Fix formatting in kernel demo application files (#1148)

* Fix formatting in kernel demo application files

* Fix header check fail in the demo files

* Add ignored patterns in core header check file

* Fix formatting

* Update vApplicationStackOverflowHook for AVR_ATMega4809_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_ATMega4809_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_IAR/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_IAR/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationMallocFailedHook for AVR_Dx_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Fix formatting AVR32_UC3

---------

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>
This commit is contained in:
Rahul Kar 2024-01-02 11:05:59 +05:30 committed by GitHub
parent 85ed21bcfb
commit 121fbe295b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
169 changed files with 22211 additions and 21557 deletions

View file

@ -1,6 +1,6 @@
/*
* FreeRTOS V202212.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
@ -103,7 +103,7 @@
* the application set up a timer to generate the tick interrupt. In this
* example a timer A0 is used for this purpose.
*
*/
*/
/* Standard includes. */
#include <stdio.h>
@ -124,48 +124,48 @@
#include "GenQTest.h"
/* Codes sent within messages to the LCD task so the LCD task can interpret
exactly what the message it just received was. These are sent in the
cMessageID member of the message structure (defined below). */
#define mainMESSAGE_BUTTON_UP ( 1 )
#define mainMESSAGE_BUTTON_SEL ( 2 )
#define mainMESSAGE_STATUS ( 3 )
* exactly what the message it just received was. These are sent in the
* cMessageID member of the message structure (defined below). */
#define mainMESSAGE_BUTTON_UP ( 1 )
#define mainMESSAGE_BUTTON_SEL ( 2 )
#define mainMESSAGE_STATUS ( 3 )
/* When the cMessageID member of the message sent to the LCD task is
mainMESSAGE_STATUS then these definitions are sent in the ulMessageValue member
of the same message and indicate what the status actually is. */
#define mainERROR_DYNAMIC_TASKS ( pdPASS + 1 )
#define mainERROR_COM_TEST ( pdPASS + 2 )
#define mainERROR_GEN_QUEUE_TEST ( pdPASS + 3 )
#define mainERROR_REG_TEST ( pdPASS + 4 )
* mainMESSAGE_STATUS then these definitions are sent in the ulMessageValue member
* of the same message and indicate what the status actually is. */
#define mainERROR_DYNAMIC_TASKS ( pdPASS + 1 )
#define mainERROR_COM_TEST ( pdPASS + 2 )
#define mainERROR_GEN_QUEUE_TEST ( pdPASS + 3 )
#define mainERROR_REG_TEST ( pdPASS + 4 )
/* The length of the queue (the number of items the queue can hold) that is used
to send messages from tasks and interrupts the the LCD task. */
#define mainQUEUE_LENGTH ( 5 )
* to send messages from tasks and interrupts the the LCD task. */
#define mainQUEUE_LENGTH ( 5 )
/* Priorities used by the test and demo tasks. */
#define mainLCD_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainCOM_TEST_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define mainGENERIC_QUEUE_TEST_PRIORITY ( tskIDLE_PRIORITY )
#define mainLCD_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainCOM_TEST_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define mainGENERIC_QUEUE_TEST_PRIORITY ( tskIDLE_PRIORITY )
/* The LED used by the comtest tasks. See the comtest.c file for more
information. */
#define mainCOM_TEST_LED ( 1 )
* information. */
#define mainCOM_TEST_LED ( 1 )
/* The baud rate used by the comtest tasks described at the top of this file. */
#define mainCOM_TEST_BAUD_RATE ( 38400 )
#define mainCOM_TEST_BAUD_RATE ( 38400 )
/* The maximum number of lines of text that can be displayed on the LCD. */
#define mainMAX_LCD_LINES ( 8 )
#define mainMAX_LCD_LINES ( 8 )
/* Just used to ensure parameters are passed into tasks correctly. */
#define mainTASK_PARAMETER_CHECK_VALUE ( ( void * ) 0xDEAD )
#define mainTASK_PARAMETER_CHECK_VALUE ( ( void * ) 0xDEAD )
/*-----------------------------------------------------------*/
/*
* The reg test tasks as described at the top of this file.
