forked from len0rd/rockbox
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21626 a1c6a512-1295-4272-9138-f99709370657
428 lines
13 KiB
C
428 lines
13 KiB
C
/*
|
|
** FFT and FHT routines
|
|
** Copyright 1988, 1993; Ron Mayer
|
|
**
|
|
** mayer_fht(fz,n);
|
|
** Does a hartley transform of "n" points in the array "fz".
|
|
** mayer_fft(n,real,imag)
|
|
** Does a fourier transform of "n" points of the "real" and
|
|
** "imag" arrays.
|
|
** mayer_ifft(n,real,imag)
|
|
** Does an inverse fourier transform of "n" points of the "real"
|
|
** and "imag" arrays.
|
|
** mayer_realfft(n,real)
|
|
** Does a real-valued fourier transform of "n" points of the
|
|
** "real" array. The real part of the transform ends
|
|
** up in the first half of the array and the imaginary part of the
|
|
** transform ends up in the second half of the array.
|
|
** mayer_realifft(n,real)
|
|
** The inverse of the realfft() routine above.
|
|
**
|
|
**
|
|
** NOTE: This routine uses at least 2 patented algorithms, and may be
|
|
** under the restrictions of a bunch of different organizations.
|
|
** Although I wrote it completely myself, it is kind of a derivative
|
|
** of a routine I once authored and released under the GPL, so it
|
|
** may fall under the free software foundation's restrictions;
|
|
** it was worked on as a Stanford Univ project, so they claim
|
|
** some rights to it; it was further optimized at work here, so
|
|
** I think this company claims parts of it. The patents are
|
|
** held by R. Bracewell (the FHT algorithm) and O. Buneman (the
|
|
** trig generator), both at Stanford Univ.
|
|
** If it were up to me, I'd say go do whatever you want with it;
|
|
** but it would be polite to give credit to the following people
|
|
** if you use this anywhere:
|
|
** Euler - probable inventor of the fourier transform.
|
|
** Gauss - probable inventor of the FFT.
|
|
** Hartley - probable inventor of the hartley transform.
|
|
** Buneman - for a really cool trig generator
|
|
** Mayer(me) - for authoring this particular version and
|
|
** including all the optimizations in one package.
|
|
** Thanks,
|
|
** Ron Mayer; mayer@acuson.com
|
|
**
|
|
*/
|
|
|
|
/* This is a slightly modified version of Mayer's contribution; write
|
|
* msp@ucsd.edu for the original code. Kudos to Mayer for a fine piece
|
|
* of work. -msp
|
|
*/
|
|
|
|
#ifdef MSW
|
|
#pragma warning( disable : 4305 ) /* uncast const double to float */
|
|
#pragma warning( disable : 4244 ) /* uncast double to float */
|
|
#pragma warning( disable : 4101 ) /* unused local variables */
|
|
#endif
|
|
|
|
#define REAL float
