Fix formatting in kernel demo application files (#1148)

* Fix formatting in kernel demo application files

* Fix header check fail in the demo files

* Add ignored patterns in core header check file

* Fix formatting

* Update vApplicationStackOverflowHook for AVR_ATMega4809_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_ATMega4809_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_IAR/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_IAR/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationStackOverflowHook for AVR_Dx_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Update vApplicationMallocFailedHook for AVR_Dx_MPLAB.X/main.c

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>

* Fix formatting AVR32_UC3

---------

Co-authored-by: Soren Ptak <ptaksoren@gmail.com>
This commit is contained in:
Rahul Kar 2024-01-02 11:05:59 +05:30 committed by GitHub
parent 85ed21bcfb
commit 121fbe295b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
169 changed files with 22211 additions and 21557 deletions

View file

@ -1,6 +1,6 @@
/*
* FreeRTOS V202212.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
@ -129,35 +129,35 @@
#include "stm32f4xx_conf.h"
/* Priorities for the demo application tasks. */
#define mainFLASH_TASK_PRIORITY ( tskIDLE_PRIORITY + 1UL )
#define mainQUEUE_POLL_PRIORITY ( tskIDLE_PRIORITY + 2UL )
#define mainSEM_TEST_PRIORITY ( tskIDLE_PRIORITY + 1UL )
#define mainBLOCK_Q_PRIORITY ( tskIDLE_PRIORITY + 2UL )
#define mainCREATOR_TASK_PRIORITY ( tskIDLE_PRIORITY + 3UL )
#define mainFLOP_TASK_PRIORITY ( tskIDLE_PRIORITY )
#define mainFLASH_TASK_PRIORITY ( tskIDLE_PRIORITY + 1UL )
#define mainQUEUE_POLL_PRIORITY ( tskIDLE_PRIORITY + 2UL )
#define mainSEM_TEST_PRIORITY ( tskIDLE_PRIORITY + 1UL )
#define mainBLOCK_Q_PRIORITY ( tskIDLE_PRIORITY + 2UL )
#define mainCREATOR_TASK_PRIORITY ( tskIDLE_PRIORITY + 3UL )
#define mainFLOP_TASK_PRIORITY ( tskIDLE_PRIORITY )
/* The LED used by the check timer. */
#define mainCHECK_LED ( 3UL )
#define mainCHECK_LED ( 3UL )
/* A block time of zero simply means "don't block". */
#define mainDONT_BLOCK ( 0UL )
#define mainDONT_BLOCK ( 0UL )
/* The period after which the check timer will expire, in ms, provided no errors
have been reported by any of the standard demo tasks. ms are converted to the
equivalent in ticks using the portTICK_PERIOD_MS constant. */
#define mainCHECK_TIMER_PERIOD_MS ( 3000UL / portTICK_PERIOD_MS )
* have been reported by any of the standard demo tasks. ms are converted to the
* equivalent in ticks using the portTICK_PERIOD_MS constant. */
#define mainCHECK_TIMER_PERIOD_MS ( 3000UL / portTICK_PERIOD_MS )
/* The period at which the check timer will expire, in ms, if an error has been
reported in one of the standard demo tasks. ms are converted to the equivalent
in ticks using the portTICK_PERIOD_MS constant. */
#define mainERROR_CHECK_TIMER_PERIOD_MS ( 200UL / portTICK_PERIOD_MS )
* reported in one of the standard demo tasks. ms are converted to the equivalent
* in ticks using the portTICK_PERIOD_MS constant. */
#define mainERROR_CHECK_TIMER_PERIOD_MS ( 200UL / portTICK_PERIOD_MS )
/* Set mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY to 1 to create a simple demo.
Set mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY to 0 to create a much more
comprehensive test application. See the comments at the top of this file, and
the documentation page on the http://www.FreeRTOS.org web site for more
information. */
#define mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY 0
* Set mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY to 0 to create a much more
* comprehensive test application. See the comments at the top of this file, and
* the documentation page on the http://www.FreeRTOS.org web site for more
* information. */
#define mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY 0
/*-----------------------------------------------------------*/
@ -182,8 +182,8 @@ static void prvSetupNestedFPUInterruptsTest( void );
* of the FPU registers, as described at the top of this file. The nature of
* these files necessitates that they are written in an assembly file.
*/
extern void vRegTest1Task( void *pvParameters );
extern void vRegTest2Task( void *pvParameters );
extern void vRegTest1Task( void * pvParameters );
extern void vRegTest2Task( void * pvParameters );
extern void vRegTestClearFlopRegistersToParameterValue( unsigned long ulValue );
extern unsigned long ulRegTestCheckFlopRegistersContainParameterValue( unsigned long ulValue );
@ -192,7 +192,7 @@ extern unsigned long ulRegTestCheckFlopRegistersContainParameterValue( unsigned
* to demonstrate how to write interrupt service routines, and how to
* synchronise a task with an interrupt.
*/
static void prvButtonTestTask( void *pvParameters );
static void prvButtonTestTask( void * pvParameters );
/*
* This file can be used to create either a simple LED flasher example, or a
@ -208,422 +208,433 @@ static void prvOptionallyCreateComprehensveTestApplication( void );
/*-----------------------------------------------------------*/
/* The following two variables are used to communicate the status of the
register check tasks to the check software timer. If the variables keep
incrementing, then the register check tasks have not discovered any errors. If
a variable stops incrementing, then an error has been found. */
* register check tasks to the check software timer. If the variables keep
* incrementing, then the register check tasks have not discovered any errors. If
* a variable stops incrementing, then an error has been found. */
volatile unsigned long ulRegTest1LoopCounter = 0UL, ulRegTest2LoopCounter = 0UL;
/* The following variables are used to verify that the interrupt nesting depth
is as intended. ulFPUInterruptNesting is incremented on entry to an interrupt
that uses the FPU, and decremented on exit of the same interrupt.
ulMaxFPUInterruptNesting latches the highest value reached by
ulFPUInterruptNesting. These variables have no other purpose. */
* is as intended. ulFPUInterruptNesting is incremented on entry to an interrupt
* that uses the FPU, and decremented on exit of the same interrupt.
* ulMaxFPUInterruptNesting latches the highest value reached by
* ulFPUInterruptNesting. These variables have no other purpose. */
volatile unsigned long ulFPUInterruptNesting = 0UL, ulMaxFPUInterruptNesting = 0UL;
/* The semaphore used to demonstrate a task being synchronised with an
interrupt. */
* interrupt. */
static SemaphoreHandle_t xTestSemaphore = NULL;
/* The variable that is incremented by the task synchronised with the button
interrupt. */
* interrupt. */
volatile unsigned long ulButtonPressCounts = 0UL;
/*-----------------------------------------------------------*/
int main(void)
int main( void )
{
/* Configure the hardware ready to run the test. */
prvSetupHardware();
/* Configure the hardware ready to run the test. */
prvSetupHardware();
/* Start standard demo/test application flash tasks. See the comments at
the top of this file. The LED flash tasks are always created. The other
tasks are only created if mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY is set to
0 (at the top of this file). See the comments at the top of this file for
more information. */
vStartLEDFlashTasks( mainFLASH_TASK_PRIORITY );
/* Start standard demo/test application flash tasks. See the comments at
* the top of this file. The LED flash tasks are always created. The other
* tasks are only created if mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY is set to
* 0 (at the top of this file). See the comments at the top of this file for
* more information. */
vStartLEDFlashTasks( mainFLASH_TASK_PRIORITY );
/* The following function will only create more tasks and timers if
mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY is set to 0 (at the top of this
file). See the comments at the top of this file for more information. */
prvOptionallyCreateComprehensveTestApplication();
/* The following function will only create more tasks and timers if
* mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY is set to 0 (at the top of this
* file). See the comments at the top of this file for more information. */
prvOptionallyCreateComprehensveTestApplication();
/* Start the scheduler. */
vTaskStartScheduler();
/* Start the scheduler. */
vTaskStartScheduler();
/* If all is well, the scheduler will now be running, and the following line
will never be reached. If the following line does execute, then there was
insufficient FreeRTOS heap memory available for the idle and/or timer tasks
to be created. See the memory management section on the FreeRTOS web site
for more details. */
for( ;; );
/* If all is well, the scheduler will now be running, and the following line
* will never be reached. If the following line does execute, then there was
* insufficient FreeRTOS heap memory available for the idle and/or timer tasks
* to be created. See the memory management section on the FreeRTOS web site
* for more details. */
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
static void prvCheckTimerCallback( TimerHandle_t xTimer )
{
static long lChangedTimerPeriodAlready = pdFALSE;
static unsigned long ulLastRegTest1Value = 0, ulLastRegTest2Value = 0;
long lErrorFound = pdFALSE;
static long lChangedTimerPeriodAlready = pdFALSE;
static unsigned long ulLastRegTest1Value = 0, ulLastRegTest2Value = 0;
long lErrorFound = pdFALSE;
/* Check all the demo tasks (other than the flash tasks) to ensure
that they are all still running, and that none have detected an error. */
/* Check all the demo tasks (other than the flash tasks) to ensure
* that they are all still running, and that none have detected an error. */
if( xAreMathsTaskStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreMathsTaskStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreIntegerMathsTaskStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreIntegerMathsTaskStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreDynamicPriorityTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreDynamicPriorityTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreBlockingQueuesStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreBlockingQueuesStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if ( xAreBlockTimeTestTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreBlockTimeTestTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if ( xAreGenericQueueTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreGenericQueueTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if ( xAreRecursiveMutexTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreRecursiveMutexTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xIsCreateTaskStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xIsCreateTaskStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xArePollingQueuesStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xArePollingQueuesStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreSemaphoreTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
if( xAreSemaphoreTasksStillRunning() != pdTRUE )
{
lErrorFound = pdTRUE;
}
/* Check that the register test 1 task is still running. */
if( ulLastRegTest1Value == ulRegTest1LoopCounter )
{
lErrorFound = pdTRUE;
}
ulLastRegTest1Value = ulRegTest1LoopCounter;
/* Check that the register test 1 task is still running. */
if( ulLastRegTest1Value == ulRegTest1LoopCounter )
{
lErrorFound = pdTRUE;
}
/* Check that the register test 2 task is still running. */
if( ulLastRegTest2Value == ulRegTest2LoopCounter )
{
lErrorFound = pdTRUE;
}
ulLastRegTest2Value = ulRegTest2LoopCounter;
ulLastRegTest1Value = ulRegTest1LoopCounter;
/* Toggle the check LED to give an indication of the system status. If
the LED toggles every mainCHECK_TIMER_PERIOD_MS milliseconds then
everything is ok. A faster toggle indicates an error. */
vParTestToggleLED( mainCHECK_LED );
/* Check that the register test 2 task is still running. */
if( ulLastRegTest2Value == ulRegTest2LoopCounter )
{
lErrorFound = pdTRUE;
}
/* Have any errors been latch in lErrorFound? If so, shorten the
period of the check timer to mainERROR_CHECK_TIMER_PERIOD_MS milliseconds.
This will result in an increase in the rate at which mainCHECK_LED
toggles. */
if( lErrorFound != pdFALSE )
{
if( lChangedTimerPeriodAlready == pdFALSE )
{
lChangedTimerPeriodAlready = pdTRUE;
ulLastRegTest2Value = ulRegTest2LoopCounter;
/* This call to xTimerChangePeriod() uses a zero block time.
Functions called from inside of a timer callback function must
*never* attempt to block. */
xTimerChangePeriod( xTimer, ( mainERROR_CHECK_TIMER_PERIOD_MS ), mainDONT_BLOCK );
}
}
/* Toggle the check LED to give an indication of the system status. If
* the LED toggles every mainCHECK_TIMER_PERIOD_MS milliseconds then
* everything is ok. A faster toggle indicates an error. */
vParTestToggleLED( mainCHECK_LED );
/* Have any errors been latch in lErrorFound? If so, shorten the
* period of the check timer to mainERROR_CHECK_TIMER_PERIOD_MS milliseconds.
* This will result in an increase in the rate at which mainCHECK_LED
* toggles. */
if( lErrorFound != pdFALSE )
{
if( lChangedTimerPeriodAlready == pdFALSE )
{
lChangedTimerPeriodAlready = pdTRUE;
/* This call to xTimerChangePeriod() uses a zero block time.
* Functions called from inside of a timer callback function must
* never* attempt to block. */
xTimerChangePeriod( xTimer, ( mainERROR_CHECK_TIMER_PERIOD_MS ), mainDONT_BLOCK );
}
}
}
/*-----------------------------------------------------------*/
static void prvButtonTestTask( void *pvParameters )
static void prvButtonTestTask( void * pvParameters )
{
configASSERT( xTestSemaphore );
configASSERT( xTestSemaphore );
/* This is the task used as an example of how to synchronise a task with
an interrupt. Each time the button interrupt gives the semaphore, this task
will unblock, increment its execution counter, then return to block
again. */
/* This is the task used as an example of how to synchronise a task with
* an interrupt. Each time the button interrupt gives the semaphore, this task
* will unblock, increment its execution counter, then return to block
* again. */
/* Take the semaphore before started to ensure it is in the correct
state. */
xSemaphoreTake( xTestSemaphore, mainDONT_BLOCK );
/* Take the semaphore before started to ensure it is in the correct
* state. */
xSemaphoreTake( xTestSemaphore, mainDONT_BLOCK );
for( ;; )
{
xSemaphoreTake( xTestSemaphore, portMAX_DELAY );
ulButtonPressCounts++;
}
for( ; ; )
{
xSemaphoreTake( xTestSemaphore, portMAX_DELAY );
ulButtonPressCounts++;
}
}
/*-----------------------------------------------------------*/
static void prvSetupHardware( void )
{
/* Setup STM32 system (clock, PLL and Flash configuration) */
SystemInit();
/* Setup STM32 system (clock, PLL and Flash configuration) */
SystemInit();
/* Ensure all priority bits are assigned as preemption priority bits. */
NVIC_PriorityGroupConfig( NVIC_PriorityGroup_4 );
/* Ensure all priority bits are assigned as preemption priority bits. */
NVIC_PriorityGroupConfig( NVIC_PriorityGroup_4 );
/* Setup the LED outputs. */
vParTestInitialise();
/* Setup the LED outputs. */
vParTestInitialise();
/* Configure the button input. This configures the interrupt to use the
lowest interrupt priority, so it is ok to use the ISR safe FreeRTOS API
from the button interrupt handler. */
STM_EVAL_PBInit( BUTTON_USER, BUTTON_MODE_EXTI );
/* Configure the button input. This configures the interrupt to use the
* lowest interrupt priority, so it is ok to use the ISR safe FreeRTOS API
* from the button interrupt handler. */
STM_EVAL_PBInit( BUTTON_USER, BUTTON_MODE_EXTI );
}
/*-----------------------------------------------------------*/
void vApplicationTickHook( void )
{
#if ( mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY == 0 )
{
/* Just to verify that the interrupt nesting behaves as expected,
increment ulFPUInterruptNesting on entry, and decrement it on exit. */
ulFPUInterruptNesting++;
#if ( mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY == 0 )
{
/* Just to verify that the interrupt nesting behaves as expected,
* increment ulFPUInterruptNesting on entry, and decrement it on exit. */
ulFPUInterruptNesting++;
/* Fill the FPU registers with 0. */
vRegTestClearFlopRegistersToParameterValue( 0UL );
/* Fill the FPU registers with 0. */
vRegTestClearFlopRegistersToParameterValue( 0UL );
/* Trigger a timer 2 interrupt, which will fill the registers with a
different value and itself trigger a timer 3 interrupt. Note that the
timers are not actually used. The timer 2 and 3 interrupt vectors are
just used for convenience. */
NVIC_SetPendingIRQ( TIM2_IRQn );
/* Trigger a timer 2 interrupt, which will fill the registers with a
* different value and itself trigger a timer 3 interrupt. Note that the
* timers are not actually used. The timer 2 and 3 interrupt vectors are
* just used for convenience. */
NVIC_SetPendingIRQ( TIM2_IRQn );
/* Ensure that, after returning from the nested interrupts, all the FPU
registers contain the value to which they were set by the tick hook
function. */
configASSERT( ulRegTestCheckFlopRegistersContainParameterValue( 0UL ) );
/* Ensure that, after returning from the nested interrupts, all the FPU
* registers contain the value to which they were set by the tick hook
* function. */
configASSERT( ulRegTestCheckFlopRegistersContainParameterValue( 0UL ) );
ulFPUInterruptNesting--;
}
#endif
ulFPUInterruptNesting--;
}
#endif /* if ( mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY == 0 ) */
}
/*-----------------------------------------------------------*/
static void prvSetupNestedFPUInterruptsTest( void )
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
/* Enable the TIM2 interrupt in the NVIC. The timer itself is not used,
just its interrupt vector to force nesting from software. TIM2 must have
a lower priority than TIM3, and both must have priorities above
configMAX_SYSCALL_INTERRUPT_PRIORITY. */
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY - 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init( &NVIC_InitStructure );
/* Enable the TIM2 interrupt in the NVIC. The timer itself is not used,
* just its interrupt vector to force nesting from software. TIM2 must have
* a lower priority than TIM3, and both must have priorities above
* configMAX_SYSCALL_INTERRUPT_PRIORITY. */
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY - 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init( &NVIC_InitStructure );
/* Enable the TIM3 interrupt in the NVIC. The timer itself is not used,
just its interrupt vector to force nesting from software. TIM2 must have
a lower priority than TIM3, and both must have priorities above
configMAX_SYSCALL_INTERRUPT_PRIORITY. */
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY - 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init( &NVIC_InitStructure );
/* Enable the TIM3 interrupt in the NVIC. The timer itself is not used,
* just its interrupt vector to force nesting from software. TIM2 must have
* a lower priority than TIM3, and both must have priorities above
* configMAX_SYSCALL_INTERRUPT_PRIORITY. */
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY - 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init( &NVIC_InitStructure );
}
/*-----------------------------------------------------------*/
void TIM3_IRQHandler( void )
{
/* Just to verify that the interrupt nesting behaves as expected, increment
ulFPUInterruptNesting on entry, and decrement it on exit. */
ulFPUInterruptNesting++;
/* Just to verify that the interrupt nesting behaves as expected, increment
* ulFPUInterruptNesting on entry, and decrement it on exit. */
ulFPUInterruptNesting++;
/* This is the highest priority interrupt in the chain of forced nesting
interrupts, so latch the maximum value reached by ulFPUInterruptNesting.
This is done purely to allow verification that the nesting depth reaches
that intended. */
if( ulFPUInterruptNesting > ulMaxFPUInterruptNesting )
{
ulMaxFPUInterruptNesting = ulFPUInterruptNesting;
}
/* This is the highest priority interrupt in the chain of forced nesting
* interrupts, so latch the maximum value reached by ulFPUInterruptNesting.
* This is done purely to allow verification that the nesting depth reaches
* that intended. */
if( ulFPUInterruptNesting > ulMaxFPUInterruptNesting )
{
ulMaxFPUInterruptNesting = ulFPUInterruptNesting;
}
/* Fill the FPU registers with 99 to overwrite the values written by
TIM2_IRQHandler(). */
vRegTestClearFlopRegistersToParameterValue( 99UL );
/* Fill the FPU registers with 99 to overwrite the values written by
* TIM2_IRQHandler(). */
vRegTestClearFlopRegistersToParameterValue( 99UL );
ulFPUInterruptNesting--;
ulFPUInterruptNesting--;
}
/*-----------------------------------------------------------*/
void TIM2_IRQHandler( void )
{
/* Just to verify that the interrupt nesting behaves as expected, increment
ulFPUInterruptNesting on entry, and decrement it on exit. */
ulFPUInterruptNesting++;
/* Just to verify that the interrupt nesting behaves as expected, increment
* ulFPUInterruptNesting on entry, and decrement it on exit. */
ulFPUInterruptNesting++;
/* Fill the FPU registers with 1. */
vRegTestClearFlopRegistersToParameterValue( 1UL );
/* Fill the FPU registers with 1. */
vRegTestClearFlopRegistersToParameterValue( 1UL );
/* Trigger a timer 3 interrupt, which will fill the registers with a
different value. */
NVIC_SetPendingIRQ( TIM3_IRQn );
/* Trigger a timer 3 interrupt, which will fill the registers with a
* different value. */
NVIC_SetPendingIRQ( TIM3_IRQn );
/* Ensure that, after returning from the nesting interrupt, all the FPU
registers contain the value to which they were set by this interrupt
function. */
configASSERT( ulRegTestCheckFlopRegistersContainParameterValue( 1UL ) );
/* Ensure that, after returning from the nesting interrupt, all the FPU
* registers contain the value to which they were set by this interrupt
* function. */
configASSERT( ulRegTestCheckFlopRegistersContainParameterValue( 1UL ) );
ulFPUInterruptNesting--;
ulFPUInterruptNesting--;
}
/*-----------------------------------------------------------*/
static void prvOptionallyCreateComprehensveTestApplication( void )
{
#if ( mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY == 0 )
{
TimerHandle_t xCheckTimer = NULL;
#if ( mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY == 0 )
{
TimerHandle_t xCheckTimer = NULL;
/* Configure the interrupts used to test FPU registers being used from
nested interrupts. */
prvSetupNestedFPUInterruptsTest();
/* Configure the interrupts used to test FPU registers being used from
* nested interrupts. */
prvSetupNestedFPUInterruptsTest();
/* Start all the other standard demo/test tasks. */
vStartIntegerMathTasks( tskIDLE_PRIORITY );
vStartDynamicPriorityTasks();
vStartBlockingQueueTasks( mainBLOCK_Q_PRIORITY );
vCreateBlockTimeTasks();
vStartCountingSemaphoreTasks();
vStartGenericQueueTasks( tskIDLE_PRIORITY );
vStartRecursiveMutexTasks();
vStartPolledQueueTasks( mainQUEUE_POLL_PRIORITY );
vStartSemaphoreTasks( mainSEM_TEST_PRIORITY );
/* Start all the other standard demo/test tasks. */
vStartIntegerMathTasks( tskIDLE_PRIORITY );
vStartDynamicPriorityTasks();
vStartBlockingQueueTasks( mainBLOCK_Q_PRIORITY );
vCreateBlockTimeTasks();
vStartCountingSemaphoreTasks();
vStartGenericQueueTasks( tskIDLE_PRIORITY );
vStartRecursiveMutexTasks();
vStartPolledQueueTasks( mainQUEUE_POLL_PRIORITY );
vStartSemaphoreTasks( mainSEM_TEST_PRIORITY );
/* Most importantly, start the tasks that use the FPU. */
vStartMathTasks( mainFLOP_TASK_PRIORITY );
/* Most importantly, start the tasks that use the FPU. */
vStartMathTasks( mainFLOP_TASK_PRIORITY );
/* Create the register check tasks, as described at the top of this
file */
xTaskCreate( vRegTest1Task, "Reg1", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vRegTest2Task, "Reg2", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
/* Create the register check tasks, as described at the top of this
* file */
xTaskCreate( vRegTest1Task, "Reg1", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vRegTest2Task, "Reg2", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
/* Create the semaphore that is used to demonstrate a task being
synchronised with an interrupt. */
vSemaphoreCreateBinary( xTestSemaphore );
/* Create the semaphore that is used to demonstrate a task being
* synchronised with an interrupt. */
vSemaphoreCreateBinary( xTestSemaphore );
/* Create the task that is unblocked by the demonstration interrupt. */
xTaskCreate( prvButtonTestTask, "BtnTest", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
/* Create the task that is unblocked by the demonstration interrupt. */
xTaskCreate( prvButtonTestTask, "BtnTest", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
/* Create the software timer that performs the 'check' functionality,
as described at the top of this file. */
xCheckTimer = xTimerCreate( "CheckTimer", /* A text name, purely to help debugging. */
( mainCHECK_TIMER_PERIOD_MS ), /* The timer period, in this case 3000ms (3s). */
pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
( void * ) 0, /* The ID is not used, so can be set to anything. */
prvCheckTimerCallback /* The callback function that inspects the status of all the other tasks. */
);
/* Create the software timer that performs the 'check' functionality,
* as described at the top of this file. */
xCheckTimer = xTimerCreate( "CheckTimer", /* A text name, purely to help debugging. */
( mainCHECK_TIMER_PERIOD_MS ), /* The timer period, in this case 3000ms (3s). */
pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
( void * ) 0, /* The ID is not used, so can be set to anything. */
prvCheckTimerCallback /* The callback function that inspects the status of all the other tasks. */
);
if( xCheckTimer != NULL )
{
xTimerStart( xCheckTimer, mainDONT_BLOCK );
}
if( xCheckTimer != NULL )
{
xTimerStart( xCheckTimer, mainDONT_BLOCK );
}
/* This task has to be created last as it keeps account of the number of
tasks it expects to see running. */
vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );
}
#else /* mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY */
{
/* Just to prevent compiler warnings when the configuration options are
set such that these static functions are not used. */
( void ) vRegTest1Task;
( void ) vRegTest2Task;
( void ) prvCheckTimerCallback;
( void ) prvSetupNestedFPUInterruptsTest;
}
#endif /* mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY */
/* This task has to be created last as it keeps account of the number of
* tasks it expects to see running. */
vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );
}
#else /* mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY */
{
/* Just to prevent compiler warnings when the configuration options are
* set such that these static functions are not used. */
( void ) vRegTest1Task;
( void ) vRegTest2Task;
( void ) prvCheckTimerCallback;
( void ) prvSetupNestedFPUInterruptsTest;
}
#endif /* mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY */
}
/*-----------------------------------------------------------*/
void EXTI9_5_IRQHandler(void)
void EXTI9_5_IRQHandler( void )
{
long lHigherPriorityTaskWoken = pdFALSE;
long lHigherPriorityTaskWoken = pdFALSE;
/* Only line 6 is enabled, so there is no need to test which line generated
the interrupt. */
EXTI_ClearITPendingBit( EXTI_Line6 );
/* Only line 6 is enabled, so there is no need to test which line generated
* the interrupt. */
EXTI_ClearITPendingBit( EXTI_Line6 );
/* This interrupt does nothing more than demonstrate how to synchronise a
task with an interrupt. First the handler releases a semaphore.
lHigherPriorityTaskWoken has been initialised to zero. */
xSemaphoreGiveFromISR( xTestSemaphore, &lHigherPriorityTaskWoken );
/* This interrupt does nothing more than demonstrate how to synchronise a
* task with an interrupt. First the handler releases a semaphore.
* lHigherPriorityTaskWoken has been initialised to zero. */
xSemaphoreGiveFromISR( xTestSemaphore, &lHigherPriorityTaskWoken );
/* If there was a task that was blocked on the semaphore, and giving the
semaphore caused the task to unblock, and the unblocked task has a priority
higher than the currently executing task (the task that this interrupt
interrupted), then lHigherPriorityTaskWoken will have been set to pdTRUE.
Passing pdTRUE into the following macro call will cause this interrupt to
return directly to the unblocked, higher priority, task. */
portEND_SWITCHING_ISR( lHigherPriorityTaskWoken );
/* If there was a task that was blocked on the semaphore, and giving the
* semaphore caused the task to unblock, and the unblocked task has a priority
* higher than the currently executing task (the task that this interrupt
* interrupted), then lHigherPriorityTaskWoken will have been set to pdTRUE.
* Passing pdTRUE into the following macro call will cause this interrupt to
* return directly to the unblocked, higher priority, task. */
portEND_SWITCHING_ISR( lHigherPriorityTaskWoken );
}
/*-----------------------------------------------------------*/
void vApplicationMallocFailedHook( void )
{
/* vApplicationMallocFailedHook() will only be called if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
function that will get called if a call to pvPortMalloc() fails.
pvPortMalloc() is called internally by the kernel whenever a task, queue,
timer or semaphore is created. It is also called by various parts of the
demo application. If heap_1.c or heap_2.c are used, then the size of the
heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
to query the size of free heap space that remains (although it does not
provide information on how the remaining heap might be fragmented). */
taskDISABLE_INTERRUPTS();
for( ;; );
/* vApplicationMallocFailedHook() will only be called if
* configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
* function that will get called if a call to pvPortMalloc() fails.
* pvPortMalloc() is called internally by the kernel whenever a task, queue,
* timer or semaphore is created. It is also called by various parts of the
* demo application. If heap_1.c or heap_2.c are used, then the size of the
* heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
* FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
* to query the size of free heap space that remains (although it does not
* provide information on how the remaining heap might be fragmented). */
taskDISABLE_INTERRUPTS();
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
void vApplicationIdleHook( void )
{
/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
to 1 in FreeRTOSConfig.h. It will be called on each iteration of the idle
task. It is essential that code added to this hook function never attempts
to block in any way (for example, call xQueueReceive() with a block time
specified, or call vTaskDelay()). If the application makes use of the
vTaskDelete() API function (as this demo application does) then it is also
important that vApplicationIdleHook() is permitted to return to its calling
function, because it is the responsibility of the idle task to clean up
memory allocated by the kernel to any task that has since been deleted. */
/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
* to 1 in FreeRTOSConfig.h. It will be called on each iteration of the idle
* task. It is essential that code added to this hook function never attempts
* to block in any way (for example, call xQueueReceive() with a block time
* specified, or call vTaskDelay()). If the application makes use of the
* vTaskDelete() API function (as this demo application does) then it is also
* important that vApplicationIdleHook() is permitted to return to its calling
* function, because it is the responsibility of the idle task to clean up
* memory allocated by the kernel to any task that has since been deleted. */
}
/*-----------------------------------------------------------*/
void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName )
void vApplicationStackOverflowHook( TaskHandle_t pxTask,
char * pcTaskName )
{
( void ) pcTaskName;
( void ) pxTask;
( void ) pcTaskName;
( void ) pxTask;
/* Run time stack overflow checking is performed if
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
function is called if a stack overflow is detected. */
taskDISABLE_INTERRUPTS();
for( ;; );
/* Run time stack overflow checking is performed if
* configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
* function is called if a stack overflow is detected. */
taskDISABLE_INTERRUPTS();
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/