Fix formatting in kernel demo application files (#1148)

* Fix formatting in kernel demo application files

* Fix header check fail in the demo files

* Add ignored patterns in core header check file

* Fix formatting

* Update vApplicationStackOverflowHook for AVR_ATMega4809_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_ATMega4809_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_IAR/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_IAR/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationMallocFailedHook for AVR_Dx_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Fix formatting AVR32_UC3

---------

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>
This commit is contained in:
Rahul Kar 2024-01-02 11:05:59 +05:30 committed by GitHub
parent 85ed21bcfb
commit 121fbe295b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
169 changed files with 22211 additions and 21557 deletions

View file

@ -1,6 +1,6 @@
/*
* FreeRTOS V202212.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
@ -74,26 +74,26 @@ extern void main_full( void );
int main( void )
{
/* See http://www.FreeRTOS.org/TI_CC3220_SimpleLink_FreeRTOS_Demo.html for
instructions. */
/* See http://www.FreeRTOS.org/TI_CC3220_SimpleLink_FreeRTOS_Demo.html for
* instructions. */
/* Prepare the hardware to run this demo. */
prvSetupHardware();
/* Prepare the hardware to run this demo. */
prvSetupHardware();
/* The configCREATE_SIMPLE_TICKLESS_DEMO setting is described at the top
of this file. */
#if( configCREATE_SIMPLE_TICKLESS_DEMO == 1 )
{
main_blinky();
}
#else
{
main_full();
}
#endif
/* The configCREATE_SIMPLE_TICKLESS_DEMO setting is described at the top
* of this file. */
#if ( configCREATE_SIMPLE_TICKLESS_DEMO == 1 )
{
main_blinky();
}
#else
{
main_full();
}
#endif
return 0;
return 0;
}
/*-----------------------------------------------------------*/
@ -108,7 +108,7 @@ static void prvSetupHardware( void )
void vMainToggleLED( void )
{
static uint32_t ulLEDState = Board_GPIO_LED_OFF;
static uint32_t ulLEDState = Board_GPIO_LED_OFF;
ulLEDState = !ulLEDState;
GPIO_write( Board_LED0, ulLEDState );
@ -117,119 +117,135 @@ static uint32_t ulLEDState = Board_GPIO_LED_OFF;
void vApplicationMallocFailedHook( void )
{
/* vApplicationMallocFailedHook() will only be called if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
function that will get called if a call to pvPortMalloc() fails.
pvPortMalloc() is called internally by the kernel whenever a task, queue,
timer or semaphore is created. It is also called by various parts of the
demo application. If heap_1.c or heap_2.c are used, then the size of the
heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
to query the size of free heap space that remains (although it does not
provide information on how the remaining heap might be fragmented). */
taskDISABLE_INTERRUPTS();
for( ;; );
/* vApplicationMallocFailedHook() will only be called if
* configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
* function that will get called if a call to pvPortMalloc() fails.
* pvPortMalloc() is called internally by the kernel whenever a task, queue,
* timer or semaphore is created. It is also called by various parts of the
* demo application. If heap_1.c or heap_2.c are used, then the size of the
* heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
* FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
* to query the size of free heap space that remains (although it does not
* provide information on how the remaining heap might be fragmented). */
taskDISABLE_INTERRUPTS();
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
void vApplicationIdleHook( void )
{
/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
to 1 in FreeRTOSConfig.h. It will be called on each iteration of the idle
task. It is essential that code added to this hook function never attempts
to block in any way (for example, call xQueueReceive() with a block time
specified, or call vTaskDelay()). If the application makes use of the
vTaskDelete() API function (as this demo application does) then it is also
important that vApplicationIdleHook() is permitted to return to its calling
function, because it is the responsibility of the idle task to clean up
memory allocated by the kernel to any task that has since been deleted. */
/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
* to 1 in FreeRTOSConfig.h. It will be called on each iteration of the idle
* task. It is essential that code added to this hook function never attempts
* to block in any way (for example, call xQueueReceive() with a block time
* specified, or call vTaskDelay()). If the application makes use of the
* vTaskDelete() API function (as this demo application does) then it is also
* important that vApplicationIdleHook() is permitted to return to its calling
* function, because it is the responsibility of the idle task to clean up
* memory allocated by the kernel to any task that has since been deleted. */
}
/*-----------------------------------------------------------*/
void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName )
void vApplicationStackOverflowHook( TaskHandle_t pxTask,
char * pcTaskName )
{
( void ) pcTaskName;
( void ) pxTask;
( void ) pcTaskName;
( void ) pxTask;
/* Run time stack overflow checking is performed if
