE_TYPE xQueueGiveMutexRecursive( xQueueHandle pxMutex );
* @param pcName The name to be associated with the handle. This is the
* name that the kernel aware debugger will display.
*/
#if configQUEUE_REGISTRY_SIZE > 0
#if configQUEUE_REGISTRY_SIZE > 0U
void vQueueAddToRegistry( xQueueHandle xQueue, signed char *pcName );
#endif

View file

@ -51,20 +51,20 @@
licensing and training services.
*/
#ifndef SEMAPHORE_H
#define SEMAPHORE_H
#ifndef INC_FREERTOS_H
#error "#include FreeRTOS.h" must appear in source files before "#include semphr.h"
#endif
#ifndef SEMAPHORE_H
#define SEMAPHORE_H
#include "queue.h"
typedef xQueueHandle xSemaphoreHandle;
#define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( unsigned char ) 1 )
#define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( unsigned char ) 0 )
#define semGIVE_BLOCK_TIME ( ( portTickType ) 0 )
#define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( unsigned char ) 1U )
#define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( unsigned char ) 0U )
#define semGIVE_BLOCK_TIME ( ( portTickType ) 0U )
/**
@ -105,12 +105,12 @@ typedef xQueueHandle xSemaphoreHandle;
* \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
* \ingroup Semaphores
*/
#define vSemaphoreCreateBinary( xSemaphore ) { \
xSemaphore = xQueueCreate( ( unsigned portBASE_TYPE ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH ); \
if( xSemaphore != NULL ) \
{ \
xSemaphoreGive( xSemaphore ); \
} \
#define vSemaphoreCreateBinary( xSemaphore ) { \
( xSemaphore ) = xQueueCreate( ( unsigned portBASE_TYPE ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH ); \
if( ( xSemaphore ) != NULL ) \
{ \
xSemaphoreGive( ( xSemaphore ) ); \
} \
}
/**
@ -178,7 +178,7 @@ typedef xQueueHandle xSemaphoreHandle;
* \defgroup xSemaphoreTake xSemaphoreTake
* \ingroup Semaphores
*/
#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( xQueueHandle ) xSemaphore, NULL, xBlockTime, pdFALSE )
#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( xQueueHandle ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
/**
* semphr. h
@ -271,7 +271,7 @@ typedef xQueueHandle xSemaphoreHandle;
* \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive
* \ingroup Semaphores
*/
#define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( xMutex, xBlockTime )
#define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) )
/*
@ -286,7 +286,7 @@ typedef xQueueHandle xSemaphoreHandle;
* responsiveness to gain execution speed, whereas the fully featured API
* sacrifices execution speed to ensure better interrupt responsiveness.
*/
#define xSemaphoreAltTake( xSemaphore, xBlockTime ) xQueueAltGenericReceive( ( xQueueHandle ) xSemaphore, NULL, xBlockTime, pdFALSE )
#define xSemaphoreAltTake( xSemaphore, xBlockTime ) xQueueAltGenericReceive( ( xQueueHandle ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
/**
* semphr. h
@ -349,7 +349,7 @@ typedef xQueueHandle xSemaphoreHandle;
* \defgroup xSemaphoreGive xSemaphoreGive
* \ingroup Semaphores
*/
#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( xQueueHandle ) xSemaphore, NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( xQueueHandle ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
/**
* semphr. h
@ -433,7 +433,7 @@ typedef xQueueHandle xSemaphoreHandle;
* \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive
* \ingroup Semaphores
*/
#define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( xMutex )
#define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) )
/*
* xSemaphoreAltGive() is an alternative version of xSemaphoreGive().
@ -447,7 +447,7 @@ typedef xQueueHandle xSemaphoreHandle;
* responsiveness to gain execution speed, whereas the fully featured API
* sacrifices execution speed to ensure better interrupt responsiveness.
*/
#define xSemaphoreAltGive( xSemaphore ) xQueueAltGenericSend( ( xQueueHandle ) xSemaphore, NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
#define xSemaphoreAltGive( xSemaphore ) xQueueAltGenericSend( ( xQueueHandle ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
/**
* semphr. h
@ -538,7 +538,7 @@ typedef xQueueHandle xSemaphoreHandle;
* \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR
* \ingroup Semaphores
*/
#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueueHandle ) xSemaphore, NULL, pxHigherPriorityTaskWoken, queueSEND_TO_BACK )
#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueueHandle ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
/**
* semphr. h
@ -703,7 +703,7 @@ typedef xQueueHandle xSemaphoreHandle;
* \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting
* \ingroup Semaphores
*/
#define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( uxMaxCount, uxInitialCount )
#define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) )
#endif /* SEMAPHORE_H */

View file

@ -122,7 +122,7 @@ typedef struct xTASK_PARAMTERS
*
* \ingroup TaskUtils
*/
#define tskIDLE_PRIORITY ( ( unsigned portBASE_TYPE ) 0 )
#define tskIDLE_PRIORITY ( ( unsigned portBASE_TYPE ) 0U )
/**
* task. h

View file

@ -79,7 +79,7 @@ as defined below. */
*----------------------------------------------------------*/
/**
* Type by which software timers are referenced. For example, a call to
* Type by which software timers are referenced. For example, a call to
* xTimerCreate() returns an xTimerHandle variable that can then be used to
* reference the subject timer in calls to other software timer API functions
* (for example, xTimerStart(), xTimerReset(), etc.).
@ -90,14 +90,14 @@ typedef void * xTimerHandle;
typedef void (*tmrTIMER_CALLBACK)( xTimerHandle xTimer );
/**
* xTimerHandle xTimerCreate( const signed char *pcTimerName,
* portTickType xTimerPeriod,
* unsigned portBASE_TYPE uxAutoReload,
* void * pvTimerID,
* xTimerHandle xTimerCreate( const signed char *pcTimerName,
* portTickType xTimerPeriod,
* unsigned portBASE_TYPE uxAutoReload,
* void * pvTimerID,
* tmrTIMER_CALLBACK pxCallbackFunction );
*
* Creates a new software timer instance. This allocates the storage required
* by the new timer, initialises the new timers internal state, and returns a
* Creates a new software timer instance. This allocates the storage required
* by the new timer, initialises the new timers internal state, and returns a
* handle by which the new timer can be referenced.
*
* Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
@ -109,7 +109,7 @@ typedef void (*tmrTIMER_CALLBACK)( xTimerHandle xTimer );
* purely to assist debugging. The kernel itself only ever references a timer by
* its handle, and never by its name.
*
* @param xTimerPeriod The timer period. The time is defined in tick periods so
* @param xTimerPeriod The timer period. The time is defined in tick periods so
* the constant portTICK_RATE_MS can be used to convert a time that has been
* specified in milliseconds. For example, if the timer must expire after 100
* ticks, then xTimerPeriod should be set to 100. Alternatively, if the timer
@ -121,46 +121,46 @@ typedef void (*tmrTIMER_CALLBACK)( xTimerHandle xTimer );
* uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and
* enter the dormant state after it expires.
*
* @param pvTimerID An identifier that is assigned to the timer being created.
* Typically this would be used in the timer callback function to identify which
* timer expired when the same callback function is assigned to more than one
* @param pvTimerID An identifier that is assigned to the timer being created.
* Typically this would be used in the timer callback function to identify which
* timer expired when the same callback function is assigned to more than one
* timer.
*
* @param pxCallbackFunction The function to call when the timer expires.
* Callback functions must have the prototype defined by tmrTIMER_CALLBACK,
* Callback functions must have the prototype defined by tmrTIMER_CALLBACK,
* which is "void vCallbackFunction( xTIMER *xTimer );".
*
* @return If the timer is successfully create then a handle to the newly
* created timer is returned. If the timer cannot be created (because either
* there is insufficient FreeRTOS heap remaining to allocate the timer
* there is insufficient FreeRTOS heap remaining to allocate the timer
* structures, or the timer period was set to 0) then 0 is returned.
*
* Example usage:
*
*
*
* #define NUM_TIMERS 5
*
*
* // An array to hold handles to the created timers.
* xTimerHandle xTimers[ NUM_TIMERS ];
*
*
* // An array to hold a count of the number of times each timer expires.
