forked from len0rd/rockbox
		
	git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21781 a1c6a512-1295-4272-9138-f99709370657
		
			
				
	
	
		
			1496 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1496 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /***************************************************************************
 | |
|  *             __________               __   ___.
 | |
|  *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 | |
|  *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 | |
|  *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 | |
|  *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 | |
|  *                     \/            \/     \/    \/            \/
 | |
|  * $Id$
 | |
|  *
 | |
|  * Copyright (C) 2005 Miika Pekkarinen
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 | |
|  * KIND, either express or implied.
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| #include "config.h"
 | |
| #include <stdbool.h>
 | |
| #include <inttypes.h>
 | |
| #include <string.h>
 | |
| #include <sound.h>
 | |
| #include "dsp.h"
 | |
| #include "eq.h"
 | |
| #include "kernel.h"
 | |
| #include "playback.h"
 | |
| #include "system.h"
 | |
| #include "settings.h"
 | |
| #include "replaygain.h"
 | |
| #include "misc.h"
 | |
| #include "tdspeed.h"
 | |
| #include "buffer.h"
 | |
| #include "fixedpoint.h"
 | |
| #include "fracmul.h"
 | |
| 
 | |
| /* 16-bit samples are scaled based on these constants. The shift should be
 | |
|  * no more than 15.
 | |
|  */
 | |
| #define WORD_SHIFT              12
 | |
| #define WORD_FRACBITS           27
 | |
| 
 | |
| #define NATIVE_DEPTH            16
 | |
| /* If the small buffer size changes, check the assembly code! */
 | |
| #define SMALL_SAMPLE_BUF_COUNT  256
 | |
| #define DEFAULT_GAIN            0x01000000
 | |
| 
 | |
| /* enums to index conversion properly with stereo mode and other settings */
 | |
| enum
 | |
| {
 | |
|     SAMPLE_INPUT_LE_NATIVE_I_STEREO  = STEREO_INTERLEAVED,
 | |
|     SAMPLE_INPUT_LE_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED,
 | |
|     SAMPLE_INPUT_LE_NATIVE_MONO      = STEREO_MONO,
 | |
|     SAMPLE_INPUT_GT_NATIVE_I_STEREO  = STEREO_INTERLEAVED + STEREO_NUM_MODES,
 | |
|     SAMPLE_INPUT_GT_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED + STEREO_NUM_MODES,
 | |
|     SAMPLE_INPUT_GT_NATIVE_MONO      = STEREO_MONO + STEREO_NUM_MODES,
 | |
|     SAMPLE_INPUT_GT_NATIVE_1ST_INDEX = STEREO_NUM_MODES
 | |
| };
 | |
| 
 | |
| enum
 | |
| {
 | |
|     SAMPLE_OUTPUT_MONO = 0,
 | |
|     SAMPLE_OUTPUT_STEREO,
 | |
|     SAMPLE_OUTPUT_DITHERED_MONO,
 | |
|     SAMPLE_OUTPUT_DITHERED_STEREO
 | |
| };
 | |
| 
 | |
| /****************************************************************************
 | |
|  * NOTE: Any assembly routines that use these structures must be updated
 | |
|  * if current data members are moved or changed.
 | |
|  */
 | |
| struct resample_data
 | |
| {
 | |
|     uint32_t delta;                     /* 00h */
 | |
|     uint32_t phase;                     /* 04h */
 | |
|     int32_t last_sample[2];             /* 08h */
 | |
|                                         /* 10h */
 | |
| };
 | |
| 
 | |
| /* This is for passing needed data to assembly dsp routines. If another
 | |
|  * dsp parameter needs to be passed, add to the end of the structure
 | |
|  * and remove from dsp_config.
 | |
|  * If another function type becomes assembly optimized and requires dsp
 | |
|  * config info, add a pointer paramter of type "struct dsp_data *".
 | |
|  * If removing something from other than the end, reserve the spot or
 | |
|  * else update every implementation for every target.
 | |
|  * Be sure to add the offset of the new member for easy viewing as well. :)
 | |
|  * It is the first member of dsp_config and all members can be accessesed
 | |
|  * through the main aggregate but this is intended to make a safe haven
 | |
|  * for these items whereas the c part can be rearranged at will. dsp_data
 | |
|  * could even moved within dsp_config without disurbing the order.
 | |
|  */
 | |
| struct dsp_data
 | |
| {
 | |
|     int output_scale;                   /* 00h */
 | |
|     int num_channels;                   /* 04h */
 | |
|     struct resample_data resample_data; /* 08h */
 | |
|     int32_t clip_min;                   /* 18h */
 | |
|     int32_t clip_max;                   /* 1ch */
 | |
|     int32_t gain;                       /* 20h - Note that this is in S8.23 format. */
 | |
|                                         /* 24h */
 | |
| };
 | |
| 
 | |
| /* No asm...yet */
 | |
| struct dither_data
 | |
| {
 | |
|     long error[3];  /* 00h */
 | |
|     long random;    /* 0ch */
 | |
|                     /* 10h */
 | |
| };
 | |
| 
 | |
| struct crossfeed_data
 | |
| {
 | |
|     int32_t gain;           /* 00h - Direct path gain */
 | |
|     int32_t coefs[3];       /* 04h - Coefficients for the shelving filter */
 | |
|     int32_t history[4];     /* 10h - Format is x[n - 1], y[n - 1] for both channels */
 | |
|     int32_t delay[13][2];   /* 20h */
 | |
|     int32_t *index;         /* 88h - Current pointer into the delay line */
 | |
|                             /* 8ch */
 | |
| };
 | |
| 
 | |
| /* Current setup is one lowshelf filters three peaking filters and one
 | |
|  *  highshelf filter. Varying the number of shelving filters make no sense,
 | |
|  *  but adding peaking filters is possible.
