Removed unneeded validation code.

This commit is contained in:
Tobias Reinhard 2022-12-20 12:26:33 -05:00
parent 677ffa8cea
commit 0e90603fb5

View file

@ -10,65 +10,20 @@
// TODO: Can we prove this in VeriFast or do we have to axiomatise? // TODO: Can we prove this in VeriFast or do we have to axiomatise?
/*@ /*@
lemma void head_drop_n_equals_nths<t>(list<t> xs, int n) lemma void head_drop_n_equals_nths<t>(list<t> xs, int n);
requires n >= 0; requires n >= 0;
ensures head(drop(n, xs)) == nth(n, xs); ensures head(drop(n, xs)) == nth(n, xs);
{
// Will prove later. For now, we only validate with an example.
list<int> _xs = cons(1, cons(2, cons(3, cons(4, cons(5, cons(6, cons(7, nil)))))));
int _n = 4;
list<int> dn = drop(_n, _xs);
int hdn = head(dn);
int nthn = nth(_n, _xs);
assert( hdn == head(drop(_n, _xs)) );
assert( nthn == nth(_n, _xs ));
assert( head(drop(_n, _xs)) == nth(_n, _xs) );
// ADMIT LEMMA, PROVE LATER
assume(false);
}
// TODO: Can we prove this in VeriFast or do we have to axiomatise? // TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void drop_index_equals_singleton_implies_last_element<t>(list<t> xs, t x) lemma void drop_index_equals_singleton_implies_last_element<t>(list<t> xs, t x);
requires drop(index_of(x, xs), xs) == cons(x, nil); requires drop(index_of(x, xs), xs) == cons(x, nil);
ensures index_of(x, xs) == length(xs) - 1; ensures index_of(x, xs) == length(xs) - 1;
{
// Will prove later. For now, we only validate with an example.
list<int> _xs = cons(1, cons(2, cons(3, cons(4, cons(5, cons(6, cons(7, nil)))))));
int _x = 7;
int i = index_of(_x, _xs);
list<int> d = drop(index_of(x, xs), _xs);
assert( index_of(_x, _xs) == length(_xs) - 1 );
// ADMIT LEMMA, PROVE LATER
assume(false);
}
// TODO: Can we prove this in VeriFast or do we have to axiomatise? // TODO: Can we prove this in VeriFast or do we have to axiomatise?
// Can we replace this by standard lemma `drop_n_plus_one`? // Can we replace this by standard lemma `drop_n_plus_one`?
lemma void drop_cons<t>(list<t> xs, int n) lemma void drop_cons<t>(list<t> xs, int n);
requires n < length(xs); requires n < length(xs);
ensures drop(n, xs) == cons(nth(n, xs), drop(n+1, xs)); ensures drop(n, xs) == cons(nth(n, xs), drop(n+1, xs));
{
// Will prove later. For now, we only validate with an example.
list<int> _xs = cons(1, cons(2, cons(3, cons(4, cons(5, cons(6, cons(7, nil)))))));
int _n = 3;
list<int> dn = drop(_n, _xs);
int nthn = nth(_n, _xs);
list<int> dnp1 = drop(_n + 1, _xs);
assert( drop(_n, _xs) == cons(nth(_n, _xs), drop(_n+1, _xs)) );
// ADMIT LEMMA, PROVE LATER
assume(false);
}
// TODO: Can we prove this in VeriFast or do we have to axiomatise? // TODO: Can we prove this in VeriFast or do we have to axiomatise?
lemma void nth_index<t>(list<t> xs, t x) lemma void nth_index<t>(list<t> xs, t x)