*/
extern void vRegTest1Task( void *pvParameters );
extern void vRegTest2Task( void *pvParameters );
extern void vRegTest1Task( void * pvParameters );
extern void vRegTest2Task( void * pvParameters );
/*
* Configures clocks, LCD, port pints, etc. necessary to execute this demo.
@ -176,427 +176,450 @@ static void prvSetupHardware( void );
* Definition of the LCD/controller task described in the comments at the top
* of this file.
*/
static void prvLCDTask( void *pvParameters );
static void prvLCDTask( void * pvParameters );
/*
* Definition of the button poll task described in the comments at the top of
* this file.
*/
static void prvButtonPollTask( void *pvParameters );
static void prvButtonPollTask( void * pvParameters );
/*
* Converts a status message value into an appropriate string for display on
* the LCD. The string is written to pcBuffer.
*/
static void prvGenerateStatusMessage( char *pcBuffer, long lStatusValue );
static void prvGenerateStatusMessage( char * pcBuffer,
long lStatusValue );
/*-----------------------------------------------------------*/
/* Variables that are incremented on each iteration of the reg test tasks -
provided the tasks have not reported any errors. The check task inspects these
variables to ensure they are still incrementing as expected. If a variable
stops incrementing then it is likely that its associate task has stalled. */
* provided the tasks have not reported any errors. The check task inspects these
* variables to ensure they are still incrementing as expected. If a variable
* stops incrementing then it is likely that its associate task has stalled. */
volatile unsigned short usRegTest1Counter = 0, usRegTest2Counter = 0;
/* The handle of the queue used to send messages from tasks and interrupts to
the LCD task. */
* the LCD task. */
static QueueHandle_t xLCDQueue = NULL;
/* The definition of each message sent from tasks and interrupts to the LCD
task. */
* task. */
typedef struct
{
char cMessageID; /* << States what the message is. */
unsigned long ulMessageValue; /* << States the message value (can be an integer, string pointer, etc. depending on the value of cMessageID). */
char cMessageID; /* << States what the message is. */
unsigned long ulMessageValue; /* << States the message value (can be an integer, string pointer, etc. depending on the value of cMessageID). */
} xQueueMessage;
/*-----------------------------------------------------------*/
/* The linker script can be used to test the FreeRTOS ports use of 20bit
addresses by locating all code in high memory. The following pragma ensures
that main remains in low memory when that is done. The ISR_CODE segment is used
for convenience as ISR functions are always placed in low memory. */
* addresses by locating all code in high memory. The following pragma ensures
* that main remains in low memory when that is done. The ISR_CODE segment is used
* for convenience as ISR functions are always placed in low memory. */
#pragma location="ISR_CODE"
void main( void )
{
/* Configure the peripherals used by this demo application. This includes
configuring the joystick input select button to generate interrupts. */
prvSetupHardware();
/* Configure the peripherals used by this demo application. This includes
* configuring the joystick input select button to generate interrupts. */
prvSetupHardware();
/* Create the queue used by tasks and interrupts to send strings to the LCD
task. */
xLCDQueue = xQueueCreate( mainQUEUE_LENGTH, sizeof( xQueueMessage ) );
/* Create the queue used by tasks and interrupts to send strings to the LCD
* task. */
xLCDQueue = xQueueCreate( mainQUEUE_LENGTH, sizeof( xQueueMessage ) );
/* If the queue could not be created then don't create any tasks that might
attempt to use the queue. */
if( xLCDQueue != NULL )
{
/* Add the created queue to the queue registry so it can be viewed in
