1
0
Fork 0
forked from len0rd/rockbox
foxbox/firmware/target/mips/ingenic_jz47xx/ata-sd-jz4740.c
Rafaël Carré 90d7a8c4fc Ingenic jz4740 SD driver: remove custom list of SD commands
Replace most references to MMC/mmc with SD/sd
Remove MMC failover code since MMC cards aren't supported

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21604 a1c6a512-1295-4272-9138-f99709370657
2009-07-01 22:41:33 +00:00

1782 lines
54 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Maurus Cuelenaere
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "jz4740.h"
#include "ata.h"
#include "ata-sd-target.h"
#include "logf.h"
#include "sd.h"
#include "system.h"
#include "kernel.h"
#include "panic.h"
#include "debug.h"
#include "storage.h"
#include "string.h"
#include "led.h"
static struct wakeup sd_wakeup;
static long last_disk_activity = -1;
//#define SD_DMA_ENABLE
#define SD_DMA_INTERRUPT 0
#define DEBUG(x...) logf(x)
#define SD_INSERT_STATUS() __gpio_get_pin(MMC_CD_PIN)
#define SD_RESET() __msc_reset()
#define SD_IRQ_MASK() \
do { \
REG_MSC_IMASK = 0xffff; \
REG_MSC_IREG = 0xffff; \
} while (0)
/* Error codes */
enum sd_result_t
{
SD_NO_RESPONSE = -1,
SD_NO_ERROR = 0,
SD_ERROR_OUT_OF_RANGE,
SD_ERROR_ADDRESS,
SD_ERROR_BLOCK_LEN,
SD_ERROR_ERASE_SEQ,
SD_ERROR_ERASE_PARAM,
SD_ERROR_WP_VIOLATION,
SD_ERROR_CARD_IS_LOCKED,
SD_ERROR_LOCK_UNLOCK_FAILED,
SD_ERROR_COM_CRC,
SD_ERROR_ILLEGAL_COMMAND,
SD_ERROR_CARD_ECC_FAILED,
SD_ERROR_CC,
SD_ERROR_GENERAL,
SD_ERROR_UNDERRUN,
SD_ERROR_OVERRUN,
SD_ERROR_CID_CSD_OVERWRITE,
SD_ERROR_STATE_MISMATCH,
SD_ERROR_HEADER_MISMATCH,
SD_ERROR_TIMEOUT,
SD_ERROR_CRC,
SD_ERROR_DRIVER_FAILURE,
};
/* Standard MMC/SD clock speeds */
#define MMC_CLOCK_SLOW 400000 /* 400 kHz for initial setup */
#define MMC_CLOCK_FAST 20000000 /* 20 MHz for maximum for normal operation */
#define SD_CLOCK_FAST 24000000 /* 24 MHz for SD Cards */
#define SD_CLOCK_HIGH 48000000 /* 48 MHz for SD Cards */
/* Extra commands for state control */
/* Use negative numbers to disambiguate */
#define SD_CIM_RESET -1
/* Proprietary commands, illegal/reserved according to SD Specification 2.00 */
/* class 1 */
#define SD_READ_DAT_UNTIL_STOP 11 /* adtc [31:0] dadr R1 */
/* class 3 */
#define SD_WRITE_DAT_UNTIL_STOP 20 /* adtc [31:0] data addr R1 */
/* class 4 */
#define SD_PROGRAM_CID 26 /* adtc R1 */
#define SD_PROGRAM_CSD 27 /* adtc R1 */
/* class 9 */
#define SD_GO_IRQ_STATE 40 /* bcr R5 */
/* Don't change the order of these; they are used in dispatch tables */
enum sd_rsp_t
{
RESPONSE_NONE = 0,
RESPONSE_R1 = 1,
RESPONSE_R1B = 2,
RESPONSE_R2_CID = 3,
RESPONSE_R2_CSD = 4,
RESPONSE_R3 = 5,
RESPONSE_R4 = 6,
RESPONSE_R5 = 7,
RESPONSE_R6 = 8,
RESPONSE_R7 = 9,
};
/*
MMC status in R1
Type
e : error bit
s : status bit
r : detected and set for the actual command response
x : detected and set during command execution. the host must poll
the card by sending status command in order to read these bits.
Clear condition
a : according to the card state
b : always related to the previous command. Reception of
a valid command will clear it (with a delay of one command)
c : clear by read
*/
#define R1_OUT_OF_RANGE (1 << 31) /* er, c */
#define R1_ADDRESS_ERROR (1 << 30) /* erx, c */
#define R1_BLOCK_LEN_ERROR (1 << 29) /* er, c */
#define R1_ERASE_SEQ_ERROR (1 << 28) /* er, c */
#define R1_ERASE_PARAM (1 << 27) /* ex, c */
#define R1_WP_VIOLATION (1 << 26) /* erx, c */
#define R1_CARD_IS_LOCKED (1 << 25) /* sx, a */
#define R1_LOCK_UNLOCK_FAILED (1 << 24) /* erx, c */
#define R1_COM_CRC_ERROR (1 << 23) /* er, b */
#define R1_ILLEGAL_COMMAND (1 << 22) /* er, b */
#define R1_CARD_ECC_FAILED (1 << 21) /* ex, c */
#define R1_CC_ERROR (1 << 20) /* erx, c */
#define R1_ERROR (1 << 19) /* erx, c */
#define R1_UNDERRUN (1 << 18) /* ex, c */
#define R1_OVERRUN (1 << 17) /* ex, c */
#define R1_CID_CSD_OVERWRITE (1 << 16) /* erx, c, CID/CSD overwrite */
#define R1_WP_ERASE_SKIP (1 << 15) /* sx, c */
#define R1_CARD_ECC_DISABLED (1 << 14) /* sx, a */
#define R1_ERASE_RESET (1 << 13) /* sr, c */
#define R1_STATUS(x) (x & 0xFFFFE000)
#define R1_CURRENT_STATE(x) ((x & 0x00001E00) >> 9) /* sx, b (4 bits) */
#define R1_READY_FOR_DATA (1 << 8) /* sx, a */
#define R1_APP_CMD (1 << 7) /* sr, c */
/* These are unpacked versions of the actual responses */
struct sd_response_r1
{
unsigned char cmd;
unsigned int status;
};
struct sd_cid
{
unsigned char mid;
unsigned short oid;
unsigned char pnm[7]; /* Product name (we null-terminate) */
unsigned char prv;
unsigned int psn;
unsigned char mdt;
};
struct sd_csd
{
unsigned char csd_structure;
unsigned char spec_vers;
unsigned char taac;
unsigned char nsac;
unsigned char tran_speed;
unsigned short ccc;
unsigned char read_bl_len;
unsigned char read_bl_partial;
unsigned char write_blk_misalign;
unsigned char read_blk_misalign;
unsigned char dsr_imp;
unsigned short c_size;
unsigned char vdd_r_curr_min;
unsigned char vdd_r_curr_max;
unsigned char vdd_w_curr_min;
unsigned char vdd_w_curr_max;
unsigned char c_size_mult;
union
{
struct /* MMC system specification version 3.1 */
{
unsigned char erase_grp_size;
unsigned char erase_grp_mult;
} v31;
struct /* MMC system specification version 2.2 */
{
unsigned char sector_size;
unsigned char erase_grp_size;
} v22;
} erase;
unsigned char wp_grp_size;
unsigned char wp_grp_enable;
unsigned char default_ecc;
unsigned char r2w_factor;
unsigned char write_bl_len;
unsigned char write_bl_partial;
unsigned char file_format_grp;
unsigned char copy;
unsigned char perm_write_protect;
unsigned char tmp_write_protect;
unsigned char file_format;
unsigned char ecc;
};
struct sd_response_r3
{
unsigned int ocr;
};
#define SD_VDD_145_150 0x00000001 /* VDD voltage 1.45 - 1.50 */
#define SD_VDD_150_155 0x00000002 /* VDD voltage 1.50 - 1.55 */
#define SD_VDD_155_160 0x00000004 /* VDD voltage 1.55 - 1.60 */
#define SD_VDD_160_165 0x00000008 /* VDD voltage 1.60 - 1.65 */
#define SD_VDD_165_170 0x00000010 /* VDD voltage 1.65 - 1.70 */
#define SD_VDD_17_18 0x00000020 /* VDD voltage 1.7 - 1.8 */
#define SD_VDD_18_19 0x00000040 /* VDD voltage 1.8 - 1.9 */
#define SD_VDD_19_20 0x00000080 /* VDD voltage 1.9 - 2.0 */
#define SD_VDD_20_21 0x00000100 /* VDD voltage 2.0 ~ 2.1 */
#define SD_VDD_21_22 0x00000200 /* VDD voltage 2.1 ~ 2.2 */
#define SD_VDD_22_23 0x00000400 /* VDD voltage 2.2 ~ 2.3 */
#define SD_VDD_23_24 0x00000800 /* VDD voltage 2.3 ~ 2.4 */
#define SD_VDD_24_25 0x00001000 /* VDD voltage 2.4 ~ 2.5 */
#define SD_VDD_25_26 0x00002000 /* VDD voltage 2.5 ~ 2.6 */
#define SD_VDD_26_27 0x00004000 /* VDD voltage 2.6 ~ 2.7 */
#define SD_VDD_27_28 0x00008000 /* VDD voltage 2.7 ~ 2.8 */
#define SD_VDD_28_29 0x00010000 /* VDD voltage 2.8 ~ 2.9 */
#define SD_VDD_29_30 0x00020000 /* VDD voltage 2.9 ~ 3.0 */
#define SD_VDD_30_31 0x00040000 /* VDD voltage 3.0 ~ 3.1 */
#define SD_VDD_31_32 0x00080000 /* VDD voltage 3.1 ~ 3.2 */
#define SD_VDD_32_33 0x00100000 /* VDD voltage 3.2 ~ 3.3 */
#define SD_VDD_33_34 0x00200000 /* VDD voltage 3.3 ~ 3.4 */
#define SD_VDD_34_35 0x00400000 /* VDD voltage 3.4 ~ 3.5 */
#define SD_VDD_35_36 0x00800000 /* VDD voltage 3.5 ~ 3.6 */
#define SD_CARD_BUSY 0x80000000 /* Card Power up status bit */
/* CSD field definitions */
#define CSD_STRUCT_VER_1_0 0 /* Valid for system specification 1.0 - 1.2 */
#define CSD_STRUCT_VER_1_1 1 /* Valid for system specification 1.4 - 2.2 */
#define CSD_STRUCT_VER_1_2 2 /* Valid for system specification 3.1 */
#define CSD_SPEC_VER_0 0 /* Implements system specification 1.0 - 1.2 */
#define CSD_SPEC_VER_1 1 /* Implements system specification 1.4 */
#define CSD_SPEC_VER_2 2 /* Implements system specification 2.0 - 2.2 */
#define CSD_SPEC_VER_3 3 /* Implements system specification 3.1 */
/* the information structure of SD Card */
typedef struct SD_INFO
{
int rca; /* RCA */
struct sd_cid cid;
struct sd_csd csd;
unsigned int block_num;
unsigned int block_len;
unsigned int ocr;
} sd_info;
struct sd_request
{
int index; /* Slot index - used for CS lines */
int cmd; /* Command to send */
unsigned int arg; /* Argument to send */
enum sd_rsp_t rtype; /* Response type expected */
/* Data transfer (these may be modified at the low level) */
unsigned short nob; /* Number of blocks to transfer*/
unsigned short block_len; /* Block length */
unsigned char *buffer; /* Data buffer */
unsigned int cnt; /* Data length, for PIO */
/* Results */
unsigned char response[18]; /* Buffer to store response - CRC is optional */
enum sd_result_t result;
};
#define SD_OCR_ARG 0x00ff8000 /* Argument of OCR */
/***********************************************************************
* SD Events
*/
#define SD_EVENT_NONE 0x00 /* No events */
#define SD_EVENT_RX_DATA_DONE 0x01 /* Rx data done */
#define SD_EVENT_TX_DATA_DONE 0x02 /* Tx data done */
#define SD_EVENT_PROG_DONE 0x04 /* Programming is done */
static int use_4bit = 1; /* Use 4-bit data bus */
static int num_6 = 0;
static int sd2_0 = 0;
static sd_info sdinfo;
/**************************************************************************
* Utility functions
**************************************************************************/
#define PARSE_U32(_buf,_index) \
(((unsigned int)_buf[_index]) << 24) | (((unsigned int)_buf[_index+1]) << 16) | \
(((unsigned int)_buf[_index+2]) << 8) | ((unsigned int)_buf[_index+3]);
#define PARSE_U16(_buf,_index) \
(((unsigned short)_buf[_index]) << 8) | ((unsigned short)_buf[_index+1]);
int sd_unpack_csd(struct sd_request *request, struct sd_csd *csd)
{
unsigned char *buf = request->response;
int num = 0;
if (request->result)
return request->result;
csd->csd_structure = (buf[1] & 0xc0) >> 6;
if (csd->csd_structure)
sd2_0 = 1;
else
sd2_0 = 0;
switch (csd->csd_structure) {
case 0 :
csd->taac = buf[2];
csd->nsac = buf[3];
csd->tran_speed = buf[4];
csd->ccc = (((unsigned short)buf[5]) << 4) | ((buf[6] & 0xf0) >> 4);
csd->read_bl_len = buf[6] & 0x0f;
/* for support 2GB card*/
if (csd->read_bl_len >= 10)
{
num = csd->read_bl_len - 9;
csd->read_bl_len = 9;
}
csd->read_bl_partial = (buf[7] & 0x80) ? 1 : 0;
csd->write_blk_misalign = (buf[7] & 0x40) ? 1 : 0;
csd->read_blk_misalign = (buf[7] & 0x20) ? 1 : 0;
csd->dsr_imp = (buf[7] & 0x10) ? 1 : 0;
csd->c_size = ((((unsigned short)buf[7]) & 0x03) << 10) | (((unsigned short)buf[8]) << 2) | (((unsigned short)buf[9]) & 0xc0) >> 6;
if (num)
csd->c_size = csd->c_size << num;
csd->vdd_r_curr_min = (buf[9] & 0x38) >> 3;
csd->vdd_r_curr_max = buf[9] & 0x07;
csd->vdd_w_curr_min = (buf[10] & 0xe0) >> 5;
csd->vdd_w_curr_max = (buf[10] & 0x1c) >> 2;
csd->c_size_mult = ((buf[10] & 0x03) << 1) | ((buf[11] & 0x80) >> 7);
switch (csd->csd_structure) {
case CSD_STRUCT_VER_1_0:
case CSD_STRUCT_VER_1_1:
csd->erase.v22.sector_size = (buf[11] & 0x7c) >> 2;
csd->erase.v22.erase_grp_size = ((buf[11] & 0x03) << 3) | ((buf[12] & 0xe0) >> 5);
break;
case CSD_STRUCT_VER_1_2:
default:
csd->erase.v31.erase_grp_size = (buf[11] & 0x7c) >> 2;
csd->erase.v31.erase_grp_mult = ((buf[11] & 0x03) << 3) | ((buf[12] & 0xe0) >> 5);
break;
}
csd->wp_grp_size = buf[12] & 0x1f;
csd->wp_grp_enable = (buf[13] & 0x80) ? 1 : 0;
csd->default_ecc = (buf[13] & 0x60) >> 5;
csd->r2w_factor = (buf[13] & 0x1c) >> 2;
csd->write_bl_len = ((buf[13] & 0x03) << 2) | ((buf[14] & 0xc0) >> 6);
if (csd->write_bl_len >= 10)
csd->write_bl_len = 9;
csd->write_bl_partial = (buf[14] & 0x20) ? 1 : 0;
csd->file_format_grp = (buf[15] & 0x80) ? 1 : 0;
csd->copy = (buf[15] & 0x40) ? 1 : 0;
csd->perm_write_protect = (buf[15] & 0x20) ? 1 : 0;
csd->tmp_write_protect = (buf[15] & 0x10) ? 1 : 0;
csd->file_format = (buf[15] & 0x0c) >> 2;
csd->ecc = buf[15] & 0x03;
DEBUG("csd_structure=%d spec_vers=%d taac=%02x nsac=%02x tran_speed=%02x",
csd->csd_structure, csd->spec_vers,
csd->taac, csd->nsac, csd->tran_speed);
DEBUG("ccc=%04x read_bl_len=%d read_bl_partial=%d write_blk_misalign=%d",
csd->ccc, csd->read_bl_len,
csd->read_bl_partial, csd->write_blk_misalign);
DEBUG("read_blk_misalign=%d dsr_imp=%d c_size=%d vdd_r_curr_min=%d",
csd->read_blk_misalign, csd->dsr_imp,
csd->c_size, csd->vdd_r_curr_min);
DEBUG("vdd_r_curr_max=%d vdd_w_curr_min=%d vdd_w_curr_max=%d c_size_mult=%d",
csd->vdd_r_curr_max, csd->vdd_w_curr_min,
csd->vdd_w_curr_max, csd->c_size_mult);
DEBUG("wp_grp_size=%d wp_grp_enable=%d default_ecc=%d r2w_factor=%d",
csd->wp_grp_size, csd->wp_grp_enable,
csd->default_ecc, csd->r2w_factor);
DEBUG("write_bl_len=%d write_bl_partial=%d file_format_grp=%d copy=%d",
csd->write_bl_len, csd->write_bl_partial,
csd->file_format_grp, csd->copy);
DEBUG("perm_write_protect=%d tmp_write_protect=%d file_format=%d ecc=%d",
csd->perm_write_protect, csd->tmp_write_protect,
csd->file_format, csd->ecc);
switch (csd->csd_structure) {
case CSD_STRUCT_VER_1_0:
case CSD_STRUCT_VER_1_1:
DEBUG("V22 sector_size=%d erase_grp_size=%d",
csd->erase.v22.sector_size,
csd->erase.v22.erase_grp_size);
break;
case CSD_STRUCT_VER_1_2:
default:
DEBUG("V31 erase_grp_size=%d erase_grp_mult=%d",
csd->erase.v31.erase_grp_size,
csd->erase.v31.erase_grp_mult);
break;
}
break;
case 1 :
csd->taac = 0;
csd->nsac = 0;
csd->tran_speed = buf[4];
csd->ccc = (((unsigned short)buf[5]) << 4) | ((buf[6] & 0xf0) >> 4);
csd->read_bl_len = 9;
csd->read_bl_partial = 0;
csd->write_blk_misalign = 0;
csd->read_blk_misalign = 0;
csd->dsr_imp = (buf[7] & 0x10) ? 1 : 0;
csd->c_size = ((((unsigned short)buf[8]) & 0x3f) << 16) | (((unsigned short)buf[9]) << 8) | ((unsigned short)buf[10]) ;
switch (csd->csd_structure) {
case CSD_STRUCT_VER_1_0:
case CSD_STRUCT_VER_1_1:
csd->erase.v22.sector_size = 0x7f;
csd->erase.v22.erase_grp_size = 0;
break;
case CSD_STRUCT_VER_1_2:
default:
csd->erase.v31.erase_grp_size = 0x7f;
csd->erase.v31.erase_grp_mult = 0;
break;
}
csd->wp_grp_size = 0;
csd->wp_grp_enable = 0;
csd->default_ecc = (buf[13] & 0x60) >> 5;
csd->r2w_factor = 4;/* Unused */
csd->write_bl_len = 9;
csd->write_bl_partial = 0;
csd->file_format_grp = 0;
csd->copy = (buf[15] & 0x40) ? 1 : 0;
csd->perm_write_protect = (buf[15] & 0x20) ? 1 : 0;
csd->tmp_write_protect = (buf[15] & 0x10) ? 1 : 0;
csd->file_format = 0;
csd->ecc = buf[15] & 0x03;
DEBUG("csd_structure=%d spec_vers=%d taac=%02x nsac=%02x tran_speed=%02x",
csd->csd_structure, csd->spec_vers,
csd->taac, csd->nsac, csd->tran_speed);
DEBUG("ccc=%04x read_bl_len=%d read_bl_partial=%d write_blk_misalign=%d",
csd->ccc, csd->read_bl_len,
csd->read_bl_partial, csd->write_blk_misalign);
DEBUG("read_blk_misalign=%d dsr_imp=%d c_size=%d vdd_r_curr_min=%d",
csd->read_blk_misalign, csd->dsr_imp,
csd->c_size, csd->vdd_r_curr_min);
DEBUG("vdd_r_curr_max=%d vdd_w_curr_min=%d vdd_w_curr_max=%d c_size_mult=%d",
csd->vdd_r_curr_max, csd->vdd_w_curr_min,
csd->vdd_w_curr_max, csd->c_size_mult);
DEBUG("wp_grp_size=%d wp_grp_enable=%d default_ecc=%d r2w_factor=%d",
csd->wp_grp_size, csd->wp_grp_enable,
csd->default_ecc, csd->r2w_factor);
DEBUG("write_bl_len=%d write_bl_partial=%d file_format_grp=%d copy=%d",
csd->write_bl_len, csd->write_bl_partial,
csd->file_format_grp, csd->copy);
DEBUG("perm_write_protect=%d tmp_write_protect=%d file_format=%d ecc=%d",
csd->perm_write_protect, csd->tmp_write_protect,
csd->file_format, csd->ecc);
switch (csd->csd_structure) {
case CSD_STRUCT_VER_1_0:
case CSD_STRUCT_VER_1_1:
DEBUG("V22 sector_size=%d erase_grp_size=%d",
csd->erase.v22.sector_size,
csd->erase.v22.erase_grp_size);
break;
case CSD_STRUCT_VER_1_2:
default:
DEBUG("V31 erase_grp_size=%d erase_grp_mult=%d",
csd->erase.v31.erase_grp_size,
csd->erase.v31.erase_grp_mult);
break;
}
}
if (buf[0] != 0x3f)
return SD_ERROR_HEADER_MISMATCH;
return 0;
}
int sd_unpack_r1(struct sd_request *request, struct sd_response_r1 *r1)
{
unsigned char *buf = request->response;
if (request->result)
return request->result;
r1->cmd = buf[0];
r1->status = PARSE_U32(buf,1);
DEBUG("sd_unpack_r1: cmd=%d status=%08x", r1->cmd, r1->status);
if (R1_STATUS(r1->status)) {
if (r1->status & R1_OUT_OF_RANGE) return SD_ERROR_OUT_OF_RANGE;
if (r1->status & R1_ADDRESS_ERROR) return SD_ERROR_ADDRESS;
if (r1->status & R1_BLOCK_LEN_ERROR) return SD_ERROR_BLOCK_LEN;
if (r1->status & R1_ERASE_SEQ_ERROR) return SD_ERROR_ERASE_SEQ;
if (r1->status & R1_ERASE_PARAM) return SD_ERROR_ERASE_PARAM;
if (r1->status & R1_WP_VIOLATION) return SD_ERROR_WP_VIOLATION;
//if (r1->status & R1_CARD_IS_LOCKED) return SD_ERROR_CARD_IS_LOCKED;
if (r1->status & R1_LOCK_UNLOCK_FAILED) return SD_ERROR_LOCK_UNLOCK_FAILED;
if (r1->status & R1_COM_CRC_ERROR) return SD_ERROR_COM_CRC;
if (r1->status & R1_ILLEGAL_COMMAND) return SD_ERROR_ILLEGAL_COMMAND;
if (r1->status & R1_CARD_ECC_FAILED) return SD_ERROR_CARD_ECC_FAILED;
if (r1->status & R1_CC_ERROR) return SD_ERROR_CC;
if (r1->status & R1_ERROR) return SD_ERROR_GENERAL;
if (r1->status & R1_UNDERRUN) return SD_ERROR_UNDERRUN;
if (r1->status & R1_OVERRUN) return SD_ERROR_OVERRUN;
if (r1->status & R1_CID_CSD_OVERWRITE) return SD_ERROR_CID_CSD_OVERWRITE;
}
if (buf[0] != request->cmd)
return SD_ERROR_HEADER_MISMATCH;
/* This should be last - it's the least dangerous error */
return 0;
}
int sd_unpack_scr(struct sd_request *request, struct sd_response_r1 *r1, unsigned int *scr)
{
unsigned char *buf = request->response;
if (request->result)
return request->result;
*scr = PARSE_U32(buf, 5); /* Save SCR returned by the SD Card */
return sd_unpack_r1(request, r1);
}
int sd_unpack_r6(struct sd_request *request, struct sd_response_r1 *r1, int *rca)
{
unsigned char *buf = request->response;
if (request->result) return request->result;
*rca = PARSE_U16(buf,1); /* Save RCA returned by the SD Card */
*(buf+1) = 0;
*(buf+2) = 0;
return sd_unpack_r1(request, r1);
}
int sd_unpack_cid(struct sd_request *request, struct sd_cid *cid)
{
unsigned char *buf = request->response;
int i;
if (request->result) return request->result;
cid->mid = buf[1];
cid->oid = PARSE_U16(buf,2);
for (i = 0 ; i < 6 ; i++)
cid->pnm[i] = buf[4+i];
cid->pnm[6] = 0;
cid->prv = buf[10];
cid->psn = PARSE_U32(buf,11);
cid->mdt = buf[15];
DEBUG("sd_unpack_cid: mid=%d oid=%d pnm=%s prv=%d.%d psn=%08x mdt=%d/%d",
cid->mid, cid->oid, cid->pnm,
(cid->prv>>4), (cid->prv&0xf),
cid->psn, (cid->mdt>>4), (cid->mdt&0xf)+1997);
if (buf[0] != 0x3f) return SD_ERROR_HEADER_MISMATCH;
return 0;
}
int sd_unpack_r3(struct sd_request *request, struct sd_response_r3 *r3)
{
unsigned char *buf = request->response;
if (request->result) return request->result;
r3->ocr = PARSE_U32(buf,1);
DEBUG("sd_unpack_r3: ocr=%08x", r3->ocr);
if (buf[0] != 0x3f) return SD_ERROR_HEADER_MISMATCH;
return 0;
}
/* Stop the MMC clock and wait while it happens */
static inline int jz_sd_stop_clock(void)
{
register int timeout = 1000;
//DEBUG("stop MMC clock");
REG_MSC_STRPCL = MSC_STRPCL_CLOCK_CONTROL_STOP;
while (timeout && (REG_MSC_STAT & MSC_STAT_CLK_EN))
{
timeout--;
if (timeout == 0)
{
DEBUG("Timeout on stop clock waiting");
return SD_ERROR_TIMEOUT;
}
udelay(1);
}
//DEBUG("clock off time is %d microsec", timeout);
return SD_NO_ERROR;
}
/* Start the MMC clock and operation */
static inline int jz_sd_start_clock(void)
{
REG_MSC_STRPCL = MSC_STRPCL_CLOCK_CONTROL_START | MSC_STRPCL_START_OP;
return SD_NO_ERROR;
}
static int jz_sd_check_status(struct sd_request *request)
{
(void)request;
unsigned int status = REG_MSC_STAT;
/* Checking for response or data timeout */
if (status & (MSC_STAT_TIME_OUT_RES | MSC_STAT_TIME_OUT_READ))
{
DEBUG("SD timeout, MSC_STAT 0x%x CMD %d", status,
request->cmd);
return SD_ERROR_TIMEOUT;
}
/* Checking for CRC error */
if (status &
(MSC_STAT_CRC_READ_ERROR | MSC_STAT_CRC_WRITE_ERROR |
MSC_STAT_CRC_RES_ERR))
{
DEBUG("SD CRC error, MSC_STAT 0x%x", status);
return SD_ERROR_CRC;
}
/* Checking for FIFO empty */
/*if(status & MSC_STAT_DATA_FIFO_EMPTY && request->rtype != RESPONSE_NONE)
{
DEBUG("SD FIFO empty, MSC_STAT 0x%x", status);
return SD_ERROR_UNDERRUN;
}*/
return SD_NO_ERROR;
}
/* Obtain response to the command and store it to response buffer */
static void jz_sd_get_response(struct sd_request *request)
{
int i;
unsigned char *buf;
unsigned int data;
DEBUG("fetch response for request %d, cmd %d", request->rtype,
request->cmd);
buf = request->response;
request->result = SD_NO_ERROR;
switch (request->rtype)
{
case RESPONSE_R1:
case RESPONSE_R1B:
case RESPONSE_R7:
case RESPONSE_R6:
case RESPONSE_R3:
case RESPONSE_R4:
case RESPONSE_R5:
{
data = REG_MSC_RES;
buf[0] = (data >> 8) & 0xff;
buf[1] = data & 0xff;
data = REG_MSC_RES;
buf[2] = (data >> 8) & 0xff;
buf[3] = data & 0xff;
data = REG_MSC_RES;
buf[4] = data & 0xff;
DEBUG("request %d, response [%02x %02x %02x %02x %02x]",
request->rtype, buf[0], buf[1], buf[2],
buf[3], buf[4]);
break;
}
case RESPONSE_R2_CID:
case RESPONSE_R2_CSD:
{
for (i = 0; i < 16; i += 2)
{
data = REG_MSC_RES;
buf[i] = (data >> 8) & 0xff;
buf[i + 1] = data & 0xff;
}
DEBUG("request %d, response []", request->rtype);
break;
}
case RESPONSE_NONE:
DEBUG("No response");
break;
default:
DEBUG("unhandled response type for request %d",
request->rtype);
break;
}
}
#ifdef SD_DMA_ENABLE
static int jz_sd_receive_data_dma(struct sd_request *req)
{
int ch = RX_DMA_CHANNEL;
unsigned int size = req->block_len * req->nob;
unsigned char err = 0;
/* flush dcache */
dma_cache_wback_inv((unsigned long) req->buffer, size);
/* setup dma channel */
REG_DMAC_DSAR(ch) = PHYSADDR(MSC_RXFIFO); /* DMA source addr */
REG_DMAC_DTAR(ch) = PHYSADDR((unsigned long) req->buffer); /* DMA dest addr */
REG_DMAC_DTCR(ch) = (size + 3) / 4; /* DMA transfer count */
REG_DMAC_DRSR(ch) = DMAC_DRSR_RS_MSCIN; /* DMA request type */
#if SD_DMA_INTERRUPT
REG_DMAC_DCMD(ch) =
DMAC_DCMD_DAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 |
DMAC_DCMD_DS_32BIT | DMAC_DCMD_TIE;
REG_DMAC_DCCSR(ch) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;
OSSemPend(sd_dma_rx_sem, 100, &err);
#else
REG_DMAC_DCMD(ch) =
DMAC_DCMD_DAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 |
DMAC_DCMD_DS_32BIT;
REG_DMAC_DCCSR(ch) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;
while (REG_DMAC_DTCR(ch));
#endif
/* clear status and disable channel */
REG_DMAC_DCCSR(ch) = 0;
#if SD_DMA_INTERRUPT
return (err == OS_NO_ERR);
#else
return 0;
#endif
}
static int jz_sd_transmit_data_dma(struct sd_request *req)
{
int ch = TX_DMA_CHANNEL;
unsigned int size = req->block_len * req->nob;
unsigned char err = 0;
/* flush dcache */
dma_cache_wback_inv((unsigned long) req->buffer, size);
/* setup dma channel */
REG_DMAC_DSAR(ch) = PHYSADDR((unsigned long) req->buffer); /* DMA source addr */
REG_DMAC_DTAR(ch) = PHYSADDR(MSC_TXFIFO); /* DMA dest addr */
REG_DMAC_DTCR(ch) = (size + 3) / 4; /* DMA transfer count */
REG_DMAC_DRSR(ch) = DMAC_DRSR_RS_MSCOUT; /* DMA request type */
#if SD_DMA_INTERRUPT
REG_DMAC_DCMD(ch) =
DMAC_DCMD_SAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 |
DMAC_DCMD_DS_32BIT | DMAC_DCMD_TIE;
REG_DMAC_DCCSR(ch) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;
OSSemPend(sd_dma_tx_sem, 100, &err);
#else
REG_DMAC_DCMD(ch) =
DMAC_DCMD_SAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DWDH_32 |
DMAC_DCMD_DS_32BIT;
REG_DMAC_DCCSR(ch) = DMAC_DCCSR_EN | DMAC_DCCSR_NDES;
/* wait for dma completion */
while (REG_DMAC_DTCR(ch));
#endif
/* clear status and disable channel */
REG_DMAC_DCCSR(ch) = 0;
#if SD_DMA_INTERRUPT
return (err == OS_NO_ERR);
#else
return 0;
#endif
}
#endif /* SD_DMA_ENABLE */
static int jz_sd_receive_data(struct sd_request *req)
{
unsigned int nob = req->nob;
unsigned int wblocklen = (unsigned int) (req->block_len + 3) >> 2; /* length in word */
unsigned char *buf = req->buffer;
unsigned int *wbuf = (unsigned int *) buf;
unsigned int waligned = (((unsigned int) buf & 0x3) == 0); /* word aligned ? */
unsigned int stat, timeout, data, cnt;
for (; nob >= 1; nob--)
{
timeout = 0x3FFFFFF;
while (timeout)
{
timeout--;
stat = REG_MSC_STAT;
if (stat & MSC_STAT_TIME_OUT_READ)
return SD_ERROR_TIMEOUT;
else if (stat & MSC_STAT_CRC_READ_ERROR)
return SD_ERROR_CRC;
else if (!(stat & MSC_STAT_DATA_FIFO_EMPTY)
|| (stat & MSC_STAT_DATA_FIFO_AFULL)) {
/* Ready to read data */
break;
}
udelay(1);
}
if (!timeout)
return SD_ERROR_TIMEOUT;
/* Read data from RXFIFO. It could be FULL or PARTIAL FULL */
DEBUG("Receive Data = %d", wblocklen);
cnt = wblocklen;
while (cnt)
{
data = REG_MSC_RXFIFO;
if (waligned)
*wbuf++ = data;
else
{
*buf++ = (unsigned char) (data >> 0);
*buf++ = (unsigned char) (data >> 8);
*buf++ = (unsigned char) (data >> 16);
*buf++ = (unsigned char) (data >> 24);
}
cnt--;
while (cnt
&& (REG_MSC_STAT &
MSC_STAT_DATA_FIFO_EMPTY));
}
}
return SD_NO_ERROR;
}
static int jz_sd_transmit_data(struct sd_request *req)
{
unsigned int nob = req->nob;
unsigned int wblocklen = (unsigned int) (req->block_len + 3) >> 2; /* length in word */
unsigned char *buf = req->buffer;
unsigned int *wbuf = (unsigned int *) buf;
unsigned int waligned = (((unsigned int) buf & 0x3) == 0); /* word aligned ? */
unsigned int stat, timeout, data, cnt;
for (; nob >= 1; nob--)
{
timeout = 0x3FFFFFF;
while (timeout)
{
timeout--;
stat = REG_MSC_STAT;
if (stat &
(MSC_STAT_CRC_WRITE_ERROR |
MSC_STAT_CRC_WRITE_ERROR_NOSTS))
return SD_ERROR_CRC;
else if (!(stat & MSC_STAT_DATA_FIFO_FULL))
{
/* Ready to write data */
break;
}
udelay(1);
}
if (!timeout)
return SD_ERROR_TIMEOUT;
/* Write data to TXFIFO */
cnt = wblocklen;
while (cnt)
{
while (REG_MSC_STAT & MSC_STAT_DATA_FIFO_FULL);
if (waligned)
REG_MSC_TXFIFO = *wbuf++;
else
{
data = *buf++;
data |= *buf++ << 8;
data |= *buf++ << 16;
data |= *buf++ << 24;
REG_MSC_TXFIFO = data;
}
cnt--;
}
}
return SD_NO_ERROR;
}
static inline unsigned int jz_sd_calc_clkrt(int is_sd, unsigned int rate)
{
unsigned int clkrt;
unsigned int clk_src = is_sd ? (sd2_0 ? 48000000 : 24000000) : 20000000;
clkrt = 0;
while (rate < clk_src)
{
clkrt++;
clk_src >>= 1;
}
return clkrt;
}
/* Set the MMC clock frequency */
static void jz_sd_set_clock(int sd, unsigned int rate)
{
int clkrt = 0;
sd = sd ? 1 : 0;
jz_sd_stop_clock();
if (sd2_0)
{
__cpm_select_msc_hs_clk(sd); /* select clock source from CPM */
REG_CPM_CPCCR |= CPM_CPCCR_CE;
clkrt = jz_sd_calc_clkrt(sd, rate);
REG_MSC_CLKRT = clkrt;
}
else
{
__cpm_select_msc_clk(sd); /* select clock source from CPM */
REG_CPM_CPCCR |= CPM_CPCCR_CE;
clkrt = jz_sd_calc_clkrt(sd, rate);
REG_MSC_CLKRT = clkrt;
}
DEBUG("set clock to %u Hz is_sd=%d clkrt=%d", rate, sd, clkrt);
}
/********************************************************************************************************************
** Name: int jz_sd_exec_cmd()
** Function: send command to the card, and get a response
** Input: struct sd_request *req: SD request
** Output: 0: right >0: error code
********************************************************************************************************************/
static int jz_sd_exec_cmd(struct sd_request *request)
{
unsigned int cmdat = 0, events = 0;
int retval, timeout = 0x3fffff;
/* Indicate we have no result yet */
request->result = SD_NO_RESPONSE;
if (request->cmd == SD_CIM_RESET) {
/* On reset, 1-bit bus width */
use_4bit = 0;
/* Reset MMC/SD controller */
__msc_reset();
/* On reset, drop SD clock down */
jz_sd_set_clock(1, MMC_CLOCK_SLOW);
/* On reset, stop SD clock */
jz_sd_stop_clock();
}
if (request->cmd == SD_SET_BUS_WIDTH)
{
if (request->arg == 0x2)
{
DEBUG("Use 4-bit bus width");
use_4bit = 1;
}
else
{
DEBUG("Use 1-bit bus width");
use_4bit = 0;
}
}
/* stop clock */
jz_sd_stop_clock();
/* mask all interrupts */
//REG_MSC_IMASK = 0xffff;
/* clear status */
REG_MSC_IREG = 0xffff;
/*open interrupt */
REG_MSC_IMASK = (~7);
/* use 4-bit bus width when possible */
if (use_4bit)
cmdat |= MSC_CMDAT_BUS_WIDTH_4BIT;
/* Set command type and events */
switch (request->cmd)
{
/* SD core extra command */
case SD_CIM_RESET:
cmdat |= MSC_CMDAT_INIT; /* Initialization sequence sent prior to command */
break;
/* bc - broadcast - no response */
case SD_GO_IDLE_STATE:
case SD_SET_DSR:
break;
/* bcr - broadcast with response */
case SD_APP_OP_COND:
case SD_ALL_SEND_CID:
case SD_GO_IRQ_STATE:
break;
/* adtc - addressed with data transfer */
case SD_READ_DAT_UNTIL_STOP:
case SD_READ_SINGLE_BLOCK:
case SD_READ_MULTIPLE_BLOCK:
case SD_SEND_SCR:
#if defined(SD_DMA_ENABLE)
cmdat |=
MSC_CMDAT_DATA_EN | MSC_CMDAT_READ | MSC_CMDAT_DMA_EN;
#else
cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_READ;
#endif
events = SD_EVENT_RX_DATA_DONE;
break;
case 6:
if (num_6 < 2)
{
#if defined(SD_DMA_ENABLE)
cmdat |=
MSC_CMDAT_DATA_EN | MSC_CMDAT_READ |
MSC_CMDAT_DMA_EN;
#else
cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_READ;
#endif
events = SD_EVENT_RX_DATA_DONE;
}
break;
case SD_WRITE_DAT_UNTIL_STOP:
case SD_WRITE_BLOCK:
case SD_WRITE_MULTIPLE_BLOCK:
case SD_PROGRAM_CID:
case SD_PROGRAM_CSD:
case SD_LOCK_UNLOCK:
#if defined(SD_DMA_ENABLE)
cmdat |=
MSC_CMDAT_DATA_EN | MSC_CMDAT_WRITE | MSC_CMDAT_DMA_EN;
#else
cmdat |= MSC_CMDAT_DATA_EN | MSC_CMDAT_WRITE;
#endif
events = SD_EVENT_TX_DATA_DONE | SD_EVENT_PROG_DONE;
break;
case SD_STOP_TRANSMISSION:
events = SD_EVENT_PROG_DONE;
break;
/* ac - no data transfer */
default:
break;
}
/* Set response type */
switch (request->rtype)
{
case RESPONSE_NONE:
break;
case RESPONSE_R1B:
cmdat |= MSC_CMDAT_BUSY;
/* FALLTHRU */
case RESPONSE_R1:
case RESPONSE_R7:
cmdat |= MSC_CMDAT_RESPONSE_R1;
break;
case RESPONSE_R2_CID:
case RESPONSE_R2_CSD:
cmdat |= MSC_CMDAT_RESPONSE_R2;
break;
case RESPONSE_R3:
cmdat |= MSC_CMDAT_RESPONSE_R3;
break;
case RESPONSE_R4:
cmdat |= MSC_CMDAT_RESPONSE_R4;
break;
case RESPONSE_R5:
cmdat |= MSC_CMDAT_RESPONSE_R5;
break;
case RESPONSE_R6:
cmdat |= MSC_CMDAT_RESPONSE_R6;
break;
default:
break;
}
/* Set command index */
if (request->cmd == SD_CIM_RESET)
REG_MSC_CMD = SD_GO_IDLE_STATE;
else
REG_MSC_CMD = request->cmd;
/* Set argument */
REG_MSC_ARG = request->arg;
/* Set block length and nob */
if (request->cmd == SD_SEND_SCR)
{ /* get SCR from DataFIFO */
REG_MSC_BLKLEN = 8;
REG_MSC_NOB = 1;
}
else
{
REG_MSC_BLKLEN = request->block_len;
REG_MSC_NOB = request->nob;
}
/* Set command */
REG_MSC_CMDAT = cmdat;
DEBUG("Send cmd %d cmdat: %x arg: %x resp %d", request->cmd,
cmdat, request->arg, request->rtype);
/* Start SD clock and send command to card */
jz_sd_start_clock();
/* Wait for command completion */
//__intc_unmask_irq(IRQ_MSC);
//wakeup_wait(&sd_wakeup, 100);
while (timeout-- && !(REG_MSC_STAT & MSC_STAT_END_CMD_RES));
if (timeout == 0)
return SD_ERROR_TIMEOUT;
REG_MSC_IREG = MSC_IREG_END_CMD_RES; /* clear flag */
/* Check for status */
retval = jz_sd_check_status(request);
if (retval)
return retval;
/* Complete command with no response */
if (request->rtype == RESPONSE_NONE)
return SD_NO_ERROR;
/* Get response */
jz_sd_get_response(request);
/* Start data operation */
if (events & (SD_EVENT_RX_DATA_DONE | SD_EVENT_TX_DATA_DONE))
{
if (events & SD_EVENT_RX_DATA_DONE)
{
if (request->cmd == SD_SEND_SCR)
{
/* SD card returns SCR register as data.
SD core expect it in the response buffer,
after normal response. */
request->buffer =
(unsigned char *) ((unsigned int) request->response + 5);
}
#ifdef SD_DMA_ENABLE
jz_sd_receive_data_dma(request);
#else
jz_sd_receive_data(request);
#endif
}
if (events & SD_EVENT_TX_DATA_DONE)
{
#ifdef SD_DMA_ENABLE
jz_sd_transmit_data_dma(request);
#else
jz_sd_transmit_data(request);
#endif
}
//__intc_unmask_irq(IRQ_MSC);
//wakeup_wait(&sd_wakeup, 100);
/* Wait for Data Done */
while (!(REG_MSC_IREG & MSC_IREG_DATA_TRAN_DONE));
REG_MSC_IREG = MSC_IREG_DATA_TRAN_DONE; /* clear status */
}
/* Wait for Prog Done event */
if (events & SD_EVENT_PROG_DONE)
{
//__intc_unmask_irq(IRQ_MSC);
//wakeup_wait(&sd_wakeup, 100);
while (!(REG_MSC_IREG & MSC_IREG_PRG_DONE));
REG_MSC_IREG = MSC_IREG_PRG_DONE; /* clear status */
}
/* Command completed */
return SD_NO_ERROR; /* return successfully */
}
/*******************************************************************************************************************
** Name: int sd_chkcard()
** Function: check whether card is insert entirely
** Input: NULL
** Output: 1: insert entirely 0: not insert entirely
********************************************************************************************************************/
static int jz_sd_chkcard(void)
{
return (SD_INSERT_STATUS() == 0 ? 1 : 0);
}
#if SD_DMA_INTERRUPT
static void jz_sd_tx_handler(unsigned int arg)
{
if (__dmac_channel_address_error_detected(arg))
{
DEBUG("%s: DMAC address error.", __FUNCTION__);
__dmac_channel_clear_address_error(arg);
}
if (__dmac_channel_transmit_end_detected(arg))
{
__dmac_channel_clear_transmit_end(arg);
OSSemPost(sd_dma_tx_sem);
}
}
static void jz_sd_rx_handler(unsigned int arg)
{
if (__dmac_channel_address_error_detected(arg))
{
DEBUG("%s: DMAC address error.", __FUNCTION__);
__dmac_channel_clear_address_error(arg);
}
if (__dmac_channel_transmit_end_detected(arg))
{
__dmac_channel_clear_transmit_end(arg);
OSSemPost(sd_dma_rx_sem);
}
}
#endif
/* MSC interrupt handler */
void MSC(void)
{
//wakeup_signal(&sd_wakeup);
logf("MSC interrupt");
}
/*******************************************************************************************************************
** Name: void sd_hardware_init()
** Function: initialize the hardware condiction that access sd card
** Input: NULL
** Output: NULL
********************************************************************************************************************/
static void jz_sd_hardware_init(void)
{
__cpm_start_msc(); /* enable mmc clock */
mmc_init_gpio(); /* init GPIO */
#ifdef SD_POWER_ON
SD_POWER_ON(); /* turn on power of card */
#endif
SD_RESET(); /* reset mmc/sd controller */
SD_IRQ_MASK(); /* mask all IRQs */
jz_sd_stop_clock(); /* stop SD clock */
#ifdef SD_DMA_ENABLE
// __cpm_start_dmac();
// __dmac_enable_module();
// REG_DMAC_DMACR = DMAC_DMACR_DME;
#if SD_DMA_INTERRUPT
sd_dma_rx_sem = OSSemCreate(0);
sd_dma_tx_sem = OSSemCreate(0);
request_irq(IRQ_DMA_0 + RX_DMA_CHANNEL, jz_sd_rx_handler,
RX_DMA_CHANNEL);
request_irq(IRQ_DMA_0 + TX_DMA_CHANNEL, jz_sd_tx_handler,
TX_DMA_CHANNEL);
#endif
#endif
}
static int sd_send_cmd(struct sd_request *request, int cmd, unsigned int arg,
unsigned short nob, unsigned short block_len,
enum sd_rsp_t rtype, unsigned char* buffer)
{
request->cmd = cmd;
request->arg = arg;
request->rtype = rtype;
request->nob = nob;
request->block_len = block_len;
request->buffer = buffer;
request->cnt = nob * block_len;
return jz_sd_exec_cmd(request);
}
static void sd_simple_cmd(struct sd_request *request, int cmd, unsigned int arg,
enum sd_rsp_t rtype)
{
sd_send_cmd(request, cmd, arg, 0, 0, rtype, NULL);
}
#define KBPS 1
#define MBPS 1000
static unsigned int ts_exp[] = { 100*KBPS, 1*MBPS, 10*MBPS, 100*MBPS, 0, 0, 0, 0 };
static unsigned int ts_mul[] = { 0, 1000, 1200, 1300, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000 };
unsigned int sd_tran_speed(unsigned char ts)
{
unsigned int rate = ts_exp[(ts & 0x7)] * ts_mul[(ts & 0x78) >> 3];
if (rate <= 0)
{
DEBUG("sd_tran_speed: error - unrecognized speed 0x%02x", ts);
return 1;
}
return rate;
}
static void sd_configure_card(void)
{
unsigned int rate;
/* Get card info */
if (sd2_0)
sdinfo.block_num = (sdinfo.csd.c_size + 1) << 10;
else
sdinfo.block_num = (sdinfo.csd.c_size + 1) * (1 << (sdinfo.csd.c_size_mult + 2));
sdinfo.block_len = 1 << sdinfo.csd.read_bl_len;
/* Fix the clock rate */
rate = sd_tran_speed(sdinfo.csd.tran_speed);
if (rate < MMC_CLOCK_SLOW)
rate = MMC_CLOCK_SLOW;
if (rate > SD_CLOCK_FAST)
rate = SD_CLOCK_FAST;
DEBUG("sd_configure_card: block_len=%d block_num=%d rate=%d", sdinfo.block_len, sdinfo.block_num, rate);
jz_sd_set_clock(1, rate);
}
#define SD_INIT_DOING 0
#define SD_INIT_PASSED 1
#define SD_INIT_FAILED 2
static int sd_init_card_state(struct sd_request *request)
{
struct sd_response_r1 r1;
struct sd_response_r3 r3;
int retval;
int ocr = 0x40300000;
int limit_41 = 0;
switch (request->cmd)
{
case SD_GO_IDLE_STATE: /* No response to parse */
sd_simple_cmd(request, SD_SEND_IF_COND, 0x1AA, RESPONSE_R1);
break;
case SD_SEND_IF_COND:
retval = sd_unpack_r1(request, &r1);
sd_simple_cmd(request, SD_APP_CMD, 0, RESPONSE_R1);
break;
case SD_APP_CMD:
retval = sd_unpack_r1(request, &r1);
if (retval & (limit_41 < 100))
{
DEBUG("sd_init_card_state: unable to SD_APP_CMD error=%d",
retval);
limit_41++;
sd_simple_cmd(request, SD_APP_OP_COND, ocr, RESPONSE_R3);
} else if (limit_41 < 100) {
limit_41++;
sd_simple_cmd(request, SD_APP_OP_COND, ocr, RESPONSE_R3);
} else{
/* reset the card to idle*/
sd_simple_cmd(request, SD_GO_IDLE_STATE, 0, RESPONSE_NONE);
}
break;
case SD_APP_OP_COND:
retval = sd_unpack_r3(request, &r3);
if (retval)
{
break;
}
DEBUG("sd_init_card_state: read ocr value = 0x%08x", r3.ocr);
sdinfo.ocr = r3.ocr;
if(!(r3.ocr & SD_CARD_BUSY || ocr == 0)){
udelay(10000);
sd_simple_cmd(request, SD_APP_CMD, 0, RESPONSE_R1);
}
else
{
/* Set the data bus width to 4 bits */
use_4bit = 1;
sd_simple_cmd(request, SD_ALL_SEND_CID, 0, RESPONSE_R2_CID);
}
break;
case SD_ALL_SEND_CID:
retval = sd_unpack_cid( request, &sdinfo.cid );
if ( retval && (retval != SD_ERROR_CRC)) {
DEBUG("sd_init_card_state: unable to ALL_SEND_CID error=%d",
retval);
return SD_INIT_FAILED;
}
sd_simple_cmd(request, SD_SEND_RELATIVE_ADDR, 0, RESPONSE_R6);
break;
case SD_SEND_RELATIVE_ADDR:
retval = sd_unpack_r6(request, &r1, &sdinfo.rca);
sdinfo.rca = sdinfo.rca << 16;
DEBUG("sd_init_card_state: Get RCA from SD: 0x%04x Status: %x", sdinfo.rca, r1.status);
if (retval)
{
DEBUG("sd_init_card_state: unable to SET_RELATIVE_ADDR error=%d",
retval);
return SD_INIT_FAILED;
}
sd_simple_cmd(request, SD_SEND_CSD, sdinfo.rca, RESPONSE_R2_CSD);
break;
case SD_SEND_CSD:
retval = sd_unpack_csd(request, &sdinfo.csd);
DEBUG("SD card is ready");
/*FIXME:ignore CRC error for CMD2/CMD9/CMD10 */
if (retval && (retval != SD_ERROR_CRC))
{
DEBUG("sd_init_card_state: unable to SEND_CSD error=%d",
retval);
return SD_INIT_FAILED;
}
sd_configure_card();
return SD_INIT_PASSED;
default:
DEBUG("sd_init_card_state: error! Illegal last cmd %d", request->cmd);
return SD_INIT_FAILED;
}
return SD_INIT_DOING;
}
static int sd_sd_switch(struct sd_request *request, int mode, int group,
unsigned char value, unsigned char * resp)
{
unsigned int arg;
mode = !!mode;
value &= 0xF;
arg = (mode << 31 | 0x00FFFFFF);
arg &= ~(0xF << (group * 4));
arg |= value << (group * 4);
sd_send_cmd(request, 6, arg, 1, 64, RESPONSE_R1, resp);
return 0;
}
/*
* Fetches and decodes switch information
*/
static int sd_read_switch(struct sd_request *request)
{
unsigned int status[64 / 4];
memset((unsigned char *)status, 0, 64);
sd_sd_switch(request, 0, 0, 1, (unsigned char*) status);
if (((unsigned char *)status)[13] & 0x02)
return 0;
else
return 1;
}
/*
* Test if the card supports high-speed mode and, if so, switch to it.
*/
static int sd_switch_hs(struct sd_request *request)
{
unsigned int status[64 / 4];
sd_sd_switch(request, 1, 0, 1, (unsigned char*) status);
return 0;
}
int sd_select_card(void)
{
struct sd_request request;
struct sd_response_r1 r1;
int retval;
sd_simple_cmd(&request, SD_SELECT_CARD, sdinfo.rca,
RESPONSE_R1B);
retval = sd_unpack_r1(&request, &r1);
if (retval)
return retval;
if (sd2_0)
{
retval = sd_read_switch(&request);
if (!retval)
{
sd_switch_hs(&request);
jz_sd_set_clock(1, SD_CLOCK_HIGH);
}
}
num_6 = 3;
sd_simple_cmd(&request, SD_APP_CMD, sdinfo.rca,
RESPONSE_R1);
retval = sd_unpack_r1(&request, &r1);
if (retval)
return retval;
sd_simple_cmd(&request, SD_SET_BUS_WIDTH, 2, RESPONSE_R1);
retval = sd_unpack_r1(&request, &r1);
if (retval)
return retval;
return 0;
}
int sd_init(void)
{
int retval;
static bool inited = false;
struct sd_request init_req;
if(!inited)
{
jz_sd_hardware_init();
wakeup_init(&sd_wakeup);
num_6 = 0;
inited = true;
}
sd_simple_cmd(&init_req, SD_CIM_RESET, 0, RESPONSE_NONE);
sd_simple_cmd(&init_req, SD_GO_IDLE_STATE, 0, RESPONSE_NONE);
while ((retval = sd_init_card_state(&init_req)) == SD_INIT_DOING);
if (retval == SD_INIT_PASSED)
return sd_select_card();
else
return -1;
}
bool card_detect_target(void)
{
return (jz_sd_chkcard() == 1);
}
#ifdef HAVE_HOTSWAP
void card_enable_monitoring_target(bool on)
{
if(on)
{
}
else
{
}
}
#endif
/* TODO */
tCardInfo* card_get_info_target(int card_no)
{
(void)card_no;
int i, temp;
static tCardInfo card;
static const unsigned char sd_mantissa[] = { /* *10 */
0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
static const unsigned int sd_exponent[] = { /* use varies */
1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000 };
card.initialized = true;
card.ocr = sdinfo.ocr;
for(i=0; i<4; i++)
card.csd[i] = ((unsigned long*)&sdinfo.csd)[i];
for(i=0; i<4; i++)
card.cid[i] = ((unsigned long*)&sdinfo.cid)[i];
temp = card_extract_bits(card.csd, 98, 3);
card.speed = sd_mantissa[card_extract_bits(card.csd, 102, 4)]
* sd_exponent[temp > 2 ? 7 : temp + 4];
card.nsac = 100 * card_extract_bits(card.csd, 111, 8);
temp = card_extract_bits(card.csd, 114, 3);
card.taac = sd_mantissa[card_extract_bits(card.csd, 118, 4)]
* sd_exponent[temp] / 10;
card.numblocks = sdinfo.block_num;
card.blocksize = sdinfo.block_len;
return &card;
}
int sd_read_sectors(IF_MV2(int drive,) unsigned long start, int count, void* buf)
{
#ifdef HAVE_MULTIVOLUME
(void)drive;
#endif
led(true);
struct sd_request request;
struct sd_response_r1 r1;
int retval;
if (!card_detect_target() || count == 0 || start > sdinfo.block_num)
return -1;
sd_simple_cmd(&request, SD_SEND_STATUS, sdinfo.rca, RESPONSE_R1);
retval = sd_unpack_r1(&request, &r1);
if (retval && (retval != SD_ERROR_STATE_MISMATCH))
return retval;
sd_simple_cmd(&request, SD_SET_BLOCKLEN, SD_BLOCK_SIZE, RESPONSE_R1);
if ((retval = sd_unpack_r1(&request, &r1)))
return retval;
if (sd2_0)
{
sd_send_cmd(&request, SD_READ_MULTIPLE_BLOCK, start,
count, SD_BLOCK_SIZE, RESPONSE_R1, buf);
if ((retval = sd_unpack_r1(&request, &r1)))
return retval;
}
else
{
sd_send_cmd(&request, SD_READ_MULTIPLE_BLOCK,
start * SD_BLOCK_SIZE, count,
SD_BLOCK_SIZE, RESPONSE_R1, buf);
if ((retval = sd_unpack_r1(&request, &r1)))
return retval;
}
last_disk_activity = current_tick;
sd_simple_cmd(&request, SD_STOP_TRANSMISSION, 0, RESPONSE_R1B);
if ((retval = sd_unpack_r1(&request, &r1)))
return retval;
led(false);
return retval;
}
int sd_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* buf)
{
#ifdef HAVE_MULTIVOLUME
(void)drive;
#endif
led(true);
struct sd_request request;
struct sd_response_r1 r1;
int retval;
if (!card_detect_target() || count == 0 || start > sdinfo.block_num)
return -1;
sd_simple_cmd(&request, SD_SEND_STATUS, sdinfo.rca, RESPONSE_R1);
retval = sd_unpack_r1(&request, &r1);
if (retval && (retval != SD_ERROR_STATE_MISMATCH))
return retval;
sd_simple_cmd(&request, SD_SET_BLOCKLEN, SD_BLOCK_SIZE, RESPONSE_R1);
if ((retval = sd_unpack_r1(&request, &r1)))
return retval;
if (sd2_0)
{
sd_send_cmd(&request, SD_WRITE_MULTIPLE_BLOCK, start,
count, SD_BLOCK_SIZE, RESPONSE_R1,
(void*)buf);
if ((retval = sd_unpack_r1(&request, &r1)))
return retval;
}
else
{
sd_send_cmd(&request, SD_WRITE_MULTIPLE_BLOCK,
start * SD_BLOCK_SIZE, count,
SD_BLOCK_SIZE, RESPONSE_R1, (void*)buf);
if ((retval = sd_unpack_r1(&request, &r1)))
return retval;
}
sd_simple_cmd(&request, SD_STOP_TRANSMISSION, 0, RESPONSE_R1B);
if ((retval = sd_unpack_r1(&request, &r1)))
return retval;
led(false);
return retval;
}
void sd_sleep(void)
{
}
void sd_spin(void)
{
}
long sd_last_disk_activity(void)
{
return last_disk_activity;
}
void sd_spindown(int seconds)
{
(void)seconds;
}
#ifdef HAVE_HOTSWAP
bool sd_removable(IF_MV_NONVOID(int drive))
{
#ifdef HAVE_MULTIVOLUME
(void)drive;
#endif
//return true;
return false;
}
#endif
bool sd_present(IF_MV_NONVOID(int drive))
{
#ifdef HAVE_MULTIVOLUME
(void)drive;
#endif
return (sdinfo.block_num > 0 && card_detect_target());
}
#ifdef STORAGE_GET_INFO
void sd_get_info(IF_MV2(int drive,) struct storage_info *info)
{
#ifdef HAVE_MULTIVOLUME
(void)drive;
#endif
/* firmware version */
info->revision="0.00";
info->vendor="Rockbox";
info->product="SD Storage";
/* blocks count */
info->num_sectors = sdinfo.block_num;
info->sector_size = sdinfo.block_len;
}
#endif