* long lExpireCounters[ NUM_TIMERS ] = { 0 };
*
* // Define a callback function that will be used by multiple timer instances.
* // The callback function does nothing but count the number of times the
*
* // Define a callback function that will be used by multiple timer instances.
* // The callback function does nothing but count the number of times the
* // associated timer expires, and stop the timer once the timer has expired
* // 10 times.
* void vTimerCallback( xTIMER *pxTimer )
* {
* long lArrayIndex;
* const long xMaxExpiryCountBeforeStopping = 10;
*
*
* // Optionally do something if the pxTimer parameter is NULL.
* configASSERT( pxTimer );
*
* // Which timer expired?
* lArrayIndex = ( long ) pvTimerGetTimerID( pxTimer );
*
*
* // Increment the number of times that pxTimer has expired.
* lExpireCounters[ lArrayIndex ] += 1;
*
@ -172,11 +172,11 @@ typedef void (*tmrTIMER_CALLBACK)( xTimerHandle xTimer );
* xTimerStop( pxTimer, 0 );
* }
* }
*
*
* void main( void )
* {
* long x;
*
*
* // Create then start some timers. Starting the timers before the scheduler
* // has been started means the timers will start running immediately that
* // the scheduler starts.
@ -188,7 +188,7 @@ typedef void (*tmrTIMER_CALLBACK)( xTimerHandle xTimer );
* ( void * ) x, // Assign each timer a unique id equal to its array index.
* vTimerCallback // Each timer calls the same callback when it expires.
* );
*
*
* if( xTimers[ x ] == NULL )
* {
* // The timer was not created.
@ -197,33 +197,33 @@ typedef void (*tmrTIMER_CALLBACK)( xTimerHandle xTimer );
* {
* // Start the timer. No block time is specified, and even if one was
* // it would be ignored because the scheduler has not yet been
* // started.
* // started.
* if( xTimerStart( xTimers[ x ], 0 ) != pdPASS )
* {
* // The timer could not be set into the Active state.
* }
* }
* }
*
*
* // ...
* // Create tasks here.
* // ...
*
*
* // Starting the scheduler will start the timers running as they have already
* // been set into the active state.
* xTaskStartScheduler();
*
*
* // Should not reach here.
* for( ;; );
* }
*/
xTimerHandle xTimerCreate( const signed char *pcTimerName, portTickType xTimerPeriod, unsigned portBASE_TYPE uxAutoReload, void * pvTimerID, tmrTIMER_CALLBACK pxCallbackFunction ) PRIVILEGED_FUNCTION;
xTimerHandle xTimerCreate( const signed char *pcTimerName, portTickType xTimerPeriodInTicks, unsigned portBASE_TYPE uxAutoReload, void * pvTimerID, tmrTIMER_CALLBACK pxCallbackFunction ) PRIVILEGED_FUNCTION;
/**
* void *pvTimerGetTimerID( xTimerHandle xTimer );
*
* Returns the ID assigned to the timer.
*
*
* IDs are assigned to timers using the pvTimerID parameter of the call to
* xTimerCreated() that was used to create the timer.
*
@ -247,7 +247,7 @@ void *pvTimerGetTimerID( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* Queries a timer to see if it is active or dormant.
*
* A timer will be dormant if:
* 1) It has been created but not started, or
* 1) It has been created but not started, or
* 2) It is an expired on-shot timer that has not been restarted.
*
* Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
@ -272,7 +272,7 @@ void *pvTimerGetTimerID( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* else
* {
* // xTimer is not active, do something else.
* }
* }
* }
*/
portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
@ -281,20 +281,20 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* portBASE_TYPE xTimerStart( xTimerHandle xTimer, portTickType xBlockTime );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerStart() starts a timer that was previously created using the
* xTimerStart() starts a timer that was previously created using the
* xTimerCreate() API function. If the timer had already been started and was
* already in the active state, then xTimerStart() has equivalent functionality
* to the xTimerReset() API function.
*
* Starting a timer ensures the timer is in the active state. If the timer
* is not stopped, deleted, or reset in the mean time, the callback function
* associated with the timer will get called 'n' ticks after xTimerStart() was
* associated with the timer will get called 'n' ticks after xTimerStart() was
* called, where 'n' is the timers defined period.