the IAR FreeRTOS state viewer plug-in. */
vQueueAddToRegistry( xLCDQueue, "LCDQueue" );
/* If the queue could not be created then don't create any tasks that might
* attempt to use the queue. */
if( xLCDQueue != NULL )
{
/* Add the created queue to the queue registry so it can be viewed in
* the IAR FreeRTOS state viewer plug-in. */
vQueueAddToRegistry( xLCDQueue, "LCDQueue" );
/* Create the standard demo tasks. */
vAltStartComTestTasks( mainCOM_TEST_PRIORITY, mainCOM_TEST_BAUD_RATE, mainCOM_TEST_LED );
vStartDynamicPriorityTasks();
vStartGenericQueueTasks( mainGENERIC_QUEUE_TEST_PRIORITY );
/* Create the standard demo tasks. */
vAltStartComTestTasks( mainCOM_TEST_PRIORITY, mainCOM_TEST_BAUD_RATE, mainCOM_TEST_LED );
vStartDynamicPriorityTasks();
vStartGenericQueueTasks( mainGENERIC_QUEUE_TEST_PRIORITY );
/* Create the LCD, button poll and register test tasks, as described at
the top of this file. */
xTaskCreate( prvLCDTask, "LCD", configMINIMAL_STACK_SIZE * 2, mainTASK_PARAMETER_CHECK_VALUE, mainLCD_TASK_PRIORITY, NULL );
xTaskCreate( prvButtonPollTask, "BPoll", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vRegTest1Task, "Reg1", configMINIMAL_STACK_SIZE, NULL, 0, NULL );
xTaskCreate( vRegTest2Task, "Reg2", configMINIMAL_STACK_SIZE, NULL, 0, NULL );
/* Create the LCD, button poll and register test tasks, as described at
* the top of this file. */
xTaskCreate( prvLCDTask, "LCD", configMINIMAL_STACK_SIZE * 2, mainTASK_PARAMETER_CHECK_VALUE, mainLCD_TASK_PRIORITY, NULL );
xTaskCreate( prvButtonPollTask, "BPoll", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vRegTest1Task, "Reg1", configMINIMAL_STACK_SIZE, NULL, 0, NULL );
xTaskCreate( vRegTest2Task, "Reg2", configMINIMAL_STACK_SIZE, NULL, 0, NULL );
/* Start the scheduler. */
vTaskStartScheduler();
}
/* Start the scheduler. */
vTaskStartScheduler();
}
/* If all is well then this line will never be reached. If it is reached
then it is likely that there was insufficient (FreeRTOS) heap memory space
to create the idle task. This may have been trapped by the malloc() failed
hook function, if one is configured. */
for( ;; );
/* If all is well then this line will never be reached. If it is reached
* then it is likely that there was insufficient (FreeRTOS) heap memory space
* to create the idle task. This may have been trapped by the malloc() failed
* hook function, if one is configured. */
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
static void prvLCDTask( void *pvParameters )
static void prvLCDTask( void * pvParameters )
{
xQueueMessage xReceivedMessage;
xQueueMessage xReceivedMessage;
/* Buffer into which strings are formatted and placed ready for display on the
LCD. Note this is a static variable to prevent it being allocated on the task
stack, which is too small to hold such a variable. The stack size is configured
when the task is created. */
static char cBuffer[ 512 ];
unsigned char ucLine = 1;
* LCD. Note this is a static variable to prevent it being allocated on the task
* stack, which is too small to hold such a variable. The stack size is configured
* when the task is created. */
static char cBuffer[ 512 ];
unsigned char ucLine = 1;
/* This function is the only function that uses printf(). If printf() is
used from any other function then some sort of mutual exclusion on stdout
will be necessary.
/* This function is the only function that uses printf(). If printf() is
* used from any other function then some sort of mutual exclusion on stdout
* will be necessary.
*
* This is also the only function that is permitted to access the LCD.
*
* First print out the number of bytes that remain in the FreeRTOS heap. This
* can be viewed in the terminal IO window within the IAR Embedded Workbench. */
printf( "%d bytes of heap space remain unallocated\n", ( int ) xPortGetFreeHeapSize() );
This is also the only function that is permitted to access the LCD.