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
function is called if a stack overflow is detected. */
taskDISABLE_INTERRUPTS();
for( ;; );
/* Run time stack overflow checking is performed if
* configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
* function is called if a stack overflow is detected. */
taskDISABLE_INTERRUPTS();
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
void *malloc( size_t xSize )
void * malloc( size_t xSize )
{
/* There should not be a heap defined, so trap any attempts to call
malloc. */
taskDISABLE_INTERRUPTS();
for( ;; );
/* There should not be a heap defined, so trap any attempts to call
* malloc. */
taskDISABLE_INTERRUPTS();
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
/* configUSE_STATIC_ALLOCATION is set to 1, so the application must provide an
implementation of vApplicationGetIdleTaskMemory() to provide the memory that is
used by the Idle task. */
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize )
* implementation of vApplicationGetIdleTaskMemory() to provide the memory that is
* used by the Idle task. */
void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
StackType_t ** ppxIdleTaskStackBuffer,
uint32_t * pulIdleTaskStackSize )
{
/* If the buffers to be provided to the Idle task are declared inside this
function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits. */
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
* function then they must be declared static - otherwise they will be allocated on
* the stack and so not exists after this function exits. */
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
state will be stored. */
* state will be stored. */
*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;
/* Pass out the array that will be used as the Idle task's stack. */
*ppxIdleTaskStackBuffer = uxIdleTaskStack;
/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
Note that, as the array is necessarily of type StackType_t,
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
* Note that, as the array is necessarily of type StackType_t,
* configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
}
/*-----------------------------------------------------------*/
/* configUSE_STATIC_ALLOCATION and configUSE_TIMERS are both set to 1, so the
application must provide an implementation of vApplicationGetTimerTaskMemory()
to provide the memory that is used by the Timer service task. */
void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize )
* application must provide an implementation of vApplicationGetTimerTaskMemory()
* to provide the memory that is used by the Timer service task. */
void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer,
StackType_t ** ppxTimerTaskStackBuffer,
uint32_t * pulTimerTaskStackSize )
{
/* If the buffers to be provided to the Timer task are declared inside this
function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits. */
static StaticTask_t xTimerTaskTCB;
static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
* function then they must be declared static - otherwise they will be allocated on
* the stack and so not exists after this function exits. */
static StaticTask_t xTimerTaskTCB;
static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
/* Pass out a pointer to the StaticTask_t structure in which the Timer
task's state will be stored. */
* task's state will be stored. */
*ppxTimerTaskTCBBuffer = &xTimerTaskTCB;
/* Pass out the array that will be used as the Timer task's stack. */
*ppxTimerTaskStackBuffer = uxTimerTaskStack;
/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
Note that, as the array is necessarily of type StackType_t,
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
* Note that, as the array is necessarily of type StackType_t,
* configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
/*-----------------------------------------------------------*/
/* Catch asserts so the file and line number of the assert can be viewed. */
void vMainAssertCalled( const char *pcFileName, uint32_t ulLineNumber )
void vMainAssertCalled( const char * pcFileName,
uint32_t ulLineNumber )
{
volatile BaseType_t xSetToNonZeroToStepOutOfLoop = 0;
volatile BaseType_t xSetToNonZeroToStepOutOfLoop = 0;
taskENTER_CRITICAL();
while( xSetToNonZeroToStepOutOfLoop == 0 )
{
/* Use the variables to prevent compiler warnings and in an attempt to
ensure they can be viewed in the debugger. If the variables get
optimised away then set copy their values to file scope or globals then
view the variables they are copied to. */
* ensure they can be viewed in the debugger. If the variables get
* optimised away then set copy their values to file scope or globals then
* view the variables they are copied to. */
( void ) pcFileName;
( void ) ulLineNumber;
}
@ -237,11 +253,11 @@ volatile BaseType_t xSetToNonZeroToStepOutOfLoop = 0;
/*-----------------------------------------------------------*/
/* To enable the libraries to build. */
void PowerCC32XX_enterLPDS( void *driverlibFunc )
void PowerCC32XX_enterLPDS( void * driverlibFunc )
{
( void ) driverlibFunc;
/* This function is not implemented so trap any calls to it by halting
here. */
configASSERT( driverlibFunc == NULL );
* here. */
configASSERT( driverlibFunc == NULL );
}