|
|
#define GOOD_TRIG
|
|
|
|
#ifdef GOOD_TRIG
|
|
#else
|
|
#define FAST_TRIG
|
|
#endif
|
|
|
|
#if defined(GOOD_TRIG)
|
|
#define FHT_SWAP(a,b,t) {(t)=(a);(a)=(b);(b)=(t);}
|
|
#define TRIG_VARS \
|
|
int t_lam=0;
|
|
#define TRIG_INIT(k,c,s) \
|
|
{ \
|
|
int i; \
|
|
for (i=2 ; i<=k ; i++) \
|
|
{coswrk[i]=costab[i];sinwrk[i]=sintab[i];} \
|
|
t_lam = 0; \
|
|
c = 1; \
|
|
s = 0; \
|
|
}
|
|
#define TRIG_NEXT(k,c,s) \
|
|
{ \
|
|
int i,j; \
|
|
(t_lam)++; \
|
|
for (i=0 ; !((1<<i)&t_lam) ; i++); \
|
|
i = k-i; \
|
|
s = sinwrk[i]; \
|
|
c = coswrk[i]; \
|
|
if (i>1) \
|
|
{ \
|
|
for (j=k-i+2 ; (1<<j)&t_lam ; j++); \
|
|
j = k - j; \
|
|
sinwrk[i] = halsec[i] * (sinwrk[i-1] + sinwrk[j]); \
|
|
coswrk[i] = halsec[i] * (coswrk[i-1] + coswrk[j]); \
|
|
} \
|
|
}
|
|
#define TRIG_RESET(k,c,s)
|
|
#endif
|
|
|
|
#if defined(FAST_TRIG)
|
|
#define TRIG_VARS \
|
|
REAL t_c,t_s;
|
|
#define TRIG_INIT(k,c,s) \
|
|
{ \
|
|
t_c = costab[k]; \
|
|
t_s = sintab[k]; \
|
|
c = 1; \
|
|
s = 0; \
|
|
}
|
|
#define TRIG_NEXT(k,c,s) \
|
|
{ \
|
|
REAL t = c; \
|
|
c = t*t_c - s*t_s; \
|
|
s = t*t_s + s*t_c; \
|
|
}
|
|
#define TRIG_RESET(k,c,s)
|
|
#endif
|
|
|
|
static REAL halsec[20]=
|
|
{
|
|
0,
|
|
0,
|
|
.54119610014619698439972320536638942006107206337801,
|
|
.50979557910415916894193980398784391368261849190893,
|
|
.50241928618815570551167011928012092247859337193963,
|
|
.50060299823519630134550410676638239611758632599591,
|
|
.50015063602065098821477101271097658495974913010340,
|
|
.50003765191554772296778139077905492847503165398345,
|
|
.50000941253588775676512870469186533538523133757983,
|
|
.50000235310628608051401267171204408939326297376426,
|
|
.50000058827484117879868526730916804925780637276181,
|
|
.50000014706860214875463798283871198206179118093251,
|
|
.50000003676714377807315864400643020315103490883972,
|
|
.50000000919178552207366560348853455333939112569380,
|
|
.50000000229794635411562887767906868558991922348920,
|
|
.50000000057448658687873302235147272458812263401372
|
|
};
|
|
static REAL costab[20]=
|
|
{
|
|
.00000000000000000000000000000000000000000000000000,
|
|
.70710678118654752440084436210484903928483593768847,
|
|
.92387953251128675612818318939678828682241662586364,
|
|
.98078528040323044912618223613423903697393373089333,
|
|
.99518472667219688624483695310947992157547486872985,
|
|
.99879545620517239271477160475910069444320361470461,
|
|
.99969881869620422011576564966617219685006108125772,
|
|
.99992470183914454092164649119638322435060646880221,
|
|
.99998117528260114265699043772856771617391725094433,
|
|
.99999529380957617151158012570011989955298763362218,