/* Just as a test of the port, and for no functional reason, check the task
* parameter contains its expected value. */
if( pvParameters != mainTASK_PARAMETER_CHECK_VALUE )
{
halLcdPrintLine( "Invalid parameter", ucLine, OVERWRITE_TEXT );
ucLine++;
}
First print out the number of bytes that remain in the FreeRTOS heap. This
can be viewed in the terminal IO window within the IAR Embedded Workbench. */
printf( "%d bytes of heap space remain unallocated\n", ( int ) xPortGetFreeHeapSize() );
for( ; ; )
{
/* Wait for a message to be received. Using portMAX_DELAY as the block
* time will result in an indefinite wait provided INCLUDE_vTaskSuspend is
* set to 1 in FreeRTOSConfig.h, therefore there is no need to check the
* function return value and the function will only return when a value
* has been received. */
xQueueReceive( xLCDQueue, &xReceivedMessage, portMAX_DELAY );
/* Just as a test of the port, and for no functional reason, check the task
parameter contains its expected value. */
if( pvParameters != mainTASK_PARAMETER_CHECK_VALUE )
{
halLcdPrintLine( "Invalid parameter", ucLine, OVERWRITE_TEXT );
ucLine++;
}
/* Clear the LCD if no room remains for any more text output. */
if( ucLine > mainMAX_LCD_LINES )
{
halLcdClearScreen();
ucLine = 0;
}
for( ;; )
{
/* Wait for a message to be received. Using portMAX_DELAY as the block
time will result in an indefinite wait provided INCLUDE_vTaskSuspend is
set to 1 in FreeRTOSConfig.h, therefore there is no need to check the
function return value and the function will only return when a value
has been received. */
xQueueReceive( xLCDQueue, &xReceivedMessage, portMAX_DELAY );
/* What is this message? What does it contain? */
switch( xReceivedMessage.cMessageID )
{
case mainMESSAGE_BUTTON_UP: /* The button poll task has just
* informed this task that the up
* button on the joystick input has
* been pressed or released. */
sprintf( cBuffer, "Button up = %d", ( int ) xReceivedMessage.ulMessageValue );
break;
/* Clear the LCD if no room remains for any more text output. */
if( ucLine > mainMAX_LCD_LINES )
{
halLcdClearScreen();
ucLine = 0;
}
case mainMESSAGE_BUTTON_SEL: /* The select button interrupt
* just informed this task that the
* select button was pressed.
* Generate a table of task run time
* statistics and output this to
* the terminal IO window in the IAR
* embedded workbench. */
printf( "\nTask\t Abs Time\t %%Time\n*****************************************" );
vTaskGetRunTimeStats( cBuffer );
printf( cBuffer );
/* What is this message? What does it contain? */
switch( xReceivedMessage.cMessageID )
{
case mainMESSAGE_BUTTON_UP : /* The button poll task has just
informed this task that the up
button on the joystick input has
been pressed or released. */
sprintf( cBuffer, "Button up = %d", ( int ) xReceivedMessage.ulMessageValue );
break;
/* Also print out a message to
* the LCD - in this case the
* pointer to the string to print
* is sent directly in the
* ulMessageValue member of the
* message. This just demonstrates
* a different communication
* technique. */
sprintf( cBuffer, "%s", ( char * ) xReceivedMessage.ulMessageValue );
break;
case mainMESSAGE_BUTTON_SEL : /* The select button interrupt
just informed this task that the
select button was pressed.
Generate a table of task run time
statistics and output this to
the terminal IO window in the IAR
embedded workbench. */
printf( "\nTask\t Abs Time\t %%Time\n*****************************************" );
vTaskGetRunTimeStats( cBuffer );
printf( cBuffer );
case mainMESSAGE_STATUS: /* The tick interrupt hook
* function has just informed this
* task of the system status.
* Generate a string in accordance
* with the status value. */
prvGenerateStatusMessage( cBuffer, xReceivedMessage.ulMessageValue );
break;
/* Also print out a message to
the LCD - in this case the
pointer to the string to print
is sent directly in the
ulMessageValue member of the
message. This just demonstrates
a different communication
technique. */
sprintf( cBuffer, "%s", ( char * ) xReceivedMessage.ulMessageValue );
break;
default:
sprintf( cBuffer, "Unknown message" );
break;
}
case mainMESSAGE_STATUS : /* The tick interrupt hook
function has just informed this
task of the system status.