 | |
|  */
 | |
| struct eq_state
 | |
| {
 | |
|     char enabled[5];            /* 00h - Flags for active filters */
 | |
|     struct eqfilter filters[5]; /* 08h - packing is 4? */
 | |
|                                 /* 10ch */
 | |
| };
 | |
| 
 | |
| /* Include header with defines which functions are implemented in assembly
 | |
|    code for the target */
 | |
| #include <dsp_asm.h>
 | |
| 
 | |
| /* Typedefs keep things much neater in this case */
 | |
| typedef void (*sample_input_fn_type)(int count, const char *src[],
 | |
|                                      int32_t *dst[]);
 | |
| typedef int (*resample_fn_type)(int count, struct dsp_data *data,
 | |
|                                 const int32_t *src[], int32_t *dst[]);
 | |
| typedef void (*sample_output_fn_type)(int count, struct dsp_data *data,
 | |
|                                       const int32_t *src[], int16_t *dst);
 | |
| 
 | |
| /* Single-DSP channel processing in place */
 | |
| typedef void (*channels_process_fn_type)(int count, int32_t *buf[]);
 | |
| /* DSP local channel processing in place */
 | |
| typedef void (*channels_process_dsp_fn_type)(int count, struct dsp_data *data,
 | |
|                                              int32_t *buf[]);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  ***************************************************************************/
 | |
| 
 | |
| struct dsp_config
 | |
| {
 | |
|     struct dsp_data data; /* Config members for use in asm routines */
 | |
|     long codec_frequency; /* Sample rate of data coming from the codec */
 | |
|     long frequency;       /* Effective sample rate after pitch shift (if any) */
 | |
|     int  sample_depth;
 | |
|     int  sample_bytes;
 | |
|     int  stereo_mode;
 | |
|     int32_t  tdspeed_percent; /* Speed% * PITCH_SPEED_PRECISION */
 | |
|     bool tdspeed_active;  /* Timestretch is in use */
 | |
|     int  frac_bits;
 | |
| #ifdef HAVE_SW_TONE_CONTROLS
 | |
|     /* Filter struct for software bass/treble controls */
 | |
|     struct eqfilter tone_filter;
 | |
| #endif
 | |
|     /* Functions that change depending upon settings - NULL if stage is
 | |
|        disabled */
 | |
|     sample_input_fn_type         input_samples;
 | |
|     resample_fn_type             resample;
 | |
|     sample_output_fn_type        output_samples;
 | |
|     /* These will be NULL for the voice codec and is more economical that
 | |
|        way */
 | |
|     channels_process_dsp_fn_type apply_gain;
 | |
|     channels_process_fn_type     apply_crossfeed;
 | |
|     channels_process_fn_type     eq_process;
 | |
|     channels_process_fn_type     channels_process;
 | |
| };
 | |
| 
 | |
| /* General DSP config */
 | |
| static struct dsp_config dsp_conf[2] IBSS_ATTR;     /* 0=A, 1=V */
 | |
| /* Dithering */
 | |
| static struct dither_data dither_data[2] IBSS_ATTR; /* 0=left, 1=right */
 | |
| static long   dither_mask IBSS_ATTR;
 | |
| static long   dither_bias IBSS_ATTR;
 | |
| /* Crossfeed */
 | |
| struct crossfeed_data crossfeed_data IDATA_ATTR =    /* A */
 | |
| {
 | |
|     .index = (int32_t *)crossfeed_data.delay
 | |
| };
 | |
| 
 | |
| /* Equalizer */
 | |
| static struct eq_state eq_data;                     /* A */
 | |
| 
 | |
| /* Software tone controls */
 | |
| #ifdef HAVE_SW_TONE_CONTROLS
 | |
| static int prescale;                                /* A/V */
 | |
| static int bass;                                    /* A/V */
 | |
| static int treble;                                  /* A/V */
 | |
| #endif
 | |
| 
 | |
| /* Settings applicable to audio codec only */
 | |
| static int32_t  pitch_ratio = PITCH_SPEED_100;
 | |
| static int  channels_mode;
 | |
|        long dsp_sw_gain;
 | |
|        long dsp_sw_cross;
 | |
| static bool dither_enabled;
 | |
| static long eq_precut;
 | |
| static long track_gain;
 | |
| static bool new_gain;
 | |
| static long album_gain;
 | |
| static long track_peak;
 | |
| static long album_peak;
 | |
| static long replaygain;
 | |
| static bool crossfeed_enabled;
 | |
| 
 | |
| #define AUDIO_DSP (dsp_conf[CODEC_IDX_AUDIO])
 | |
| #define VOICE_DSP (dsp_conf[CODEC_IDX_VOICE])
 | |
| 
 | |
| /* The internal format is 32-bit samples, non-interleaved, stereo. This
 | |
|  * format is similar to the raw output from several codecs, so the amount
 | |
|  * of copying needed is minimized for that case.
 | |
|  */
 | |
| 
 | |
| #define RESAMPLE_RATIO          4 /* Enough for 11,025 Hz -> 44,100 Hz */
 | |
| 
 | |
| static int32_t small_sample_buf[SMALL_SAMPLE_BUF_COUNT] IBSS_ATTR;
 | |
| static int32_t small_resample_buf[SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO] IBSS_ATTR;
 | |
| 
 | |
| static int32_t *big_sample_buf = NULL;
 | |
| static int32_t *big_resample_buf = NULL;
 | |
| static int big_sample_buf_count = -1;  /* -1=unknown, 0=not available */
 | |
| 
 | |
| static int sample_buf_count;
 | |
| static int32_t *sample_buf;
 | |
| static int32_t *resample_buf;
 | |
| 
 | |
| #define SAMPLE_BUF_LEFT_CHANNEL 0
 | |
| #define SAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2)
 | |
| #define RESAMPLE_BUF_LEFT_CHANNEL 0
 | |
| #define RESAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2 * RESAMPLE_RATIO)
 | |
| 
 | |
| 
 | |
| /* Clip sample to signed 16 bit range */
 | |
| static inline int32_t clip_sample_16(int32_t sample)
 | |
| {
 | |
|     if ((int16_t)sample != sample)
 | |
|         sample = 0x7fff ^ (sample >> 31);
 | |
|     return sample;
 | |
| }
 | |
| 
 | |
| int32_t sound_get_pitch(void)
 | |
| {
 | |
|     return pitch_ratio;
 | |
| }
 | |
| 
 | |
| void sound_set_pitch(int32_t percent)
 | |
| {
 | |
|     pitch_ratio = percent;
 | |
|     dsp_configure(&AUDIO_DSP, DSP_SWITCH_FREQUENCY,
 | |
|                   AUDIO_DSP.codec_frequency);
 | |
| }
 | |
| 
 | |
| static void tdspeed_setup(struct dsp_config *dspc)
 | |
| {
 | |
|     /* Assume timestretch will not be used */
 | |
|     dspc->tdspeed_active = false;
 | |
|     sample_buf = small_sample_buf;
 | |
|     resample_buf = small_resample_buf;
 | |
|     sample_buf_count = SMALL_SAMPLE_BUF_COUNT;
 | |
| 
 | |
|     if(!dsp_timestretch_available())
 | |
|         return; /* Timestretch not enabled or buffer not allocated */
 | |
|     if (dspc->tdspeed_percent == 0)
 | |
|         dspc->tdspeed_percent = PITCH_SPEED_100;
 | |
|     if (!tdspeed_config(
 | |
|         dspc->codec_frequency == 0 ? NATIVE_FREQUENCY : dspc->codec_frequency,
 | |
|         dspc->stereo_mode != STEREO_MONO,
 | |
|         dspc->tdspeed_percent))
 | |
|         return; /* Timestretch not possible or needed with these parameters */
 | |
| 
 | |
|     /* Timestretch is to be used */
 | |
|     dspc->tdspeed_active = true;
 | |
|     sample_buf = big_sample_buf;
 | |
|     sample_buf_count = big_sample_buf_count;
 | |
|     resample_buf = big_resample_buf;
 | |
| }
 | |
| 
 | |
| void dsp_timestretch_enable(bool enabled)
 | |
| {
 | |
|     /* Hook to set up timestretch buffer on first call to settings_apply() */
 | |
|     if (big_sample_buf_count < 0) /* Only do something on first call */
 | |
|     {
 | |
|         if (enabled)
 | |
|         {
 | |
|             /* Set up timestretch buffers */
 | |
|             big_sample_buf_count = SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO;
 | |
|             big_sample_buf = small_resample_buf;
 | |
|             big_resample_buf = (int32_t *) buffer_alloc(big_sample_buf_count * RESAMPLE_RATIO * sizeof(int32_t));
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             /* Not enabled at startup, "big" buffers will never be available */
 | |
|             big_sample_buf_count = 0;
 | |
|         }
 | |
|         tdspeed_setup(&AUDIO_DSP);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dsp_set_timestretch(int32_t percent)
 | |
| {
 | |
|     AUDIO_DSP.tdspeed_percent = percent;
 | |
|     tdspeed_setup(&AUDIO_DSP);
 | |
| }
 | |
| 
 | |
| int32_t dsp_get_timestretch()
 | |
| {
 | |
|     return AUDIO_DSP.tdspeed_percent;
 | |
| }
 | |
| 
 | |
| bool dsp_timestretch_available()
 | |
| {
 | |
|     return (global_settings.timestretch_enabled && big_sample_buf_count > 0);
 | |
| }
 | |
| 
 | |
| /* Convert count samples to the internal format, if needed.  Updates src
 | |
|  * to point past the samples "consumed" and dst is set to point to the
 | |
|  * samples to consume. Note that for mono, dst[0] equals dst[1], as there
 | |
|  * is no point in processing the same data twice.
 | |
|  */
 | |
| 
 | |
| /* convert count 16-bit mono to 32-bit mono */
 | |
| static void sample_input_lte_native_mono(
 | |
|     int count, const char *src[], int32_t *dst[])
 | |
| {
 | |
|     const int16_t *s = (int16_t *) src[0];
 | |
|     const int16_t * const send = s + count;
 | |
|     int32_t *d = dst[0] = dst[1] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
 | |
|     int scale = WORD_SHIFT;
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         *d++ = *s++ << scale;
 | |
|     }
 | |
|     while (s < send);
 | |
| 
 | |
|     src[0] = (char *)s;
 | |
| }
 | |
| 
 | |
| /* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
 | |
| static void sample_input_lte_native_i_stereo(
 | |
|     int count, const char *src[], int32_t *dst[])
 | |
| {
 | |
|     const int32_t *s = (int32_t *) src[0];
 | |
|     const int32_t * const send = s + count;
 | |
|     int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
 | |
|     int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
 | |
|     int scale = WORD_SHIFT;
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         int32_t slr = *s++;
 | |
| #ifdef ROCKBOX_LITTLE_ENDIAN
 | |
|         *dl++ = (slr >> 16) << scale;
 | |
|         *dr++ = (int32_t)(int16_t)slr << scale;
 | |
| #else  /* ROCKBOX_BIG_ENDIAN */
 | |
|         *dl++ = (int32_t)(int16_t)slr << scale;
 | |
|         *dr++ = (slr >> 16) << scale;
 | |
| #endif
 | |
|     }
 | |
|     while (s < send);
 | |
| 
 | |
|     src[0] = (char *)s;
 | |
| }
 | |
| 
 | |
| /* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
 | |
| static void sample_input_lte_native_ni_stereo(
 | |
|     int count, const char *src[], int32_t *dst[])
 | |
| {
 | |
|     const int16_t *sl = (int16_t *) src[0];
 | |
|     const int16_t *sr = (int16_t *) src[1];
 | |
|     const int16_t * const slend = sl + count;
 | |
|     int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
 | |
|     int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
 | |
|     int scale = WORD_SHIFT;
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         *dl++ = *sl++ << scale;
 | |
|         *dr++ = *sr++ << scale;
 | |
|     }
 | |
|     while (sl < slend);
 | |
| 
 | |
|     src[0] = (char *)sl;
 | |
|     src[1] = (char *)sr;
 | |
| }
 | |
| 
 | |
| /* convert count 32-bit mono to 32-bit mono */
 | |
| static void sample_input_gt_native_mono(
 | |
|     int count, const char *src[], int32_t *dst[])
 | |
| {
 | |
|     dst[0] = dst[1] = (int32_t *)src[0];
 | |
|     src[0] = (char *)(dst[0] + count);
 | |
| }
 | |
| 
 | |
| /* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
 | |
| static void sample_input_gt_native_i_stereo(
 | |
|     int count, const char *src[], int32_t *dst[])
 | |
| {
 | |
|     const int32_t *s = (int32_t *)src[0];
 | |
|     const int32_t * const send = s + 2*count;
 | |
|     int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
 | |
|     int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         *dl++ = *s++;
 | |
|         *dr++ = *s++;
 | |
|     }
 | |
|     while (s < send);
 | |
| 
 | |
|     src[0] = (char *)send;
 | |
| }
 | |
| 
 | |
| /* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
 | |
| static void sample_input_gt_native_ni_stereo(
 | |
|     int count, const char *src[], int32_t *dst[])
 | |
| {
 | |
|     dst[0] = (int32_t *)src[0];
 | |
|     dst[1] = (int32_t *)src[1];
 | |
|     src[0] = (char *)(dst[0] + count);
 | |
|     src[1] = (char *)(dst[1] + count);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sample_input_new_format()
 | |
|  *
 | |
|  * set the to-native sample conversion function based on dsp sample parameters
 | |
|  *
 | |
|  * !DSPPARAMSYNC
 | |
|  * needs syncing with changes to the following dsp parameters:
 | |
|  *  * dsp->stereo_mode (A/V)
 | |
|  *  * dsp->sample_depth (A/V)
 | |
|  */
 | |
| static void sample_input_new_format(struct dsp_config *dsp)
 | |
| {
 | |
|     static const sample_input_fn_type sample_input_functions[] =
 | |
|     {
 | |
|         [SAMPLE_INPUT_LE_NATIVE_MONO]      = sample_input_lte_native_mono,
 | |
|         [SAMPLE_INPUT_LE_NATIVE_I_STEREO]  = sample_input_lte_native_i_stereo,
 | |
|         [SAMPLE_INPUT_LE_NATIVE_NI_STEREO] = sample_input_lte_native_ni_stereo,
 | |
|         [SAMPLE_INPUT_GT_NATIVE_MONO]      = sample_input_gt_native_mono,
 | |
|         [SAMPLE_INPUT_GT_NATIVE_I_STEREO]  = sample_input_gt_native_i_stereo,
 | |
|         [SAMPLE_INPUT_GT_NATIVE_NI_STEREO] = sample_input_gt_native_ni_stereo,
 | |
|     };
 | |
| 
 | |
|     int convert = dsp->stereo_mode;
 | |
| 
 | |
|     if (dsp->sample_depth > NATIVE_DEPTH)
 | |
|         convert += SAMPLE_INPUT_GT_NATIVE_1ST_INDEX;
 | |
| 
 | |
|     dsp->input_samples = sample_input_functions[convert];
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
 | |
| /* write mono internal format to output format */
 | |
| static void sample_output_mono(int count, struct dsp_data *data,
 | |
|                                const int32_t *src[], int16_t *dst)
 | |
| {
 | |
|     const int32_t *s0 = src[0];
 | |
|     const int scale = data->output_scale;
 | |
|     const int dc_bias = 1 << (scale - 1);
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         int32_t lr = clip_sample_16((*s0++ + dc_bias) >> scale);
 | |
|         *dst++ = lr;
 | |
|         *dst++ = lr;
 | |
|     }
 | |
|     while (--count > 0);
 | |
| }
 | |
| #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
 | |
| 
 | |
| /* write stereo internal format to output format */
 | |
| #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
 | |
| static void sample_output_stereo(int count, struct dsp_data *data,
 | |
|                                  const int32_t *src[], int16_t *dst)
 | |
| {
 | |
|     const int32_t *s0 = src[0];
 | |
|     const int32_t *s1 = src[1];
 | |
|     const int scale = data->output_scale;
 | |
|     const int dc_bias = 1 << (scale - 1);
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         *dst++ = clip_sample_16((*s0++ + dc_bias) >> scale);
 | |
|         *dst++ = clip_sample_16((*s1++ + dc_bias) >> scale);
 | |
|     }
 | |
|     while (--count > 0);
 | |
| }
 | |
| #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
 | |
| 
 | |
| /**
 | |
|  * The "dither" code to convert the 24-bit samples produced by libmad was
 | |
|  * taken from the coolplayer project - coolplayer.sourceforge.net
 | |
|  *
 | |
|  * This function handles mono and stereo outputs.
 | |
|  */
 | |
| static void sample_output_dithered(int count, struct dsp_data *data,
 | |
|                                    const int32_t *src[], int16_t *dst)
 | |
| {
 | |
|     const int32_t mask = dither_mask;
 | |
|     const int32_t bias = dither_bias;
 | |
|     const int scale = data->output_scale;
 | |
|     const int32_t min = data->clip_min;
 | |
|     const int32_t max = data->clip_max;
 | |
|     const int32_t range = max - min;
 | |
|     int ch;
 | |
|     int16_t *d;
 | |
| 
 | |
|     for (ch = 0; ch < data->num_channels; ch++)
 | |
|     {
 | |
|         struct dither_data * const dither = &dither_data[ch];
 | |
|         const int32_t *s = src[ch];
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0, d = &dst[ch]; i < count; i++, s++, d += 2)
 | |
|         {
 | |
|             int32_t output, sample;
 | |
|             int32_t random;
 | |
| 
 | |
|             /* Noise shape and bias (for correct rounding later) */
 | |
|             sample = *s;
 | |
|             sample += dither->error[0] - dither->error[1] + dither->error[2];
 | |
|             dither->error[2] = dither->error[1];
 | |
|             dither->error[1] = dither->error[0]/2;
 | |
| 
 | |
|             output = sample + bias;
 | |
| 
 | |
|             /* Dither, highpass triangle PDF */
 | |
|             random = dither->random*0x0019660dL + 0x3c6ef35fL;
 | |
|             output += (random & mask) - (dither->random & mask);
 | |
|             dither->random = random;
 | |
| 
 | |
|             /* Round sample to output range */
 | |
|             output &= ~mask;
 | |
| 
 | |
|             /* Error feedback */
 | |
|             dither->error[0] = sample - output;
 | |
| 
 | |
|             /* Clip */
 | |
|             if ((uint32_t)(output - min) > (uint32_t)range)
 | |
|             {
 | |
|                 int32_t c = min;
 | |
|                 if (output > min)
 | |
|                     c += range;
 | |
|                 output = c;
 | |
|             }
 | |
| 
 | |
|             /* Quantize and store */
 | |
|             *d = output >> scale;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (data->num_channels == 2)
 | |
|         return;
 | |
| 
 | |
|     /* Have to duplicate left samples into the right channel since
 | |
|        pcm buffer and hardware is interleaved stereo */
 | |
|     d = &dst[0];
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         int16_t s = *d++;
 | |
|         *d++ = s;
 | |
|     }
 | |
|     while (--count > 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sample_output_new_format()
 | |
|  *
 | |
|  * set the from-native to ouput sample conversion routine
 | |
|  *
 | |
|  * !DSPPARAMSYNC
 | |
|  * needs syncing with changes to the following dsp parameters:
 | |
|  *  * dsp->stereo_mode (A/V)
 | |
|  *  * dither_enabled (A)
 | |
|  */
 | |
| static void sample_output_new_format(struct dsp_config *dsp)
 | |
| {
 | |
|     static const sample_output_fn_type sample_output_functions[] =
 | |
|     {
 | |
|         sample_output_mono,
 | |
|         sample_output_stereo,
 | |
|         sample_output_dithered,
 | |
|         sample_output_dithered
 | |
|     };
 | |
| 
 | |
|     int out = dsp->data.num_channels - 1;
 | |
| 
 | |
|     if (dsp == &AUDIO_DSP && dither_enabled)
 | |
|         out += 2;
 | |
| 
 | |
|     dsp->output_samples = sample_output_functions[out];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Linear interpolation resampling that introduces a one sample delay because
 | |
|  * of our inability to look into the future at the end of a frame.
 | |
|  */
 | |
| #ifndef DSP_HAVE_ASM_RESAMPLING
 | |
| static int dsp_downsample(int count, struct dsp_data *data,
 | |
|                           const int32_t *src[], int32_t *dst[])
 | |
| {
 | |
|     int ch = data->num_channels - 1;
 | |
|     uint32_t delta = data->resample_data.delta;
 | |
|     uint32_t phase, pos;
 | |
|     int32_t *d;
 | |
| 
 | |
|     /* Rolled channel loop actually showed slightly faster. */
 | |
|     do
 | |
|     {
 | |
|         /* Just initialize things and not worry too much about the relatively
 | |
|          * uncommon case of not being able to spit out a sample for the frame.
 | |
|          */
 | |
|         const int32_t *s = src[ch];
 | |
|         int32_t last = data->resample_data.last_sample[ch];
 | |
| 
 | |
|         data->resample_data.last_sample[ch] = s[count - 1];
 | |
|         d = dst[ch];
 | |
|         phase = data->resample_data.phase;
 | |
|         pos = phase >> 16;
 | |
| 
 | |
|         /* Do we need last sample of previous frame for interpolation? */
 | |
|         if (pos > 0)
 | |
|             last = s[pos - 1];
 | |
| 
 | |
|         while (pos < (uint32_t)count)
 | |
|         {
 | |
|             *d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
 | |
|             phase += delta;
 | |
|             pos = phase >> 16;
 | |
|             last = s[pos - 1];
 | |
|         }
 | |
|     }
 | |
|     while (--ch >= 0);
 | |
| 
 | |
|     /* Wrap phase accumulator back to start of next frame. */
 | |
|     data->resample_data.phase = phase - (count << 16);
 | |
|     return d - dst[0];
 | |
| }
 | |
| 
 | |
| static int dsp_upsample(int count, struct dsp_data *data,
 | |
|                         const int32_t *src[], int32_t *dst[])
 | |
| {
 | |
|     int  ch = data->num_channels - 1;
 | |
|     uint32_t delta = data->resample_data.delta;
 | |
|     uint32_t phase, pos;
 | |
|     int32_t *d;
 | |
| 
 | |
|     /* Rolled channel loop actually showed slightly faster. */
 | |
|     do
 | |
|     {
 | |
|         /* Should always be able to output a sample for a ratio up to RESAMPLE_RATIO */
 | |
|         const int32_t *s = src[ch];
 | |
|         int32_t last = data->resample_data.last_sample[ch];
 | |
| 
 | |
|         data->resample_data.last_sample[ch] = s[count - 1];
 | |
|         d = dst[ch];
 | |
|         phase = data->resample_data.phase;
 | |
|         pos = phase >> 16;
 | |
| 
 | |
|         while (pos == 0)
 | |
|         {
 | |
|             *d++ = last + FRACMUL((phase & 0xffff) << 15, s[0] - last);
 | |
|             phase += delta;
 | |
|             pos = phase >> 16;
 | |
|         }
 | |
| 
 | |
|         while (pos < (uint32_t)count)
 | |
|         {
 | |
|             last = s[pos - 1];
 | |
|             *d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
 | |
|             phase += delta;
 | |
|             pos = phase >> 16;
 | |
|         }
 | |
|     }
 | |
|     while (--ch >= 0);
 | |
| 
 | |
|     /* Wrap phase accumulator back to start of next frame. */
 | |
|     data->resample_data.phase = phase & 0xffff;
 | |
|     return d - dst[0];
 | |
| }
 | |
| #endif /* DSP_HAVE_ASM_RESAMPLING */
 | |
| 
 | |
| static void resampler_new_delta(struct dsp_config *dsp)
 | |
| {
 | |
|     dsp->data.resample_data.delta = (unsigned long)
 | |
|         dsp->frequency * 65536LL / NATIVE_FREQUENCY;
 | |
| 
 | |
|     if (dsp->frequency == NATIVE_FREQUENCY)
 | |
|     {
 | |
|         /* NOTE: If fully glitch-free transistions from no resampling to
 | |
|            resampling are desired, last_sample history should be maintained
 | |
|            even when not resampling. */
 | |
|         dsp->resample = NULL;
 | |
|         dsp->data.resample_data.phase = 0;
 | |
|         dsp->data.resample_data.last_sample[0] = 0;
 | |
|         dsp->data.resample_data.last_sample[1] = 0;
 | |
|     }
 | |
|     else if (dsp->frequency < NATIVE_FREQUENCY)
 | |
|         dsp->resample = dsp_upsample;
 | |
|     else
 | |
|         dsp->resample = dsp_downsample;
 | |
| }
 | |
| 
 | |
| /* Resample count stereo samples. Updates the src array, if resampling is
 | |
|  * done, to refer to the resampled data. Returns number of stereo samples
 | |
|  * for further processing.