|
|
.99999882345170190992902571017152601904826792288976,
|
|
.99999970586288221916022821773876567711626389934930,
|
|
.99999992646571785114473148070738785694820115568892,
|
|
.99999998161642929380834691540290971450507605124278,
|
|
.99999999540410731289097193313960614895889430318945,
|
|
.99999999885102682756267330779455410840053741619428
|
|
};
|
|
static REAL sintab[20]=
|
|
{
|
|
1.0000000000000000000000000000000000000000000000000,
|
|
.70710678118654752440084436210484903928483593768846,
|
|
.38268343236508977172845998403039886676134456248561,
|
|
.19509032201612826784828486847702224092769161775195,
|
|
.09801714032956060199419556388864184586113667316749,
|
|
.04906767432741801425495497694268265831474536302574,
|
|
.02454122852291228803173452945928292506546611923944,
|
|
.01227153828571992607940826195100321214037231959176,
|
|
.00613588464915447535964023459037258091705788631738,
|
|
.00306795676296597627014536549091984251894461021344,
|
|
.00153398018628476561230369715026407907995486457522,
|
|
.00076699031874270452693856835794857664314091945205,
|
|
.00038349518757139558907246168118138126339502603495,
|
|
.00019174759731070330743990956198900093346887403385,
|
|
.00009587379909597734587051721097647635118706561284,
|
|
.00004793689960306688454900399049465887274686668768
|
|
};
|
|
static REAL coswrk[20]=
|
|
{
|
|
.00000000000000000000000000000000000000000000000000,
|
|
.70710678118654752440084436210484903928483593768847,
|
|
.92387953251128675612818318939678828682241662586364,
|
|
.98078528040323044912618223613423903697393373089333,
|
|
.99518472667219688624483695310947992157547486872985,
|
|
.99879545620517239271477160475910069444320361470461,
|
|
.99969881869620422011576564966617219685006108125772,
|
|
.99992470183914454092164649119638322435060646880221,
|
|
.99998117528260114265699043772856771617391725094433,
|
|
.99999529380957617151158012570011989955298763362218,
|
|
.99999882345170190992902571017152601904826792288976,
|
|
.99999970586288221916022821773876567711626389934930,
|
|
.99999992646571785114473148070738785694820115568892,
|
|
.99999998161642929380834691540290971450507605124278,
|
|
.99999999540410731289097193313960614895889430318945,
|
|
.99999999885102682756267330779455410840053741619428
|
|
};
|
|
static REAL sinwrk[20]=
|
|
{
|
|
1.0000000000000000000000000000000000000000000000000,
|
|
.70710678118654752440084436210484903928483593768846,
|
|
.38268343236508977172845998403039886676134456248561,
|
|
.19509032201612826784828486847702224092769161775195,
|
|
.09801714032956060199419556388864184586113667316749,
|
|
.04906767432741801425495497694268265831474536302574,
|
|
.02454122852291228803173452945928292506546611923944,
|
|
.01227153828571992607940826195100321214037231959176,
|
|
.00613588464915447535964023459037258091705788631738,
|
|
.00306795676296597627014536549091984251894461021344,
|
|
.00153398018628476561230369715026407907995486457522,
|
|
.00076699031874270452693856835794857664314091945205,
|
|
.00038349518757139558907246168118138126339502603495,
|
|
.00019174759731070330743990956198900093346887403385,
|
|
.00009587379909597734587051721097647635118706561284,
|
|
.00004793689960306688454900399049465887274686668768
|
|
};
|
|
|
|
|
|
#define SQRT2_2 0.70710678118654752440084436210484
|
|
#define SQRT2 2*0.70710678118654752440084436210484
|
|
|
|
void mayer_fht(REAL *fz, int n)
|
|
{
|
|
/* REAL a,b;
|
|
REAL c1,s1,s2,c2,s3,c3,s4,c4;
|
|
REAL f0,g0,f1,g1,f2,g2,f3,g3; */
|
|
int k,k1,k2,k3,k4,kx;
|
|
REAL *fi,*fn,*gi;
|
|
TRIG_VARS;
|
|
|
|
for (k1=1,k2=0;k1<n;k1++)
|
|
{
|
|
REAL aa;
|
|
for (k=n>>1; (!((k2^=k)&k)); k>>=1);
|
|
if (k1>k2)
|
|
{
|
|
aa=fz[k1];fz[k1]=fz[k2];fz[k2]=aa;
|
|
}
|
|
}
|
|
for ( k=0 ; (1<<k)<n ; k++ );
|
|
k &= 1;
|
|
if (k==0)
|
|
{
|
|
for (fi=fz,fn=fz+n;fi<fn;fi+=4)
|
|
{
|
|
REAL f0,f1,f2,f3;
|
|
f1 = fi[0 ]-fi[1 ];
|
|
f0 = fi[0 ]+fi[1 ];
|
|
f3 = fi[2 ]-fi[3 ];
|
|
f2 = fi[2 ]+fi[3 ];
|
|
fi[2 ] = (f0-f2);
|
|
fi[0 ] = (f0+f2);
|
|
fi[3 ] = (f1-f3);
|
|
fi[1 ] = (f1+f3);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (fi=fz,fn=fz+n,gi=fi+1;fi<fn;fi+=8,gi+=8)
|
|
{
|
|
REAL bs1,bc1,bs2,bc2,bs3,bc3,bs4,bc4,
|
|
bg0,bf0,bf1,bg1,bf2,bg2,bf3,bg3;
|
|
bc1 = fi[0 ] - gi[0 ];
|
|
bs1 = fi[0 ] + gi[0 ];
|
|
bc2 = fi[2 ] - gi[2 ];
|
|
bs2 = fi[2 ] + gi[2 ];
|
|
bc3 = fi[4 ] - gi[4 ];
|
|
bs3 = fi[4 ] + gi[4 ];
|
|
bc4 = fi[6 ] - gi[6 ];
|
|
bs4 = fi[6 ] + gi[6 ];
|
|
bf1 = (bs1 - bs2);
|
|
bf0 = (bs1 + bs2);
|
|
bg1 = (bc1 - bc2);
|
|
bg0 = (bc1 + bc2);
|
|
bf3 = (bs3 - bs4);
|
|
bf2 = (bs3 + bs4);
|
|
bg3 = SQRT2*bc4;
|
|
bg2 = SQRT2*bc3;
|
|
fi[4 ] = bf0 - bf2;
|
|
fi[0 ] = bf0 + bf2;
|
|
fi[6 ] = bf1 - bf3;
|
|
fi[2 ] = bf1 + bf3;
|
|
gi[4 ] = bg0 - bg2;
|
|
gi[0 ] = bg0 + bg2;
|
|
gi[6 ] = bg1 - bg3;
|
|
gi[2 ] = bg1 + bg3;
|
|
}
|
|
}
|
|
if (n<16) return;
|
|
|
|
do
|
|
{
|
|
REAL s1,c1;
|
|
int ii;
|
|
k += 2;
|
|
k1 = 1 << k;
|
|
k2 = k1 << 1;
|
|
k4 = k2 << 1;
|
|
k3 = k2 + k1;
|
|
kx = k1 >> 1;
|
|
fi = fz;
|
|
gi = fi + kx;
|
|
fn = fz + n;
|
|
do
|
|
{
|
|
REAL g0,f0,f1,g1,f2,g2,f3,g3;
|
|
f1 = fi[0 ] - fi[k1];
|
|
f0 = fi[0 ] + fi[k1];
|
|
f3 = fi[k2] - fi[k3];
|
|
f2 = fi[k2] + fi[k3];
|
|
fi[k2] = f0 - f2;
|
|
fi[0 ] = f0 + f2;
|
|
fi[k3] = f1 - f3;
|
|
fi[k1] = f1 + f3;
|
|
g1 = gi[0 ] - gi[k1];
|
|
g0 = gi[0 ] + gi[k1];
|
|
g3 = SQRT2 * gi[k3];
|
|
g2 = SQRT2 * gi[k2];
|
|
gi[k2] = g0 - g2;
|
|
gi[0 ] = g0 + g2;
|
|
gi[k3] = g1 - g3;
|
|
gi[k1] = g1 + g3;
|
|
gi += k4;
|
|
fi += k4;
|
|
} while (fi<fn);
|
|
TRIG_INIT(k,c1,s1);
|
|
for (ii=1;ii<kx;ii++)
|
|
{
|
|
REAL c2,s2;
|
|
TRIG_NEXT(k,c1,s1);
|
|
c2 = c1*c1 - s1*s1;
|
|
s2 = 2*(c1*s1);
|
|
fn = fz + n;
|
|
fi = fz +ii;
|
|
gi = fz +k1-ii;
|
|
do
|
|
{
|
|
REAL a,b,g0,f0,f1,g1,f2,g2,f3,g3;
|
|
b = s2*fi[k1] - c2*gi[k1];
|
|
a = c2*fi[k1] + s2*gi[k1];
|
|
f1 = fi[0 ] - a;
|
|
f0 = fi[0 ] + a;
|
|
g1 = gi[0 ] - b;
|
|
g0 = gi[0 ] + b;
|
|
b = s2*fi[k3] - c2*gi[k3];
|
|
a = c2*fi[k3] + s2*gi[k3];
|
|
f3 = fi[k2] - a;
|
|
f2 = fi[k2] + a;
|
|
g3 = gi[k2] - b;
|
|
g2 = gi[k2] + b;
|
|
b = s1*f2 - c1*g3;
|
|
a = c1*f2 + s1*g3;
|
|
fi[k2] = f0 - a;
|
|
fi[0 ] = f0 + a;
|
|
gi[k3] = g1 - b;
|
|
gi[k1] = g1 + b;
|
|
b = c1*g2 - s1*f3;
|
|
a = s1*g2 + c1*f3;
|
|
gi[k2] = g0 - a;
|
|
gi[0 ] = g0 + a;
|
|
fi[k3] = f1 - b;
|
|
fi[k1] = f1 + b;
|
|
gi += k4;
|
|
fi += k4;
|
|
} while (fi<fn);
|
|
}
|
|
TRIG_RESET(k,c1,s1);
|
|
} while (k4<n);
|
|
}
|
|
|
|
void mayer_fft(int n, REAL *real, REAL *imag)
|
|
{
|
|
REAL a,b,c,d;
|
|
REAL q,r,s,t;
|
|
int i,j,k;
|
|
for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
|
a = real[i]; b = real[j]; q=a+b; r=a-b;
|
|
c = imag[i]; d = imag[j]; s=c+d; t=c-d;
|
|
real[i] = (q+t)*.5; real[j] = (q-t)*.5;
|
|
imag[i] = (s-r)*.5; imag[j] = (s+r)*.5;
|
|
}
|
|
mayer_fht(real,n);
|
|
mayer_fht(imag,n);
|
|
}
|
|
|
|
void mayer_ifft(int n, REAL *real, REAL *imag)
|
|
{
|
|
REAL a,b,c,d;
|
|
REAL q,r,s,t;
|
|
int i,j,k;
|
|
mayer_fht(real,n);
|
|
mayer_fht(imag,n);
|
|
for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
|
a = real[i]; b = real[j]; q=a+b; r=a-b;
|
|
c = imag[i]; d = imag[j]; s=c+d; t=c-d;
|
|
imag[i] = (s+r)*0.5; imag[j] = (s-r)*0.5;
|
|
real[i] = (q-t)*0.5; real[j] = (q+t)*0.5;
|
|
}
|
|
}
|
|
|
|
void mayer_realfft(int n, REAL *real)
|
|
{
|
|
#ifdef ROCKBOX
|
|
REAL a,b;
|
|
#else
|
|
REAL a,b,c,d;
|
|
#endif
|
|
int i,j,k;
|
|
mayer_fht(real,n);
|
|
for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
|
a = real[i];
|
|
b = real[j];
|
|
real[j] = (a-b)*0.5;
|
|
real[i] = (a+b)*0.5;
|
|
}
|
|
}
|
|
|
|
void mayer_realifft(int n, REAL *real)
|
|
{
|
|
#ifdef ROCKBOX
|
|
REAL a,b;
|
|
#else
|
|
REAL a,b,c,d;
|
|
#endif
|
|
int i,j,k;
|
|
for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
|
a = real[i];
|
|
b = real[j];
|
|
real[j] = (a-b);
|
|
real[i] = (a+b);
|
|
}
|
|
mayer_fht(real,n);
|
|
}
|
|
|