*
* It is valid to call xTimerStart() before the scheduler has been started, but
@ -309,38 +309,38 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
*
* @param xBlockTime Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the start command to be successfully
* sent to the timer command queue, should the queue already be full when
* sent to the timer command queue, should the queue already be full when
* xTimerStart() was called. xBlockTime is ignored if xTimerStart() is called
* before the scheduler is started.
* before the scheduler is started.
*
* @return pdFAIL will be returned if the start command could not be sent to
* @return pdFAIL will be returned if the start command could not be sent to
* the timer command queue even after xBlockTime ticks had passed. pdPASS will
* be returned if the command was successfully sent to the timer command queue.
* When the command is actually processed will depend on the priority of the
* timer service/daemon task relative to other tasks in the system, although the
* timers expiry time is relative to when xTimerStart() is actually called. The
* timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* timers expiry time is relative to when xTimerStart() is actually called. The
* timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
*
*
* See the xTimerCreate() API function example usage scenario.
*
*/
#define xTimerStart( xTimer, xBlockTime ) xTimerGenericCommand( xTimer, tmrCOMMAND_START, xTaskGetTickCount(), NULL, xBlockTime )
#define xTimerStart( xTimer, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCount() ), NULL, ( xBlockTime ) )
/**
* portBASE_TYPE xTimerStop( xTimerHandle xTimer, portTickType xBlockTime );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerStop() stops a timer that was previously started using either of the
* The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimerResetFromISR(),
* xTimerStop() stops a timer that was previously started using either of the
* The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimerResetFromISR(),
* xTimerChangePeriod() or xTimerChangePeriodFromISR() API functions.
*
* Stopping a timer ensures the timer is not in the active state.
@ -352,74 +352,74 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
*
* @param xBlockTime Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the stop command to be successfully
* sent to the timer command queue, should the queue already be full when
* sent to the timer command queue, should the queue already be full when
* xTimerStop() was called. xBlockTime is ignored if xTimerStop() is called
* before the scheduler is started.
* before the scheduler is started.
*
* @return pdFAIL will be returned if the stop command could not be sent to
* @return pdFAIL will be returned if the stop command could not be sent to
* the timer command queue even after xBlockTime ticks had passed. pdPASS will
* be returned if the command was successfully sent to the timer command queue.
* When the command is actually processed will depend on the priority of the
* timer service/daemon task relative to other tasks in the system. The timer
* service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* timer service/daemon task relative to other tasks in the system. The timer
* service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
*
*
* See the xTimerCreate() API function example usage scenario.
*
*/
#define xTimerStop( xTimer, xBlockTime ) xTimerGenericCommand( xTimer, tmrCOMMAND_STOP, 0, NULL, xBlockTime )
#define xTimerStop( xTimer, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP, 0U, NULL, ( xBlockTime ) )
/**
* portBASE_TYPE xTimerChangePeriod( xTimerHandle xTimer,
* portBASE_TYPE xTimerChangePeriod( xTimerHandle xTimer,
* portTickType xNewPeriod,
* portTickType xBlockTime );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerChangePeriod() changes the period of a timer that was previously
* xTimerChangePeriod() changes the period of a timer that was previously
* created using the xTimerCreate() API function.
*
* xTimerChangePeriod() can be called to change the period of an active or
* dormant state timer.
*
* The configUSE_TIMERS configuration constant must be set to 1 for
* The configUSE_TIMERS configuration constant must be set to 1 for
* xTimerChangePeriod() to be available.
*
* @param xTimer The handle of the timer that is having its period changed.
*
* @param xNewPeriod The new period for xTimer. Timer periods are specified in
* tick periods, so the constant portTICK_RATE_MS can be used to convert a time
* that has been specified in milliseconds. For example, if the timer must
* expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively,
* if the timer must expire after 500ms, then xNewPeriod can be set to
* @param xNewPeriod The new period for xTimer. Timer periods are specified in
* tick periods, so the constant portTICK_RATE_MS can be used to convert a time
* that has been specified in milliseconds. For example, if the timer must
* expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively,
* if the timer must expire after 500ms, then xNewPeriod can be set to
* ( 500 / portTICK_RATE_MS ) provided configTICK_RATE_HZ is less than
* or equal to 1000.
*
* @param xBlockTime Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the change period command to be
* successfully sent to the timer command queue, should the queue already be
* full when xTimerChangePeriod() was called. xBlockTime is ignored if
* xTimerChangePeriod() is called before the scheduler is started.
* be held in the Blocked state to wait for the change period command to be
* successfully sent to the timer command queue, should the queue already be
* full when xTimerChangePeriod() was called. xBlockTime is ignored if
* xTimerChangePeriod() is called before the scheduler is started.
*
* @return pdFAIL will be returned if the change period command could not be
* sent to the timer command queue even after xBlockTime ticks had passed.
* pdPASS will be returned if the command was successfully sent to the timer
* command queue. When the command is actually processed will depend on the
* priority of the timer service/daemon task relative to other tasks in the
* system. The timer service/daemon task priority is set by the
* @return pdFAIL will be returned if the change period command could not be
* sent to the timer command queue even after xBlockTime ticks had passed.
* pdPASS will be returned if the command was successfully sent to the timer
* command queue. When the command is actually processed will depend on the
* priority of the timer service/daemon task relative to other tasks in the
* system. The timer service/daemon task priority is set by the
* configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
*
* // This function assumes xTimer has already been created. If the timer
* // referenced by xTimer is already active when it is called, then the timer
* // referenced by xTimer is already active when it is called, then the timer
* // is deleted. If the timer referenced by xTimer is not active when it is
* // called, then the period of the timer is set to 500ms and the timer is
* // started.
@ -445,69 +445,69 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* // The command could not be sent, even after waiting for 100 ticks
* // to pass. Take appropriate action here.
* }
* }
* }
* }
*/
#define xTimerChangePeriod( xTimer, xNewPeriod, xBlockTime ) xTimerGenericCommand( xTimer, tmrCOMMAND_CHANGE_PERIOD, xNewPeriod, NULL, xBlockTime )
#define xTimerChangePeriod( xTimer, xNewPeriod, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD, ( xNewPeriod ), NULL, ( xBlockTime ) )
/**
* portBASE_TYPE xTimerDelete( xTimerHandle xTimer, portTickType xBlockTime );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerDelete() deletes a timer that was previously created using the
* xTimerCreate() API function.
*
* The configUSE_TIMERS configuration constant must be set to 1 for
* The configUSE_TIMERS configuration constant must be set to 1 for
* xTimerDelete() to be available.
*
* @param xTimer The handle of the timer being deleted.
*
* @param xBlockTime Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the delete command to be
* successfully sent to the timer command queue, should the queue already be
* full when xTimerDelete() was called. xBlockTime is ignored if xTimerDelete()
* is called before the scheduler is started.
* be held in the Blocked state to wait for the delete command to be
* successfully sent to the timer command queue, should the queue already be
* full when xTimerDelete() was called. xBlockTime is ignored if xTimerDelete()
* is called before the scheduler is started.
*
* @return pdFAIL will be returned if the delete command could not be sent to
* @return pdFAIL will be returned if the delete command could not be sent to
* the timer command queue even after xBlockTime ticks had passed. pdPASS will
* be returned if the command was successfully sent to the timer command queue.
* When the command is actually processed will depend on the priority of the
* timer service/daemon task relative to other tasks in the system. The timer
* service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* timer service/daemon task relative to other tasks in the system. The timer
* service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
*
*
* See the xTimerChangePeriod() API function example usage scenario.
*/
#define xTimerDelete( xTimer, xBlockTime ) xTimerGenericCommand( xTimer, tmrCOMMAND_DELETE, 0, NULL, xBlockTime )
#define xTimerDelete( xTimer, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_DELETE, 0U, NULL, ( xBlockTime ) )
/**
* portBASE_TYPE xTimerReset( xTimerHandle xTimer, portTickType xBlockTime );
*
* Timer functionality is provided by a timer service/daemon task. Many of the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* public FreeRTOS timer API functions send commands to the timer service task
* though a queue called the timer command queue. The timer command queue is
* private to the kernel itself and is not directly accessible to application
* code. The length of the timer command queue is set by the
* configTIMER_QUEUE_LENGTH configuration constant.
*
* xTimerReset() re-starts a timer that was previously created using the
* xTimerReset() re-starts a timer that was previously created using the
* xTimerCreate() API function. If the timer had already been started and was
* already in the active state, then xTimerReset() will cause the timer to
* re-evaluate its expiry time so that it is relative to when xTimerReset() was
* called. If the timer was in the dormant state then xTimerReset() has
* called. If the timer was in the dormant state then xTimerReset() has
* equivalent functionality to the xTimerStart() API function.
*
* Resetting a timer ensures the timer is in the active state. If the timer
* is not stopped, deleted, or reset in the mean time, the callback function
* associated with the timer will get called 'n' ticks after xTimerReset() was
* associated with the timer will get called 'n' ticks after xTimerReset() was
* called, where 'n' is the timers defined period.
*
* It is valid to call xTimerReset() before the scheduler has been started, but
@ -522,23 +522,23 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
*
* @param xBlockTime Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the reset command to be successfully
* sent to the timer command queue, should the queue already be full when
* sent to the timer command queue, should the queue already be full when
* xTimerReset() was called. xBlockTime is ignored if xTimerReset() is called
* before the scheduler is started.
* before the scheduler is started.
*
* @return pdFAIL will be returned if the reset command could not be sent to
* @return pdFAIL will be returned if the reset command could not be sent to
* the timer command queue even after xBlockTime ticks had passed. pdPASS will
* be returned if the command was successfully sent to the timer command queue.
* When the command is actually processed will depend on the priority of the
* timer service/daemon task relative to other tasks in the system, although the
* timers expiry time is relative to when xTimerStart() is actually called. The
* timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* timers expiry time is relative to when xTimerStart() is actually called. The
* timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
* configuration constant.
*
* Example usage:
*
* // When a key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
*
* // When a key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer.
*
* xTimerHandle xBacklightTimer = NULL;
@ -556,7 +556,7 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* void vKeyPressEventHandler( char cKey )
* {
* // Ensure the LCD back-light is on, then reset the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. Wait 10 ticks for the command to be successfully sent
* // if it cannot be sent immediately.
* vSetBacklightState( BACKLIGHT_ON );
@ -572,7 +572,7 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* void main( void )
* {
* long x;
*
*
* // Create then start the one-shot timer that is responsible for turning
* // the back-light off if no keys are pressed within a 5 second period.
* xBacklightTimer = xTimerCreate( "BacklightTimer", // Just a text name, not used by the kernel.
@ -581,7 +581,7 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* 0, // The id is not used by the callback so can take any value.
* vBacklightTimerCallback // The callback function that switches the LCD back-light off.
* );
*
*
* if( xBacklightTimer == NULL )
* {
* // The timer was not created.
@ -590,29 +590,29 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* {
* // Start the timer. No block time is specified, and even if one was
* // it would be ignored because the scheduler has not yet been
* // started.
* // started.
* if( xTimerStart( xBacklightTimer, 0 ) != pdPASS )
* {
* // The timer could not be set into the Active state.
* }
* }
*
*
* // ...
* // Create tasks here.
* // ...
*
*
* // Starting the scheduler will start the timer running as it has already
* // been set into the active state.
* xTaskStartScheduler();
*
*
* // Should not reach here.
* for( ;; );
* }
*/
#define xTimerReset( xTimer, xBlockTime ) xTimerGenericCommand( xTimer, tmrCOMMAND_START, xTaskGetTickCount(), NULL, xBlockTime )
#define xTimerReset( xTimer, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCount() ), NULL, ( xBlockTime ) )
/**
* portBASE_TYPE xTimerStartFromISR( xTimerHandle xTimer,
* portBASE_TYPE xTimerStartFromISR( xTimerHandle xTimer,
* portBASE_TYPE *pxHigherPriorityTaskWoken );
*
* A version of xTimerStart() that can be called from an interrupt service
@ -632,20 +632,20 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* xTimerStartFromISR() sets this value to pdTRUE then a context switch should
* be performed before the interrupt exits.