 | |
|  */
 | |
| static inline int resample(struct dsp_config *dsp, int count, int32_t *src[])
 | |
| {
 | |
|     int32_t *dst[2] =
 | |
|     {
 | |
|         &resample_buf[RESAMPLE_BUF_LEFT_CHANNEL],
 | |
|         &resample_buf[RESAMPLE_BUF_RIGHT_CHANNEL],
 | |
|     };
 | |
| 
 | |
|     count = dsp->resample(count, &dsp->data, (const int32_t **)src, dst);
 | |
| 
 | |
|     src[0] = dst[0];
 | |
|     src[1] = dst[dsp->data.num_channels - 1];
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static void dither_init(struct dsp_config *dsp)
 | |
| {
 | |
|     memset(dither_data, 0, sizeof (dither_data));
 | |
|     dither_bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
 | |
|     dither_mask = (1L << (dsp->frac_bits + 1 - NATIVE_DEPTH)) - 1;
 | |
| }
 | |
| 
 | |
| void dsp_dither_enable(bool enable)
 | |
| {
 | |
|     struct dsp_config *dsp = &AUDIO_DSP;
 | |
|     dither_enabled = enable;
 | |
|     sample_output_new_format(dsp);
 | |
| }
 | |
| 
 | |
| /* Applies crossfeed to the stereo signal in src.
 | |
|  * Crossfeed is a process where listening over speakers is simulated. This
 | |
|  * is good for old hard panned stereo records, which might be quite fatiguing
 | |
|  * to listen to on headphones with no crossfeed.
 | |
|  */
 | |
| #ifndef DSP_HAVE_ASM_CROSSFEED
 | |
| static void apply_crossfeed(int count, int32_t *buf[])
 | |
| {
 | |
|     int32_t *hist_l = &crossfeed_data.history[0];
 | |
|     int32_t *hist_r = &crossfeed_data.history[2];
 | |
|     int32_t *delay = &crossfeed_data.delay[0][0];
 | |
|     int32_t *coefs = &crossfeed_data.coefs[0];
 | |
|     int32_t gain = crossfeed_data.gain;
 | |
|     int32_t *di = crossfeed_data.index;
 | |
| 
 | |
|     int32_t acc;
 | |
|     int32_t left, right;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < count; i++)
 | |
|     {
 | |
|         left = buf[0][i];
 | |
|         right = buf[1][i];
 | |
| 
 | |
|         /* Filter delayed sample from left speaker */
 | |
|         acc = FRACMUL(*di, coefs[0]);
 | |
|         acc += FRACMUL(hist_l[0], coefs[1]);
 | |
|         acc += FRACMUL(hist_l[1], coefs[2]);
 | |
|         /* Save filter history for left speaker */
 | |
|         hist_l[1] = acc;
 | |
|         hist_l[0] = *di;
 | |
|         *di++ = left;
 | |
|         /* Filter delayed sample from right speaker */
 | |
|         acc = FRACMUL(*di, coefs[0]);
 | |
|         acc += FRACMUL(hist_r[0], coefs[1]);
 | |
|         acc += FRACMUL(hist_r[1], coefs[2]);
 | |
|         /* Save filter history for right speaker */
 | |
|         hist_r[1] = acc;
 | |
|         hist_r[0] = *di;
 | |
|         *di++ = right;
 | |
|         /* Now add the attenuated direct sound and write to outputs */
 | |
|         buf[0][i] = FRACMUL(left, gain) + hist_r[1];
 | |
|         buf[1][i] = FRACMUL(right, gain) + hist_l[1];
 | |
| 
 | |
|         /* Wrap delay line index if bigger than delay line size */
 | |
|         if (di >= delay + 13*2)
 | |
|             di = delay;
 | |
|     }
 | |
|     /* Write back local copies of data we've modified */
 | |
|     crossfeed_data.index = di;
 | |
| }
 | |
| #endif /* DSP_HAVE_ASM_CROSSFEED */
 | |
| 
 | |
| /**
 | |
|  * dsp_set_crossfeed(bool enable)
 | |
|  *
 | |
|  * !DSPPARAMSYNC
 | |
|  * needs syncing with changes to the following dsp parameters:
 | |
|  *  * dsp->stereo_mode (A)
 | |
|  */
 | |
| void dsp_set_crossfeed(bool enable)
 | |
| {
 | |
|     crossfeed_enabled = enable;
 | |
|     AUDIO_DSP.apply_crossfeed = (enable && AUDIO_DSP.data.num_channels > 1)
 | |
|                                     ? apply_crossfeed : NULL;
 | |
| }
 | |
| 
 | |
| void dsp_set_crossfeed_direct_gain(int gain)
 | |
| {
 | |
|     crossfeed_data.gain = get_replaygain_int(gain * 10) << 7;
 | |
|     /* If gain is negative, the calculation overflowed and we need to clamp */
 | |
|     if (crossfeed_data.gain < 0)
 | |
|         crossfeed_data.gain = 0x7fffffff;
 | |
| }
 | |
| 
 | |
| /* Both gains should be below 0 dB */
 | |
| void dsp_set_crossfeed_cross_params(long lf_gain, long hf_gain, long cutoff)
 | |
| {
 | |
|     int32_t *c = crossfeed_data.coefs;
 | |
|     long scaler = get_replaygain_int(lf_gain * 10) << 7;
 | |
| 
 | |
|     cutoff = 0xffffffff/NATIVE_FREQUENCY*cutoff;
 | |
|     hf_gain -= lf_gain;
 | |
|     /* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
 | |
|      * point instead of shelf midpoint. This is for compatibility with the old
 | |
|      * crossfeed shelf filter and should be removed if crossfeed settings are
 | |
|      * ever made incompatible for any other good reason.
 | |
|      */
 | |
|     cutoff = fp_div(cutoff, get_replaygain_int(hf_gain*5), 24);
 | |
|     filter_shelf_coefs(cutoff, hf_gain, false, c);
 | |
|     /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
 | |
|      * over 1 and can do this safely
 | |
|      */
 | |
|     c[0] = FRACMUL_SHL(c[0], scaler, 4);
 | |
|     c[1] = FRACMUL_SHL(c[1], scaler, 4);
 | |
|     c[2] <<= 4;
 | |
| }
 | |
| 
 | |
| /* Apply a constant gain to the samples (e.g., for ReplayGain).
 | |
|  * Note that this must be called before the resampler.
 | |
|  */
 | |
| #ifndef DSP_HAVE_ASM_APPLY_GAIN
 | |
| static void dsp_apply_gain(int count, struct dsp_data *data, int32_t *buf[])
 | |
| {
 | |
|     const int32_t gain = data->gain;
 | |
|     int ch;
 | |
| 
 | |
|     for (ch = 0; ch < data->num_channels; ch++)
 | |
|     {
 | |
|         int32_t *d = buf[ch];
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < count; i++)
 | |
|             d[i] = FRACMUL_SHL(d[i], gain, 8);
 | |
|     }
 | |
| }
 | |
| #endif /* DSP_HAVE_ASM_APPLY_GAIN */
 | |
| 
 | |
| /* Combine all gains to a global gain. */
 | |
| static void set_gain(struct dsp_config *dsp)
 | |
| {
 | |
|     dsp->data.gain = DEFAULT_GAIN;
 | |
| 
 | |
|     /* Replay gain not relevant to voice */
 | |
|     if (dsp == &AUDIO_DSP && replaygain)
 | |
|     {
 | |
|         dsp->data.gain = replaygain;
 | |
|     }
 | |
| 
 | |
|     if (dsp->eq_process && eq_precut)
 | |
|     {
 | |
|         dsp->data.gain =
 | |
|             (long) (((int64_t) dsp->data.gain * eq_precut) >> 24);
 | |
|     }
 | |
| 
 | |
|     if (dsp->data.gain == DEFAULT_GAIN)
 | |
|     {
 | |
|         dsp->data.gain = 0;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         dsp->data.gain >>= 1;
 | |
|     }
 | |
| 
 | |
|     dsp->apply_gain = dsp->data.gain != 0 ? dsp_apply_gain : NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Update the amount to cut the audio before applying the equalizer.
 | |
|  *
 | |
|  * @param precut to apply in decibels (multiplied by 10)
 | |
|  */
 | |
| void dsp_set_eq_precut(int precut)
 | |
| {
 | |
|     eq_precut = get_replaygain_int(precut * -10);
 | |
|     set_gain(&AUDIO_DSP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Synchronize the equalizer filter coefficients with the global settings.
 | |
|  *
 | |
|  * @param band the equalizer band to synchronize
 | |
|  */
 | |
| void dsp_set_eq_coefs(int band)
 | |
| {
 | |
|     const int *setting;
 | |
|     long gain;
 | |
|     unsigned long cutoff, q;
 | |
| 
 | |
|     /* Adjust setting pointer to the band we actually want to change */
 | |
|     setting = &global_settings.eq_band0_cutoff + (band * 3);
 | |
| 
 | |
|     /* Convert user settings to format required by coef generator functions */
 | |
|     cutoff = 0xffffffff / NATIVE_FREQUENCY * (*setting++);
 | |
|     q = *setting++;
 | |
|     gain = *setting++;
 | |
| 
 | |
|     if (q == 0)
 | |
|         q = 1;
 | |
| 
 | |
|     /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
 | |
|        which it should be, since we're executed from the main thread. */
 | |
| 
 | |
|     /* Assume a band is disabled if the gain is zero */
 | |
|     if (gain == 0)
 | |
|     {
 | |
|         eq_data.enabled[band] = 0;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if (band == 0)
 | |
|             eq_ls_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
 | |
|         else if (band == 4)
 | |
|             eq_hs_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
 | |
|         else
 | |
|             eq_pk_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
 | |
| 
 | |
|         eq_data.enabled[band] = 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Apply EQ filters to those bands that have got it switched on. */
 | |
| static void eq_process(int count, int32_t *buf[])
 | |
| {
 | |
|     static const int shifts[] =
 | |
|     {
 | |
|         EQ_SHELF_SHIFT,  /* low shelf  */
 | |
|         EQ_PEAK_SHIFT,   /* peaking    */
 | |
|         EQ_PEAK_SHIFT,   /* peaking    */
 | |
|         EQ_PEAK_SHIFT,   /* peaking    */
 | |
|         EQ_SHELF_SHIFT,  /* high shelf */
 | |
|     };
 | |
|     unsigned int channels = AUDIO_DSP.data.num_channels;
 | |
|     int i;
 | |
| 
 | |
|     /* filter configuration currently is 1 low shelf filter, 3 band peaking
 | |
|        filters and 1 high shelf filter, in that order. we need to know this
 | |
|        so we can choose the correct shift factor.
 | |
|      */
 | |
|     for (i = 0; i < 5; i++)
 | |
|     {
 | |
|         if (!eq_data.enabled[i])
 | |
|             continue;
 | |
|         eq_filter(buf, &eq_data.filters[i], count, channels, shifts[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Use to enable the equalizer.
 | |
|  *
 | |
|  * @param enable true to enable the equalizer
 | |
|  */
 | |
| void dsp_set_eq(bool enable)
 | |
| {
 | |
|     AUDIO_DSP.eq_process = enable ? eq_process : NULL;
 | |
|     set_gain(&AUDIO_DSP);
 | |
| }
 | |
| 
 | |
| static void dsp_set_stereo_width(int value)
 | |
| {
 | |
|     long width, straight, cross;
 | |
| 
 | |
|     width = value * 0x7fffff / 100;
 | |
| 
 | |
|     if (value <= 100)
 | |
|     {
 | |
|         straight = (0x7fffff + width) / 2;
 | |
|         cross = straight - width;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         /* straight = (1 + width) / (2 * width) */
 | |
|         straight = ((int64_t)(0x7fffff + width) << 22) / width;
 | |
|         cross = straight - 0x7fffff;
 | |
|     }
 | |
| 
 | |
|     dsp_sw_gain  = straight << 8;
 | |
|     dsp_sw_cross = cross << 8;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Implements the different channel configurations and stereo width.
 | |
|  */
 | |
| 
 | |
| /* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
 | |
|  * completeness. */
 | |
| #if 0
 | |
| static void channels_process_sound_chan_stereo(int count, int32_t *buf[])
 | |
| {
 | |
|     /* The channels are each just themselves */
 | |
|     (void)count; (void)buf;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
 | |
| static void channels_process_sound_chan_mono(int count, int32_t *buf[])
 | |
| {
 | |
|     int32_t *sl = buf[0], *sr = buf[1];
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         int32_t lr = *sl/2 + *sr/2;
 | |
|         *sl++ = lr;
 | |
|         *sr++ = lr;
 | |
|     }
 | |
|     while (--count > 0);
 | |
| }
 | |
| #endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
 | |
| 
 | |
| #ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
 | |
| static void channels_process_sound_chan_custom(int count, int32_t *buf[])
 | |
| {
 | |
|     const int32_t gain  = dsp_sw_gain;
 | |
|     const int32_t cross = dsp_sw_cross;
 | |
|     int32_t *sl = buf[0], *sr = buf[1];
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         int32_t l = *sl;
 | |
|         int32_t r = *sr;
 | |
|         *sl++ = FRACMUL(l, gain) + FRACMUL(r, cross);
 | |
|         *sr++ = FRACMUL(r, gain) + FRACMUL(l, cross);
 | |
|     }
 | |
|     while (--count > 0);
 | |
| }
 | |
| #endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
 | |
| 
 | |
| static void channels_process_sound_chan_mono_left(int count, int32_t *buf[])
 | |
| {
 | |
|     /* Just copy over the other channel */
 | |
|     memcpy(buf[1], buf[0], count * sizeof (*buf));
 | |
| }
 | |
| 
 | |
| static void channels_process_sound_chan_mono_right(int count, int32_t *buf[])
 | |
| {
 | |
|     /* Just copy over the other channel */
 | |
|     memcpy(buf[0], buf[1], count * sizeof (*buf));
 | |
| }
 | |
| 
 | |
| #ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
 | |
| static void channels_process_sound_chan_karaoke(int count, int32_t *buf[])
 | |
| {
 | |
|     int32_t *sl = buf[0], *sr = buf[1];
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         int32_t ch = *sl/2 - *sr/2;
 | |
|         *sl++ = ch;
 | |
|         *sr++ = -ch;
 | |
|     }
 | |
|     while (--count > 0);
 | |
| }
 | |
| #endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
 | |
| 
 | |
| static void dsp_set_channel_config(int value)
 | |
| {
 | |
|     static const channels_process_fn_type channels_process_functions[] =
 | |
|     {
 | |
|         /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
 | |
|         [SOUND_CHAN_STEREO]     = NULL,
 | |
|         [SOUND_CHAN_MONO]       = channels_process_sound_chan_mono,
 | |
|         [SOUND_CHAN_CUSTOM]     = channels_process_sound_chan_custom,
 | |
|         [SOUND_CHAN_MONO_LEFT]  = channels_process_sound_chan_mono_left,
 | |
|         [SOUND_CHAN_MONO_RIGHT] = channels_process_sound_chan_mono_right,
 | |
|         [SOUND_CHAN_KARAOKE]    = channels_process_sound_chan_karaoke,
 | |
|     };
 | |
| 
 | |
|     if ((unsigned)value >= ARRAYLEN(channels_process_functions) ||
 | |
|         AUDIO_DSP.stereo_mode == STEREO_MONO)
 | |
|     {
 | |
|         value = SOUND_CHAN_STEREO;
 | |
|     }
 | |
| 
 | |
|     /* This doesn't apply to voice */
 | |
|     channels_mode = value;
 | |
|     AUDIO_DSP.channels_process = channels_process_functions[value];
 | |
| }
 | |
| 
 | |
| #if CONFIG_CODEC == SWCODEC
 | |
| 
 | |
| #ifdef HAVE_SW_TONE_CONTROLS
 | |
| static void set_tone_controls(void)
 | |
| {
 | |
|     filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY*200,
 | |
|                          0xffffffff/NATIVE_FREQUENCY*3500,
 | |
|                          bass, treble, -prescale,
 | |
|                          AUDIO_DSP.tone_filter.coefs);
 | |
|     /* Sync the voice dsp coefficients */
 | |
|     memcpy(&VOICE_DSP.tone_filter.coefs, AUDIO_DSP.tone_filter.coefs,
 | |
|            sizeof (VOICE_DSP.tone_filter.coefs));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
 | |
|  * code directly.
 | |
|  */
 | |
| int dsp_callback(int msg, intptr_t param)
 | |
| {
 | |
|     switch (msg)
 | |
|     {
 | |
| #ifdef HAVE_SW_TONE_CONTROLS
 | |
|     case DSP_CALLBACK_SET_PRESCALE:
 | |
|         prescale = param;
 | |
|         set_tone_controls();
 | |
|         break;
 | |
|     /* prescaler is always set after calling any of these, so we wait with
 | |
|      * calculating coefs until the above case is hit.
 | |
|      */
 | |
|     case DSP_CALLBACK_SET_BASS:
 | |
|         bass = param;
 | |
|         break;
 | |
|     case DSP_CALLBACK_SET_TREBLE:
 | |
|         treble = param;
 | |
|         break;
 | |
| #endif
 | |
|     case DSP_CALLBACK_SET_CHANNEL_CONFIG:
 | |
|         dsp_set_channel_config(param);
 | |
|         break;
 | |
|     case DSP_CALLBACK_SET_STEREO_WIDTH:
 | |
|         dsp_set_stereo_width(param);
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Process and convert src audio to dst based on the DSP configuration,
 | |
|  * reading count number of audio samples. dst is assumed to be large
 | |
|  * enough; use dsp_output_count() to get the required number. src is an
 | |
|  * array of pointers; for mono and interleaved stereo, it contains one
 | |
|  * pointer to the start of the audio data and the other is ignored; for
 | |
|  * non-interleaved stereo, it contains two pointers, one for each audio
 | |
|  * channel. Returns number of bytes written to dst.
 | |
|  */
 | |
| int dsp_process(struct dsp_config *dsp, char *dst, const char *src[], int count)
 | |
| {
 | |
|     int32_t *tmp[2];
 | |
|     static long last_yield;
 | |
|     long tick;
 | |
|     int written = 0;
 | |
| 
 | |
| #if defined(CPU_COLDFIRE)
 | |
|     /* set emac unit for dsp processing, and save old macsr, we're running in
 | |
|        codec thread context at this point, so can't clobber it */
 | |
|     unsigned long old_macsr = coldfire_get_macsr();
 | |
|     coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
 | |
| #endif
 | |
| 
 | |
|     if (new_gain)
 | |
|         dsp_set_replaygain(); /* Gain has changed */
 | |
| 
 | |
|     /* Perform at least one yield before starting */
 | |
|     last_yield = current_tick;
 | |
|     yield();
 | |
| 
 | |
|     /* Testing function pointers for NULL is preferred since the pointer
 | |
|        will be preloaded to be used for the call if not. */
 | |
|     while (count > 0)
 | |
|     {
 | |
|         int samples = MIN(sample_buf_count/2, count);
 | |
|         count -= samples;
 | |
| 
 | |
|         dsp->input_samples(samples, src, tmp);
 | |
| 
 | |
|         if (dsp->tdspeed_active)
 | |
|             samples = tdspeed_doit(tmp, samples);
 | |
| 
 | |
|         int chunk_offset = 0;
 | |
|         while (samples > 0)
 | |
|         {
 | |
|             int32_t *t2[2];
 | |
|             t2[0] = tmp[0]+chunk_offset;
 | |
|             t2[1] = tmp[1]+chunk_offset;
 | |
| 
 | |
|             int chunk = MIN(sample_buf_count/2, samples);
 | |
|             chunk_offset += chunk;
 | |
|             samples -= chunk;
 | |
| 
 | |
|             if (dsp->apply_gain)
 | |
|                 dsp->apply_gain(chunk, &dsp->data, t2);
 | |
| 
 | |
|             if (dsp->resample && (chunk = resample(dsp, chunk, t2)) <= 0)
 | |
|                 break; /* I'm pretty sure we're downsampling here */
 | |
| 
 | |
|             if (dsp->apply_crossfeed)
 | |
|                 dsp->apply_crossfeed(chunk, t2);
 | |
| 
 | |
|             if (dsp->eq_process)
 | |
|                 dsp->eq_process(chunk, t2);
 | |
| 
 | |
| #ifdef HAVE_SW_TONE_CONTROLS
 | |
|             if ((bass | treble) != 0)
 | |
|                 eq_filter(t2, &dsp->tone_filter, chunk,
 | |
|                       dsp->data.num_channels, FILTER_BISHELF_SHIFT);
 | |
| #endif
 | |
| 
 | |
|             if (dsp->channels_process)
 | |
|                 dsp->channels_process(chunk, t2);
 | |
| 
 | |
|             dsp->output_samples(chunk, &dsp->data, (const int32_t **)t2, (int16_t *)dst);
 | |
| 
 | |
|             written += chunk;
 | |
|             dst += chunk * sizeof (int16_t) * 2;
 | |
| 
 | |
|             /* yield at least once each tick */
 | |
|             tick = current_tick;
 | |
|             if (TIME_AFTER(tick, last_yield))
 | |
|             {
 | |
|                 last_yield = tick;
 | |
|                 yield();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if defined(CPU_COLDFIRE)
 | |
|     /* set old macsr again */
 | |
|     coldfire_set_macsr(old_macsr);
 | |
| #endif
 | |
|     return written;
 | |
| }
 | |
| 
 | |
| /* Given count number of input samples, calculate the maximum number of
 | |
|  * samples of output data that would be generated (the calculation is not
 | |
|  * entirely exact and rounds upwards to be on the safe side; during
 | |
|  * resampling, the number of samples generated depends on the current state
 | |
|  * of the resampler).
 | |
|  */
 | |
| /* dsp_input_size MUST be called afterwards */
 | |
| int dsp_output_count(struct dsp_config *dsp, int count)
 | |
| {
 | |
|     if (dsp->tdspeed_active)
 | |
|         count = tdspeed_est_output_size();
 | |
|     if (dsp->resample)
 | |
|     {
 | |
|         count = (int)(((unsigned long)count * NATIVE_FREQUENCY
 | |
|                     + (dsp->frequency - 1)) / dsp->frequency);
 | |
|     }
 | |
| 
 | |
|     /* Now we have the resampled sample count which must not exceed
 | |
|      * RESAMPLE_BUF_RIGHT_CHANNEL to avoid resample buffer overflow. One
 | |
|      * must call dsp_input_count() to get the correct input sample
 | |
|      * count.
 | |
|      */
 | |
|     if (count > RESAMPLE_BUF_RIGHT_CHANNEL)
 | |
|         count = RESAMPLE_BUF_RIGHT_CHANNEL;
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /* Given count output samples, calculate number of input samples
 | |
|  * that would be consumed in order to fill the output buffer.
