mirror of
https://github.com/FreeRTOS/FreeRTOS-Kernel.git
synced 2025-08-30 23:18:37 -04:00
Cosmetic changes only.
This commit is contained in:
parent
a99cd32208
commit
2e89c13c1c
6 changed files with 59 additions and 59 deletions
|
@ -68,15 +68,15 @@
|
|||
*/
|
||||
|
||||
/*
|
||||
* Creates eight tasks, each of which loops continuously performing a floating
|
||||
* Creates eight tasks, each of which loops continuously performing a floating
|
||||
* point calculation - using single precision variables.
|
||||
*
|
||||
* All the tasks run at the idle priority and never block or yield. This causes
|
||||
* all eight tasks to time slice with the idle task. Running at the idle priority
|
||||
* All the tasks run at the idle priority and never block or yield. This causes
|
||||
* all eight tasks to time slice with the idle task. Running at the idle priority
|
||||
* means that these tasks will get pre-empted any time another task is ready to run
|
||||
* or a time slice occurs. More often than not the pre-emption will occur mid
|
||||
* calculation, creating a good test of the schedulers context switch mechanism - a
|
||||
* calculation producing an unexpected result could be a symptom of a corruption in
|
||||
* or a time slice occurs. More often than not the pre-emption will occur mid
|
||||
* calculation, creating a good test of the schedulers context switch mechanism - a
|
||||
* calculation producing an unexpected result could be a symptom of a corruption in
|
||||
* the context of a task.
|
||||
*/
|
||||
|
||||
|
@ -93,14 +93,14 @@
|
|||
#define mathSTACK_SIZE configMINIMAL_STACK_SIZE
|
||||
#define mathNUMBER_OF_TASKS ( 8 )
|
||||
|
||||
/* Four tasks, each of which performs a different floating point calculation.
|
||||
/* Four tasks, each of which performs a different floating point calculation.
|
||||
Each of the four is created twice. */
|
||||
static portTASK_FUNCTION_PROTO( vCompetingMathTask1, pvParameters );
|
||||
static portTASK_FUNCTION_PROTO( vCompetingMathTask2, pvParameters );
|
||||
static portTASK_FUNCTION_PROTO( vCompetingMathTask3, pvParameters );
|
||||
static portTASK_FUNCTION_PROTO( vCompetingMathTask4, pvParameters );
|
||||
|
||||
/* These variables are used to check that all the tasks are still running. If a
|
||||
/* These variables are used to check that all the tasks are still running. If a
|
||||
task gets a calculation wrong it will
|
||||
stop incrementing its check variable. */
|
||||
static volatile uint16_t usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( uint16_t ) 0 };
|
||||
|
@ -133,7 +133,7 @@ short sError = pdFALSE;
|
|||
|
||||
fAnswer = ( f1 + f2 ) * f3;
|
||||
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
as the parameter. */
|
||||
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
|
||||
|
||||
|
@ -150,7 +150,7 @@ short sError = pdFALSE;
|
|||
taskYIELD();
|
||||
#endif
|
||||
|
||||
/* If the calculation does not match the expected constant, stop the
|
||||
/* If the calculation does not match the expected constant, stop the
|
||||
increment of the check variable. */
|
||||
if( fabs( f4 - fAnswer ) > 0.001F )
|
||||
{
|
||||
|
@ -159,7 +159,7 @@ short sError = pdFALSE;
|
|||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If the calculation has always been correct, increment the check
|
||||
/* If the calculation has always been correct, increment the check
|
||||
variable so we know this task is still running okay. */
|
||||
( *pusTaskCheckVariable )++;
|
||||
}
|
||||
|
@ -186,7 +186,7 @@ short sError = pdFALSE;
|
|||
fAnswer = ( f1 / f2 ) * f3;
|
||||
|
||||
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
as the parameter. */
|
||||
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
|
||||
|
||||
|
@ -202,8 +202,8 @@ short sError = pdFALSE;
|
|||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
/* If the calculation does not match the expected constant, stop the
|
||||
|
||||
/* If the calculation does not match the expected constant, stop the
|
||||
increment of the check variable. */
|
||||
if( fabs( f4 - fAnswer ) > 0.001F )