*
* @return pdFAIL will be returned if the start command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system, although the timers expiry time is
* relative to when xTimerStartFromISR() is actually called. The timer service/daemon
* task priority is set by the configTIMER_TASK_PRIORITY configuration constant.
* @return pdFAIL will be returned if the start command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system, although the timers expiry time is
* relative to when xTimerStartFromISR() is actually called. The timer service/daemon
* task priority is set by the configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
*
* // This scenario assumes xBacklightTimer has already been created. When a
* // key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer, and unlike the example given for
*
* // This scenario assumes xBacklightTimer has already been created. When a
* // key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer, and unlike the example given for
* // the xTimerReset() function, the key press event handler is an interrupt
* // service routine.
*
@ -664,7 +664,7 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
*
* // Ensure the LCD back-light is on, then restart the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. This is an interrupt service routine so can only
* // call FreeRTOS API functions that end in "FromISR".
* vSetBacklightState( BACKLIGHT_ON );
@ -693,10 +693,10 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* }
* }
*/
#define xTimerStartFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( xTimer, tmrCOMMAND_START, xTaskGetTickCountFromISR(), pxHigherPriorityTaskWoken, 0 )
#define xTimerStartFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
/**
* portBASE_TYPE xTimerStopFromISR( xTimerHandle xTimer,
* portBASE_TYPE xTimerStopFromISR( xTimerHandle xTimer,
* portBASE_TYPE *pxHigherPriorityTaskWoken );
*
* A version of xTimerStop() that can be called from an interrupt service
@ -716,12 +716,12 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* xTimerStopFromISR() sets this value to pdTRUE then a context switch should
* be performed before the interrupt exits.
*
* @return pdFAIL will be returned if the stop command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system. The timer service/daemon task
* priority is set by the configTIMER_TASK_PRIORITY configuration constant.
* @return pdFAIL will be returned if the stop command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system. The timer service/daemon task
* priority is set by the configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
*
@ -755,45 +755,45 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* }
* }
*/
#define xTimerStopFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( xTimer, tmrCOMMAND_STOP, 0, pxHigherPriorityTaskWoken, 0 )
#define xTimerStopFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP, 0, ( pxHigherPriorityTaskWoken ), 0U )
/**
* portBASE_TYPE xTimerChangePeriodFromISR( xTimerHandle xTimer,
* portBASE_TYPE xTimerChangePeriodFromISR( xTimerHandle xTimer,
* portTickType xNewPeriod,
* portBASE_TYPE *pxHigherPriorityTaskWoken );
*
* A version of xTimerChangePeriod() that can be called from an interrupt
* A version of xTimerChangePeriod() that can be called from an interrupt
* service routine.
*
* @param xTimer The handle of the timer that is having its period changed.
*
* @param xNewPeriod The new period for xTimer. Timer periods are specified in
* tick periods, so the constant portTICK_RATE_MS can be used to convert a time
* that has been specified in milliseconds. For example, if the timer must
* expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively,
* if the timer must expire after 500ms, then xNewPeriod can be set to
* @param xNewPeriod The new period for xTimer. Timer periods are specified in
* tick periods, so the constant portTICK_RATE_MS can be used to convert a time
* that has been specified in milliseconds. For example, if the timer must
* expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively,
* if the timer must expire after 500ms, then xNewPeriod can be set to
* ( 500 / portTICK_RATE_MS ) provided configTICK_RATE_HZ is less than
* or equal to 1000.
*
* @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
* of its time in the Blocked state, waiting for messages to arrive on the timer
* command queue. Calling xTimerChangePeriodFromISR() writes a message to the
* command queue. Calling xTimerChangePeriodFromISR() writes a message to the
* timer command queue, so has the potential to transition the timer service/
* daemon task out of the Blocked state. If calling xTimerChangePeriodFromISR()
* causes the timer service/daemon task to leave the Blocked state, and the
* timer service/daemon task has a priority equal to or greater than the
* currently executing task (the task that was interrupted), then
* *pxHigherPriorityTaskWoken will get set to pdTRUE internally within the
* xTimerChangePeriodFromISR() function. If xTimerChangePeriodFromISR() sets
* this value to pdTRUE then a context switch should be performed before the
* daemon task out of the Blocked state. If calling xTimerChangePeriodFromISR()
* causes the timer service/daemon task to leave the Blocked state, and the
* timer service/daemon task has a priority equal to or greater than the
* currently executing task (the task that was interrupted), then
* *pxHigherPriorityTaskWoken will get set to pdTRUE internally within the
* xTimerChangePeriodFromISR() function. If xTimerChangePeriodFromISR() sets
* this value to pdTRUE then a context switch should be performed before the
* interrupt exits.
*
* @return pdFAIL will be returned if the command to change the timers period
* could not be sent to the timer command queue. pdPASS will be returned if the
* command was successfully sent to the timer command queue. When the command
* is actually processed will depend on the priority of the timer service/daemon
* task relative to other tasks in the system. The timer service/daemon task
* priority is set by the configTIMER_TASK_PRIORITY configuration constant.
* could not be sent to the timer command queue. pdPASS will be returned if the
* command was successfully sent to the timer command queue. When the command
* is actually processed will depend on the priority of the timer service/daemon
* task relative to other tasks in the system. The timer service/daemon task
* priority is set by the configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
*
@ -811,7 +811,7 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* // FreeRTOS API functions that end in "FromISR" can be used.
* if( xTimerChangePeriodFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
* {
* // The command to change the timers period was not executed
* // The command to change the timers period was not executed
* // successfully. Take appropriate action here.
* }
*
@ -827,10 +827,10 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* }
* }
*/
#define xTimerChangePeriodFromISR( xTimer, xNewPeriod, pxHigherPriorityTaskWoken ) xTimerGenericCommand( xTimer, tmrCOMMAND_CHANGE_PERIOD, xNewPeriod, pxHigherPriorityTaskWoken, 0 )
#define xTimerChangePeriodFromISR( xTimer, xNewPeriod, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD, ( xNewPeriod ), ( pxHigherPriorityTaskWoken ), 0U )
/**
* portBASE_TYPE xTimerResetFromISR( xTimerHandle xTimer,
* portBASE_TYPE xTimerResetFromISR( xTimerHandle xTimer,
* portBASE_TYPE *pxHigherPriorityTaskWoken );
*
* A version of xTimerReset() that can be called from an interrupt service
@ -851,20 +851,20 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* xTimerResetFromISR() sets this value to pdTRUE then a context switch should
* be performed before the interrupt exits.
*
* @return pdFAIL will be returned if the reset command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system, although the timers expiry time is
* relative to when xTimerResetFromISR() is actually called. The timer service/daemon
* task priority is set by the configTIMER_TASK_PRIORITY configuration constant.
* @return pdFAIL will be returned if the reset command could not be sent to
* the timer command queue. pdPASS will be returned if the command was
* successfully sent to the timer command queue. When the command is actually
* processed will depend on the priority of the timer service/daemon task
* relative to other tasks in the system, although the timers expiry time is
* relative to when xTimerResetFromISR() is actually called. The timer service/daemon
* task priority is set by the configTIMER_TASK_PRIORITY configuration constant.
*
* Example usage:
*
* // This scenario assumes xBacklightTimer has already been created. When a
* // key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer, and unlike the example given for
*
* // This scenario assumes xBacklightTimer has already been created. When a
* // key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer, and unlike the example given for
* // the xTimerReset() function, the key press event handler is an interrupt
* // service routine.
*
@ -883,7 +883,7 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
*
* // Ensure the LCD back-light is on, then reset the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. This is an interrupt service routine so can only
* // call FreeRTOS API functions that end in "FromISR".
* vSetBacklightState( BACKLIGHT_ON );
@ -912,7 +912,7 @@ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION;
* }
* }
*/
#define xTimerResetFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( xTimer, tmrCOMMAND_START, xTaskGetTickCountFromISR(), pxHigherPriorityTaskWoken, 0 )
#define xTimerResetFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
/*
* Functions beyond this part are not part of the public API and are intended