Generate a string in accordance
with the status value. */
prvGenerateStatusMessage( cBuffer, xReceivedMessage.ulMessageValue );
break;
default : sprintf( cBuffer, "Unknown message" );
break;
}
/* Output the message that was placed into the cBuffer array within the
switch statement above, then move onto the next line ready for the next
message to arrive on the queue. */
halLcdPrintLine( cBuffer, ucLine, OVERWRITE_TEXT );
ucLine++;
}
/* Output the message that was placed into the cBuffer array within the
* switch statement above, then move onto the next line ready for the next
* message to arrive on the queue. */
halLcdPrintLine( cBuffer, ucLine, OVERWRITE_TEXT );
ucLine++;
}
}
/*-----------------------------------------------------------*/
static void prvGenerateStatusMessage( char *pcBuffer, long lStatusValue )
static void prvGenerateStatusMessage( char * pcBuffer,
long lStatusValue )
{
/* Just a utility function to convert a status value into a meaningful
string for output onto the LCD. */
switch( lStatusValue )
{
case pdPASS : sprintf( pcBuffer, "Status = PASS" );
break;
case mainERROR_DYNAMIC_TASKS : sprintf( pcBuffer, "Err: Dynamic tsks" );
break;
case mainERROR_COM_TEST : sprintf( pcBuffer, "Err: COM test" );
break;
case mainERROR_GEN_QUEUE_TEST : sprintf( pcBuffer, "Error: Gen Q test" );
break;
case mainERROR_REG_TEST : sprintf( pcBuffer, "Error: Reg test" );
break;
default : sprintf( pcBuffer, "Unknown status" );
break;
}
/* Just a utility function to convert a status value into a meaningful
* string for output onto the LCD. */
switch( lStatusValue )
{
case pdPASS:
sprintf( pcBuffer, "Status = PASS" );
break;
case mainERROR_DYNAMIC_TASKS:
sprintf( pcBuffer, "Err: Dynamic tsks" );
break;
case mainERROR_COM_TEST:
sprintf( pcBuffer, "Err: COM test" );
break;
case mainERROR_GEN_QUEUE_TEST:
sprintf( pcBuffer, "Error: Gen Q test" );
break;
case mainERROR_REG_TEST:
sprintf( pcBuffer, "Error: Reg test" );
break;
default:
sprintf( pcBuffer, "Unknown status" );
break;
}
}
/*-----------------------------------------------------------*/
static void prvButtonPollTask( void *pvParameters )
static void prvButtonPollTask( void * pvParameters )
{
unsigned char ucLastState = pdFALSE, ucState;
xQueueMessage xMessage;
unsigned char ucLastState = pdFALSE, ucState;
xQueueMessage xMessage;
/* This tasks performs the button polling functionality as described at the
top of this file. */
for( ;; )
{
/* Check the button state. */
ucState = ( halButtonsPressed() & BUTTON_UP );
/* This tasks performs the button polling functionality as described at the
* top of this file. */
for( ; ; )
{
/* Check the button state. */
ucState = ( halButtonsPressed() & BUTTON_UP );
if( ucState != 0 )
{
/* The button was pressed. */
ucState = pdTRUE;
}
if( ucState != 0 )
{
/* The button was pressed. */
ucState = pdTRUE;
}
if( ucState != ucLastState )
{
/* The state has changed, send a message to the LCD task. */
xMessage.cMessageID = mainMESSAGE_BUTTON_UP;
xMessage.ulMessageValue = ( unsigned long ) ucState;
ucLastState = ucState;
xQueueSend( xLCDQueue, &xMessage, portMAX_DELAY );
}
if( ucState != ucLastState )
{
/* The state has changed, send a message to the LCD task. */
xMessage.cMessageID = mainMESSAGE_BUTTON_UP;
xMessage.ulMessageValue = ( unsigned long ) ucState;
ucLastState = ucState;
xQueueSend( xLCDQueue, &xMessage, portMAX_DELAY );
}
/* Block for 10 milliseconds so this task does not utilise all the CPU
time and debouncing of the button is not necessary. */
vTaskDelay( 10 / portTICK_PERIOD_MS );