|
||||
{
|
||||
|
@ -212,7 +212,7 @@ short sError = pdFALSE;
|
|||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If the calculation has always been correct, increment the check
|
||||
/* If the calculation has always been correct, increment the check
|
||||
variable so we know
|
||||
this task is still running okay. */
|
||||
( *pusTaskCheckVariable )++;
|
||||
|
@ -233,25 +233,25 @@ const size_t xArraySize = 10;
|
|||
size_t xPosition;
|
||||
short sError = pdFALSE;
|
||||
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
as the parameter. */
|
||||
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
|
||||
|
||||
pfArray = ( float * ) pvPortMalloc( xArraySize * sizeof( float ) );
|
||||
|
||||
/* Keep filling an array, keeping a running total of the values placed in the
|
||||
array. Then run through the array adding up all the values. If the two totals
|
||||
/* Keep filling an array, keeping a running total of the values placed in the
|
||||
array. Then run through the array adding up all the values. If the two totals
|
||||
do not match, stop the check variable from incrementing. */
|
||||
for( ;; )
|
||||
{
|
||||
fTotal1 = 0.0F;
|
||||
fTotal2 = 0.0F;
|
||||
fPosition = 0.0F;
|
||||
|
||||
|
||||
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
||||
{
|
||||
pfArray[ xPosition ] = fPosition + 5.5F;
|
||||
fTotal1 += fPosition + 5.5F;
|
||||
fTotal1 += fPosition + 5.5F;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
|
@ -275,7 +275,7 @@ short sError = pdFALSE;
|
|||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If the calculation has always been correct, increment the check
|
||||
/* If the calculation has always been correct, increment the check
|
||||
variable so we know this task is still running okay. */
|
||||
( *pusTaskCheckVariable )++;
|
||||
}
|
||||
|
@ -291,14 +291,14 @@ const size_t xArraySize = 10;
|
|||
size_t xPosition;
|
||||
short sError = pdFALSE;
|
||||
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
as the parameter. */
|
||||
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
|
||||
|
||||
pfArray = ( float * ) pvPortMalloc( xArraySize * sizeof( float ) );
|
||||
|
||||
/* Keep filling an array, keeping a running total of the values placed in the
|
||||
array. Then run through the array adding up all the values. If the two totals
|
||||
/* Keep filling an array, keeping a running total of the values placed in the
|
||||
array. Then run through the array adding up all the values. If the two totals
|
||||
do not match, stop the check variable from incrementing. */
|
||||
for( ;; )
|
||||
{
|
||||
|
@ -309,7 +309,7 @@ short sError = pdFALSE;
|
|||
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
||||
{
|
||||
pfArray[ xPosition ] = fPosition * 12.123F;
|
||||
fTotal1 += fPosition * 12.123F;
|
||||
fTotal1 += fPosition * 12.123F;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
|
@ -333,23 +333,23 @@ short sError = pdFALSE;
|
|||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If the calculation has always been correct, increment the check
|
||||
/* If the calculation has always been correct, increment the check
|
||||
variable so we know this task is still running okay. */
|
||||
( *pusTaskCheckVariable )++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that all the created tasks are still running. */
|
||||
BaseType_t xAreMathsTaskStillRunning( void )
|
||||
{
|
||||
/* Keep a history of the check variables so we know if they have been incremented
|
||||
/* Keep a history of the check variables so we know if they have been incremented
|
||||
since the last call. */
|
||||
static uint16_t usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( uint16_t ) 0 };
|
||||
BaseType_t xReturn = pdTRUE, xTask;
|
||||
|
||||
/* Check the maths tasks are still running by ensuring their check variables
|
||||
/* Check the maths tasks are still running by ensuring their check variables
|
||||
are still incrementing. */
|
||||
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
|
||||
{
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue