forked from len0rd/rockbox
		
	
		
			
				
	
	
		
			294 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			294 lines
		
	
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (c) 2002-2008 Jean-Marc Valin
 | |
|    Copyright (c) 2007-2008 CSIRO
 | |
|    Copyright (c) 2007-2009 Xiph.Org Foundation
 | |
|    Written by Jean-Marc Valin */
 | |
| /**
 | |
|    @file mathops.h
 | |
|    @brief Various math functions
 | |
| */
 | |
| /*
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions
 | |
|    are met:
 | |
| 
 | |
|    - Redistributions of source code must retain the above copyright
 | |
|    notice, this list of conditions and the following disclaimer.
 | |
| 
 | |
|    - Redistributions in binary form must reproduce the above copyright
 | |
|    notice, this list of conditions and the following disclaimer in the
 | |
|    documentation and/or other materials provided with the distribution.
 | |
| 
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
 | |
|    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 | |
| 
 | |
| #ifndef MATHOPS_H
 | |
| #define MATHOPS_H
 | |
| 
 | |
| #include "arch.h"
 | |
| #include "entcode.h"
 | |
| #include "os_support.h"
 | |
| 
 | |
| #define PI 3.141592653f
 | |
| 
 | |
| #ifndef ABS
 | |
| #define ABS(a)(((a) < 0) ? - (a) :(a))
 | |
| #endif
 | |
| 
 | |
| /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
 | |
| #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
 | |
| 
 | |
| unsigned isqrt32(opus_uint32 _val);
 | |
| 
 | |
| /* CELT doesn't need it for fixed-point, by analysis.c does. */
 | |
| #if !defined(FIXED_POINT) || defined(ANALYSIS_C)
 | |
| #define cA 0.43157974f
 | |
| #define cB 0.67848403f
 | |
| #define cC 0.08595542f
 | |
| #define cE ((float)PI/2)
 | |
| static OPUS_INLINE float fast_atan2f(float y, float x) {
 | |
|    float x2, y2;
 | |
|    x2 = x*x;
 | |
|    y2 = y*y;
 | |
|    /* For very small values, we don't care about the answer, so
 | |
|       we can just return 0. */
 | |
|    if (x2 + y2 < 1e-18f)
 | |
|    {
 | |
|       return 0;
 | |
|    }
 | |
|    if(x2<y2){
 | |
|       float den = (y2 + cB*x2) * (y2 + cC*x2);
 | |
|       return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
 | |
|    }else{
 | |
|       float den = (x2 + cB*y2) * (x2 + cC*y2);
 | |
|       return  x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
 | |
|    }
 | |
| }
 | |
| #undef cA
 | |
| #undef cB
 | |
| #undef cC
 | |
| #undef cE
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifndef OVERRIDE_CELT_MAXABS16
 | |
| static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
 | |
| {
 | |
|    int i;
 | |
|    opus_val16 maxval = 0;
 | |
|    opus_val16 minval = 0;
 | |
|    for (i=0;i<len;i++)
 | |
|    {
 | |
|       maxval = MAX16(maxval, x[i]);
 | |
|       minval = MIN16(minval, x[i]);
 | |
|    }
 | |
|    return MAX32(EXTEND32(maxval),-EXTEND32(minval));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OVERRIDE_CELT_MAXABS32
 | |
| #ifdef FIXED_POINT
 | |
| static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
 | |
| {
 | |
|    int i;
 | |
|    opus_val32 maxval = 0;
 | |
|    opus_val32 minval = 0;
 | |
|    for (i=0;i<len;i++)
 | |
|    {
 | |
|       maxval = MAX32(maxval, x[i]);
 | |
|       minval = MIN32(minval, x[i]);
 | |
|    }
 | |
|    return MAX32(maxval, -minval);
 | |
| }
 | |
| #else
 | |
| #define celt_maxabs32(x,len) celt_maxabs16(x,len)
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifndef FIXED_POINT
 | |
| 
 | |
| #define celt_sqrt(x) ((float)sqrt(x))
 | |
| #define celt_rsqrt(x) (1.f/celt_sqrt(x))
 | |
| #define celt_rsqrt_norm(x) (celt_rsqrt(x))
 | |
| #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
 | |
| #define celt_rcp(x) (1.f/(x))
 | |
| #define celt_div(a,b) ((a)/(b))
 | |
| #define frac_div32(a,b) ((float)(a)/(b))
 | |
| 
 | |
| #ifdef FLOAT_APPROX
 | |
| 
 | |
| /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
 | |
|          denorm, +/- inf and NaN are *not* handled */
 | |
| 
 | |
| /** Base-2 log approximation (log2(x)). */
 | |
| static OPUS_INLINE float celt_log2(float x)
 | |
| {
 | |
|    int integer;
 | |
|    float frac;
 | |
|    union {
 | |
|       float f;
 | |
|       opus_uint32 i;
 | |
|    } in;
 | |
|    in.f = x;
 | |
|    integer = (in.i>>23)-127;
 | |
|    in.i -= integer<<23;
 | |
|    frac = in.f - 1.5f;
 | |
|    frac = -0.41445418f + frac*(0.95909232f
 | |
|           + frac*(-0.33951290f + frac*0.16541097f));
 | |
|    return 1+integer+frac;
 | |
| }
 | |
| 
 | |
| /** Base-2 exponential approximation (2^x). */
 | |
| static OPUS_INLINE float celt_exp2(float x)
 | |
| {
 | |
|    int integer;
 | |
|    float frac;
 | |
|    union {
 | |
|       float f;
 | |
|       opus_uint32 i;
 | |
|    } res;
 | |
|    integer = floor(x);
 | |
|    if (integer < -50)
 | |
|       return 0;
 | |
|    frac = x-integer;
 | |
|    /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
 | |
|    res.f = 0.99992522f + frac * (0.69583354f
 | |
|            + frac * (0.22606716f + 0.078024523f*frac));
 | |
|    res.i = (res.i + (integer<<23)) & 0x7fffffff;
 | |
|    return res.f;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define celt_log2(x) ((float)(1.442695040888963387*log(x)))
 | |
| #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
| 
 | |
| #include "os_support.h"
 | |
| 
 | |
| #ifndef OVERRIDE_CELT_ILOG2
 | |
| /** Integer log in base2. Undefined for zero and negative numbers */
 | |
| static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
 | |
| {
 | |
|    celt_sig_assert(x>0);
 | |
|    return EC_ILOG(x)-1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /** Integer log in base2. Defined for zero, but not for negative numbers */
 | |
| static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
 | |
| {
 | |
|    return x <= 0 ? 0 : celt_ilog2(x);
 | |
| }
 | |
| 
 | |
| opus_val16 celt_rsqrt_norm(opus_val32 x);
 | |
| 
 | |
| opus_val32 celt_sqrt(opus_val32 x);
 | |
| 
 | |
| opus_val16 celt_cos_norm(opus_val32 x);
 | |
| 
 | |
| /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
 | |
| static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
 | |
| {
 | |
|    int i;
 | |
|    opus_val16 n, frac;
 | |
|    /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
 | |
|        0.15530808010959576, -0.08556153059057618 */
 | |
|    static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
 | |
|    if (x==0)
 | |
|       return -32767;
 | |
|    i = celt_ilog2(x);
 | |
|    n = VSHR32(x,i-15)-32768-16384;
 | |
|    frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
 | |
|    return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  K0 = 1
 | |
|  K1 = log(2)
 | |
|  K2 = 3-4*log(2)
 | |
|  K3 = 3*log(2) - 2
 | |
| */
 | |
| #define D0 16383
 | |
| #define D1 22804
 | |
| #define D2 14819
 | |
| #define D3 10204
 | |
| 
 | |
| static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
 | |
| {
 | |
|    opus_val16 frac;
 | |
|    frac = SHL16(x, 4);
 | |
|    return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
 | |
| }
 | |
| /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
 | |
| static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
 | |
| {
 | |
|    int integer;
 | |
|    opus_val16 frac;
 | |
|    integer = SHR16(x,10);
 | |
|    if (integer>14)
 | |
|       return 0x7f000000;
 | |
|    else if (integer < -15)
 | |
|       return 0;
 | |
|    frac = celt_exp2_frac(x-SHL16(integer,10));
 | |
|    return VSHR32(EXTEND32(frac), -integer-2);
 | |
| }
 | |
| 
 | |
| opus_val32 celt_rcp(opus_val32 x);
 | |
| 
 | |
| #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
 | |
| 
 | |
| opus_val32 frac_div32(opus_val32 a, opus_val32 b);
 | |
| 
 | |
| #define M1 32767
 | |
| #define M2 -21
 | |
| #define M3 -11943
 | |
| #define M4 4936
 | |
| 
 | |
| /* Atan approximation using a 4th order polynomial. Input is in Q15 format
 | |
|    and normalized by pi/4. Output is in Q15 format */
 | |
| static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
 | |
| {
 | |
|    return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
 | |
| }
 | |
| 
 | |
| #undef M1
 | |
| #undef M2
 | |
| #undef M3
 | |
| #undef M4
 | |
| 
 | |
| /* atan2() approximation valid for positive input values */
 | |
| static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
 | |
| {
 | |
|    if (y < x)
 | |
|    {
 | |
|       opus_val32 arg;
 | |
|       arg = celt_div(SHL32(EXTEND32(y),15),x);
 | |
|       if (arg >= 32767)
 | |
|          arg = 32767;
 | |
|       return SHR16(celt_atan01(EXTRACT16(arg)),1);
 | |
|    } else {
 | |
|       opus_val32 arg;
 | |
|       arg = celt_div(SHL32(EXTEND32(x),15),y);
 | |
|       if (arg >= 32767)
 | |
|          arg = 32767;
 | |
|       return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
 | |
|    }
 | |
| }
 | |
| 
 | |
| #endif /* FIXED_POINT */
 | |
| #endif /* MATHOPS_H */
 |