 | |
|  */
 | |
| int dsp_input_count(struct dsp_config *dsp, int count)
 | |
| {
 | |
|     /* count is now the number of resampled input samples. Convert to
 | |
|        original input samples. */
 | |
|     if (dsp->resample)
 | |
|     {
 | |
|         /* Use the real resampling delta =
 | |
|          * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
 | |
|          * round towards zero to avoid buffer overflows. */
 | |
|         count = (int)(((unsigned long)count *
 | |
|                       dsp->data.resample_data.delta) >> 16);
 | |
|     }
 | |
| 
 | |
|     if (dsp->tdspeed_active)
 | |
|         count = tdspeed_est_input_size(count);
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static void dsp_set_gain_var(long *var, long value)
 | |
| {
 | |
|     *var = value;
 | |
|     new_gain = true;
 | |
| }
 | |
| 
 | |
| static void dsp_update_functions(struct dsp_config *dsp)
 | |
| {
 | |
|     sample_input_new_format(dsp);
 | |
|     sample_output_new_format(dsp);
 | |
|     if (dsp == &AUDIO_DSP)
 | |
|         dsp_set_crossfeed(crossfeed_enabled);
 | |
| }
 | |
| 
 | |
| intptr_t dsp_configure(struct dsp_config *dsp, int setting, intptr_t value)
 | |
| {
 | |
|     switch (setting)
 | |
|     {
 | |
|     case DSP_MYDSP:
 | |
|         switch (value)
 | |
|         {
 | |
|         case CODEC_IDX_AUDIO:
 | |
|             return (intptr_t)&AUDIO_DSP;
 | |
|         case CODEC_IDX_VOICE:
 | |
|             return (intptr_t)&VOICE_DSP;
 | |
|         default:
 | |
|             return (intptr_t)NULL;
 | |
|         }
 | |
| 
 | |
|     case DSP_SET_FREQUENCY:
 | |
|         memset(&dsp->data.resample_data, 0, sizeof (dsp->data.resample_data));
 | |
|         /* Fall through!!! */
 | |
|     case DSP_SWITCH_FREQUENCY:
 | |
|         dsp->codec_frequency = (value == 0) ? NATIVE_FREQUENCY : value;
 | |
|         /* Account for playback speed adjustment when setting dsp->frequency
 | |
|            if we're called from the main audio thread. Voice UI thread should
 | |
|            not need this feature.
 | |
|          */
 | |
|         if (dsp == &AUDIO_DSP)
 | |
|             dsp->frequency = pitch_ratio * dsp->codec_frequency / PITCH_SPEED_100;
 | |
|         else
 | |
|             dsp->frequency = dsp->codec_frequency;
 | |
| 
 | |
|         resampler_new_delta(dsp);
 | |
|         tdspeed_setup(dsp);
 | |
|         break;
 | |
| 
 | |
|     case DSP_SET_SAMPLE_DEPTH:
 | |
|         dsp->sample_depth = value;
 | |
| 
 | |
|         if (dsp->sample_depth <= NATIVE_DEPTH)
 | |
|         {
 | |
|             dsp->frac_bits = WORD_FRACBITS;
 | |
|             dsp->sample_bytes = sizeof (int16_t); /* samples are 16 bits */
 | |
|             dsp->data.clip_max =  ((1 << WORD_FRACBITS) - 1);
 | |
|             dsp->data.clip_min = -((1 << WORD_FRACBITS));
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             dsp->frac_bits = value;
 | |
|             dsp->sample_bytes = sizeof (int32_t); /* samples are 32 bits */
 | |
|             dsp->data.clip_max = (1 << value) - 1;
 | |
|             dsp->data.clip_min = -(1 << value);
 | |
|         }
 | |
| 
 | |
|         dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
 | |
|         sample_input_new_format(dsp);
 | |
|         dither_init(dsp);
 | |
|         break;
 | |
| 
 | |
|     case DSP_SET_STEREO_MODE:
 | |
|         dsp->stereo_mode = value;
 | |
|         dsp->data.num_channels = value == STEREO_MONO ? 1 : 2;
 | |
|         dsp_update_functions(dsp);
 | |
|         tdspeed_setup(dsp);
 | |
|         break;
 | |
| 
 | |
|     case DSP_RESET:
 | |
|         dsp->stereo_mode = STEREO_NONINTERLEAVED;
 | |
|         dsp->data.num_channels = 2;
 | |
|         dsp->sample_depth = NATIVE_DEPTH;
 | |
|         dsp->frac_bits = WORD_FRACBITS;
 | |
|         dsp->sample_bytes = sizeof (int16_t);
 | |
|         dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
 | |
|         dsp->data.clip_max =  ((1 << WORD_FRACBITS) - 1);
 | |
|         dsp->data.clip_min = -((1 << WORD_FRACBITS));
 | |
|         dsp->codec_frequency = dsp->frequency = NATIVE_FREQUENCY;
 | |
| 
 | |
|         if (dsp == &AUDIO_DSP)
 | |
|         {
 | |
|             track_gain = 0;
 | |
|             album_gain = 0;
 | |
|             track_peak = 0;
 | |
|             album_peak = 0;
 | |
|             new_gain   = true;
 | |
|         }
 | |
| 
 | |
|         dsp_update_functions(dsp);
 | |
|         resampler_new_delta(dsp);
 | |
|         tdspeed_setup(dsp);
 | |
|         break;
 | |
| 
 | |
|     case DSP_FLUSH:
 | |
|         memset(&dsp->data.resample_data, 0,
 | |
|                sizeof (dsp->data.resample_data));
 | |
|         resampler_new_delta(dsp);
 | |
|         dither_init(dsp);
 | |
|         tdspeed_setup(dsp);
 | |
|         break;
 | |
| 
 | |
|     case DSP_SET_TRACK_GAIN:
 | |
|         if (dsp == &AUDIO_DSP)
 | |
|             dsp_set_gain_var(&track_gain, value);
 | |
|         break;
 | |
| 
 | |
|     case DSP_SET_ALBUM_GAIN:
 | |
|         if (dsp == &AUDIO_DSP)
 | |
|             dsp_set_gain_var(&album_gain, value);
 | |
|         break;
 | |
| 
 | |
|     case DSP_SET_TRACK_PEAK:
 | |
|         if (dsp == &AUDIO_DSP)
 | |
|             dsp_set_gain_var(&track_peak, value);
 | |
|         break;
 | |
| 
 | |
|     case DSP_SET_ALBUM_PEAK:
 | |
|         if (dsp == &AUDIO_DSP)
 | |
|             dsp_set_gain_var(&album_peak, value);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void dsp_set_replaygain(void)
 | |
| {
 | |
|     long gain = 0;
 | |
| 
 | |
|     new_gain = false;
 | |
| 
 | |
|     if ((global_settings.replaygain_type != REPLAYGAIN_OFF) ||
 | |
|             global_settings.replaygain_noclip)
 | |
|     {
 | |
|         bool track_mode = get_replaygain_mode(track_gain != 0,
 | |
|             album_gain != 0) == REPLAYGAIN_TRACK;
 | |
|         long peak = (track_mode || !album_peak) ? track_peak : album_peak;
 | |
| 
 | |
|         if (global_settings.replaygain_type != REPLAYGAIN_OFF)
 | |
|         {
 | |
|             gain = (track_mode || !album_gain) ? track_gain : album_gain;
 | |
| 
 | |
|             if (global_settings.replaygain_preamp)
 | |
|             {
 | |
|                 long preamp = get_replaygain_int(
 | |
|                     global_settings.replaygain_preamp * 10);
 | |
| 
 | |
|                 gain = (long) (((int64_t) gain * preamp) >> 24);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (gain == 0)
 | |
|         {
 | |
|             /* So that noclip can work even with no gain information. */
 | |
|             gain = DEFAULT_GAIN;
 | |
|         }
 | |
| 
 | |
|         if (global_settings.replaygain_noclip && (peak != 0)
 | |
|             && ((((int64_t) gain * peak) >> 24) >= DEFAULT_GAIN))
 | |
|         {
 | |
|             gain = (((int64_t) DEFAULT_GAIN << 24) / peak);
 | |
|         }
 | |
| 
 | |
|         if (gain == DEFAULT_GAIN)
 | |
|         {
 | |
|             /* Nothing to do, disable processing. */
 | |
|             gain = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Store in S8.23 format to simplify calculations. */
 | |
|     replaygain = gain;
 | |
|     set_gain(&AUDIO_DSP);
 | |
| }
 |