}
/* Block for 10 milliseconds so this task does not utilise all the CPU
* time and debouncing of the button is not necessary. */
vTaskDelay( 10 / portTICK_PERIOD_MS );
}
}
/*-----------------------------------------------------------*/
static void prvSetupHardware( void )
{
halBoardInit();
halBoardInit();
LFXT_Start( XT1DRIVE_0 );
hal430SetSystemClock( configCPU_CLOCK_HZ, configLFXT_CLOCK_HZ );
LFXT_Start( XT1DRIVE_0 );
hal430SetSystemClock( configCPU_CLOCK_HZ, configLFXT_CLOCK_HZ );
halButtonsInit( BUTTON_ALL );
halButtonsInterruptEnable( BUTTON_SELECT );
halButtonsInit( BUTTON_ALL );
halButtonsInterruptEnable( BUTTON_SELECT );
/* Initialise the LCD, but note that the backlight is not used as the
library function uses timer A0 to modulate the backlight, and this file
defines vApplicationSetupTimerInterrupt() to also use timer A0 to generate
the tick interrupt. If the backlight is required, then change either the
halLCD library or vApplicationSetupTimerInterrupt() to use a different
timer. Timer A1 is used for the run time stats time base6. */
halLcdInit();
halLcdSetContrast( 100 );
halLcdClearScreen();
/* Initialise the LCD, but note that the backlight is not used as the
* library function uses timer A0 to modulate the backlight, and this file
* defines vApplicationSetupTimerInterrupt() to also use timer A0 to generate
* the tick interrupt. If the backlight is required, then change either the
* halLCD library or vApplicationSetupTimerInterrupt() to use a different
* timer. Timer A1 is used for the run time stats time base6. */
halLcdInit();
halLcdSetContrast( 100 );
halLcdClearScreen();
halLcdPrintLine( " www.FreeRTOS.org", 0, OVERWRITE_TEXT );
halLcdPrintLine( " www.FreeRTOS.org", 0, OVERWRITE_TEXT );
}
/*-----------------------------------------------------------*/
void vApplicationTickHook( void )
{
static unsigned short usLastRegTest1Counter = 0, usLastRegTest2Counter = 0;
static unsigned long ulCounter = 0;
static const unsigned long ulCheckFrequency = 5000UL / portTICK_PERIOD_MS;
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
static unsigned short usLastRegTest1Counter = 0, usLastRegTest2Counter = 0;
static unsigned long ulCounter = 0;
static const unsigned long ulCheckFrequency = 5000UL / portTICK_PERIOD_MS;
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
/* Define the status message that is sent to the LCD task. By default the
status is PASS. */
static xQueueMessage xStatusMessage = { mainMESSAGE_STATUS, pdPASS };
* status is PASS. */
static xQueueMessage xStatusMessage = { mainMESSAGE_STATUS, pdPASS };
/* This is called from within the tick interrupt and performs the 'check'
functionality as described in the comments at the top of this file.
/* This is called from within the tick interrupt and performs the 'check'
* functionality as described in the comments at the top of this file.
*
* Is it time to perform the 'check' functionality again? */
ulCounter++;
Is it time to perform the 'check' functionality again? */
ulCounter++;
if( ulCounter >= ulCheckFrequency )
{
/* See if the standard demo tasks are executing as expected, changing
the message that is sent to the LCD task from PASS to an error code if
any tasks set reports an error. */
if( xAreComTestTasksStillRunning() != pdPASS )
{
xStatusMessage.ulMessageValue = mainERROR_COM_TEST;
}
if( ulCounter >= ulCheckFrequency )
{
/* See if the standard demo tasks are executing as expected, changing
* the message that is sent to the LCD task from PASS to an error code if
* any tasks set reports an error. */
if( xAreComTestTasksStillRunning() != pdPASS )
{
xStatusMessage.ulMessageValue = mainERROR_COM_TEST;
}
if( xAreDynamicPriorityTasksStillRunning() != pdPASS )
{
xStatusMessage.ulMessageValue = mainERROR_DYNAMIC_TASKS;
}
if( xAreDynamicPriorityTasksStillRunning() != pdPASS )
{
xStatusMessage.ulMessageValue = mainERROR_DYNAMIC_TASKS;
}
if( xAreGenericQueueTasksStillRunning() != pdPASS )
{
xStatusMessage.ulMessageValue = mainERROR_GEN_QUEUE_TEST;
}
if( xAreGenericQueueTasksStillRunning() != pdPASS )
{
xStatusMessage.ulMessageValue = mainERROR_GEN_QUEUE_TEST;
}
/* Check the reg test tasks are still cycling. They will stop
incrementing their loop counters if they encounter an error. */
if( usRegTest1Counter == usLastRegTest1Counter )
{
xStatusMessage.ulMessageValue = mainERROR_REG_TEST;
}
/* Check the reg test tasks are still cycling. They will stop
* incrementing their loop counters if they encounter an error. */
if( usRegTest1Counter == usLastRegTest1Counter )
{
xStatusMessage.ulMessageValue = mainERROR_REG_TEST;
}
if( usRegTest2Counter == usLastRegTest2Counter )
{
xStatusMessage.ulMessageValue = mainERROR_REG_TEST;
}
if( usRegTest2Counter == usLastRegTest2Counter )
{
xStatusMessage.ulMessageValue = mainERROR_REG_TEST;
}
usLastRegTest1Counter = usRegTest1Counter;
usLastRegTest2Counter = usRegTest2Counter;
usLastRegTest1Counter = usRegTest1Counter;
usLastRegTest2Counter = usRegTest2Counter;
/* As this is the tick hook the lHigherPriorityTaskWoken parameter is not
needed (a context switch is going to be performed anyway), but it must
still be provided. */
xQueueSendFromISR( xLCDQueue, &xStatusMessage, &xHigherPriorityTaskWoken );
ulCounter = 0;
}
/* As this is the tick hook the lHigherPriorityTaskWoken parameter is not
* needed (a context switch is going to be performed anyway), but it must
* still be provided. */
xQueueSendFromISR( xLCDQueue, &xStatusMessage, &xHigherPriorityTaskWoken );
ulCounter = 0;
}
/* Just periodically toggle an LED to show that the tick interrupt is
running. Note that this access LED_PORT_OUT in a non-atomic way, so tasks
that access the same port must do so from a critical section. */
if( ( ulCounter & 0xff ) == 0 )
{
if( ( LED_PORT_OUT & LED_1 ) == 0 )
{
LED_PORT_OUT |= LED_1;
}
else
{
LED_PORT_OUT &= ~LED_1;
}
}
/* Just periodically toggle an LED to show that the tick interrupt is
* running. Note that this access LED_PORT_OUT in a non-atomic way, so tasks
* that access the same port must do so from a critical section. */
if( ( ulCounter & 0xff ) == 0 )
{
if( ( LED_PORT_OUT & LED_1 ) == 0 )
{
LED_PORT_OUT |= LED_1;
}
else
{
LED_PORT_OUT &= ~LED_1;
}
}
}
/*-----------------------------------------------------------*/
#pragma vector=PORT2_VECTOR
__interrupt static void prvSelectButtonInterrupt(void)
__interrupt static void prvSelectButtonInterrupt( void )
{
/* Define the message sent to the LCD task from this interrupt. */
static const xQueueMessage xMessage = { mainMESSAGE_BUTTON_SEL, ( unsigned long ) "Select Interrupt" };
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
static const xQueueMessage xMessage = { mainMESSAGE_BUTTON_SEL, ( unsigned long ) "Select Interrupt" };
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
/* This is the interrupt handler for the joystick select button input.
The button has been pushed, write a message to the LCD via the LCD task. */
xQueueSendFromISR( xLCDQueue, &xMessage, &xHigherPriorityTaskWoken );
/* This is the interrupt handler for the joystick select button input.
* The button has been pushed, write a message to the LCD via the LCD task. */
xQueueSendFromISR( xLCDQueue, &xMessage, &xHigherPriorityTaskWoken );
P2IFG = 0;
P2IFG = 0;
/* If writing to xLCDQueue caused a task to unblock, and the unblocked task
has a priority equal to or above the task that this interrupt interrupted,
then lHigherPriorityTaskWoken will have been set to pdTRUE internally within
xQueuesendFromISR(), and portEND_SWITCHING_ISR() will ensure that this
interrupt returns directly to the higher priority unblocked task. */
portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
/* If writing to xLCDQueue caused a task to unblock, and the unblocked task
* has a priority equal to or above the task that this interrupt interrupted,
* then lHigherPriorityTaskWoken will have been set to pdTRUE internally within
* xQueuesendFromISR(), and portEND_SWITCHING_ISR() will ensure that this
* interrupt returns directly to the higher priority unblocked task. */
portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
}
/*-----------------------------------------------------------*/
/* The MSP430X port uses this callback function to configure its tick interrupt.
This allows the application to choose the tick interrupt source.
configTICK_VECTOR must also be set in FreeRTOSConfig.h to the correct
interrupt vector for the chosen tick interrupt source. This implementation of
vApplicationSetupTimerInterrupt() generates the tick from timer A0, so in this
case configTICK_VECTOR is set to TIMER0_A0_VECTOR. */
* This allows the application to choose the tick interrupt source.
* configTICK_VECTOR must also be set in FreeRTOSConfig.h to the correct
* interrupt vector for the chosen tick interrupt source. This implementation of
* vApplicationSetupTimerInterrupt() generates the tick from timer A0, so in this
* case configTICK_VECTOR is set to TIMER0_A0_VECTOR. */
void vApplicationSetupTimerInterrupt( void )
{
const unsigned short usACLK_Frequency_Hz = 32768;
const unsigned short usACLK_Frequency_Hz = 32768;
/* Ensure the timer is stopped. */
TA0CTL = 0;
/* Ensure the timer is stopped. */
TA0CTL = 0;
/* Run the timer from the ACLK. */
TA0CTL = TASSEL_1;
/* Run the timer from the ACLK. */
TA0CTL = TASSEL_1;
/* Clear everything to start with. */
TA0CTL |= TACLR;
/* Clear everything to start with. */
TA0CTL |= TACLR;
/* Set the compare match value according to the tick rate we want. */
TA0CCR0 = usACLK_Frequency_Hz / configTICK_RATE_HZ;
/* Set the compare match value according to the tick rate we want. */
TA0CCR0 = usACLK_Frequency_Hz / configTICK_RATE_HZ;
/* Enable the interrupts. */
TA0CCTL0 = CCIE;
/* Enable the interrupts. */
TA0CCTL0 = CCIE;
/* Start up clean. */
TA0CTL |= TACLR;
/* Start up clean. */
TA0CTL |= TACLR;
/* Up mode. */
TA0CTL |= MC_1;
/* Up mode. */
TA0CTL |= MC_1;
}
/*-----------------------------------------------------------*/
void vApplicationIdleHook( void )
{
/* Called on each iteration of the idle task. In this case the idle task
just enters a low power mode. */
__bis_SR_register( LPM3_bits + GIE );
/* Called on each iteration of the idle task. In this case the idle task
* just enters a low power mode. */
__bis_SR_register( LPM3_bits + GIE );
}
/*-----------------------------------------------------------*/
void vApplicationMallocFailedHook( void )
{
/* Called if a call to pvPortMalloc() fails because there is insufficient
free memory available in the FreeRTOS heap. pvPortMalloc() is called
internally by FreeRTOS API functions that create tasks, queues or
semaphores. */
taskDISABLE_INTERRUPTS();
for( ;; );
/* Called if a call to pvPortMalloc() fails because there is insufficient
* free memory available in the FreeRTOS heap. pvPortMalloc() is called
* internally by FreeRTOS API functions that create tasks, queues or
* semaphores. */
taskDISABLE_INTERRUPTS();
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName )
void vApplicationStackOverflowHook( TaskHandle_t pxTask,
char * pcTaskName )
{
( void ) pxTask;
( void ) pcTaskName;
( void ) pxTask;
( void ) pcTaskName;
/* Run time stack overflow checking is performed if
configconfigCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
function is called if a stack overflow is detected. */
taskDISABLE_INTERRUPTS();
for( ;; );
/* Run time stack overflow checking is performed if
* configconfigCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
* function is called if a stack overflow is detected. */
taskDISABLE_INTERRUPTS();
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/