1
0
Fork 0
forked from len0rd/rockbox
foxbox/firmware/common/disk.c
Solomon Peachy 64de7aa8d2 disk: If primary GPT header is missing, try secondary one
Basically the GPT is supposed to live at sector 1, but a backup copy is
stored on the final sector.

This gives us a little bit of extra flexibility on systems that might
require sector 1 for other things, but in any case it's a more robust
arrangement.

Change-Id: I8925ffc743629cf2eba51861042492e35b41664b
2025-04-30 19:21:54 -04:00

672 lines
18 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Björn Stenberg
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdio.h>
#include <string.h>
#include "config.h"
#include "kernel.h"
#include "storage.h"
#include "debug.h"
#include "disk_cache.h"
#include "fileobj_mgr.h"
#include "dir.h"
#include "rb_namespace.h"
#include "disk.h"
#include "panic.h"
#if defined(HAVE_BOOTDATA) && !defined(SIMULATOR) && !defined(BOOTLOADER)
#include "bootdata.h"
#include "crc32.h"
#endif
#ifndef CONFIG_DEFAULT_PARTNUM
#define CONFIG_DEFAULT_PARTNUM 0
#endif
#define disk_reader_lock() file_internal_lock_READER()
#define disk_reader_unlock() file_internal_unlock_READER()
#define disk_writer_lock() file_internal_lock_WRITER()
#define disk_writer_unlock() file_internal_unlock_WRITER()
/* "MBR" Partition table entry layout:
-----------------------
0: 0x80 - active
1: starting head
2: starting sector
3: starting cylinder
4: partition type
5: end head
6: end sector
7: end cylinder
8-11: starting sector (LBA)
12-15: nr of sectors in partition
*/
#define BYTES2INT64(array, pos) \
(((uint64_t)array[pos+0] << 0) | \
((uint64_t)array[pos+1] << 8) | \
((uint64_t)array[pos+2] << 16) | \
((uint64_t)array[pos+3] << 24) | \
((uint64_t)array[pos+4] << 32) | \
((uint64_t)array[pos+5] << 40) | \
((uint64_t)array[pos+6] << 48) | \
((uint64_t)array[pos+7] << 56) )
#define BYTES2INT32(array, pos) \
(((uint32_t)array[pos+0] << 0) | \
((uint32_t)array[pos+1] << 8) | \
((uint32_t)array[pos+2] << 16) | \
((uint32_t)array[pos+3] << 24))
#define BYTES2INT16(array, pos) \
(((uint16_t)array[pos+0] << 0) | \
((uint16_t)array[pos+1] << 8))
static struct partinfo part[NUM_DRIVES*MAX_PARTITIONS_PER_DRIVE];
static struct volumeinfo volumes[NUM_VOLUMES];
/* check if the entry points to a free volume */
static bool is_free_volume(const struct volumeinfo *vi)
{
return vi->drive < 0;
}
/* mark a volume entry as free */
static void mark_free_volume(struct volumeinfo *vi)
{
vi->drive = -1;
vi->partition = -1;
}
static int get_free_volume(void)
{
for (int i = 0; i < NUM_VOLUMES; i++)
if (is_free_volume(&volumes[i]))
return i;
return -1; /* none found */
}
static void init_volume(struct volumeinfo *vi, int drive, int part)
{
vi->drive = drive;
vi->partition = part;
}
#ifdef MAX_VIRT_SECTOR_SIZE
static uint16_t disk_sector_multiplier[NUM_DRIVES] =
{ [0 ... NUM_DRIVES-1] = 1 };
int disk_get_sector_multiplier(IF_MD_NONVOID(int drive))
{
if (!CHECK_DRV(drive))
return 0;
disk_reader_lock();
int multiplier = disk_sector_multiplier[IF_MD_DRV(drive)];
disk_reader_unlock();
return multiplier;
}
#ifdef DEFAULT_VIRT_SECTOR_SIZE
void disk_set_sector_multiplier(IF_MD(int drive,) uint16_t mult)
{
if (!CHECK_DRV(drive))
return;
disk_writer_lock();
disk_sector_multiplier[IF_MD_DRV(drive)] = mult;
disk_writer_unlock();
}
#endif /* DEFAULT_VIRT_SECTOR_SIZE */
#endif /* MAX_VIRT_SECTOR_SIZE */
#ifdef MAX_VARIABLE_LOG_SECTOR
static uint16_t disk_log_sector_size[NUM_DRIVES] =
{ [0 ... NUM_DRIVES-1] = SECTOR_SIZE }; /* Updated from STORAGE_INFO */
int disk_get_log_sector_size(IF_MD_NONVOID(int drive))
{
if (!CHECK_DRV(drive))
return 0;
disk_reader_lock();
int size = disk_log_sector_size[IF_MD_DRV(drive)];
disk_reader_unlock();
return size;
}
#define LOG_SECTOR_SIZE(__drive) disk_log_sector_size[IF_MD_DRV(__drive)]
#else /* !MAX_VARIABLE_LOG_SECTOR */
#define LOG_SECTOR_SIZE(__drive) SECTOR_SIZE
#endif /* !MAX_VARIABLE_LOG_SECTOR */
bool disk_init(IF_MD_NONVOID(int drive))
{
if (!CHECK_DRV(drive))
return false; /* out of space in table */
unsigned char *sector = dc_get_buffer();
if (!sector)
return false;
/* Query logical sector size */
struct storage_info *info = (struct storage_info*) sector;
storage_get_info(IF_MD_DRV(drive), info);
#if (CONFIG_STORAGE & STORAGE_ATA)
disk_writer_lock();
#ifdef MAX_VARIABLE_LOG_SECTOR
disk_log_sector_size[IF_MD_DRV(drive)] = info->sector_size;
#endif
disk_writer_unlock();
#ifdef MAX_VARIABLE_LOG_SECTOR
if (info->sector_size > MAX_VARIABLE_LOG_SECTOR || info->sector_size > DC_CACHE_BUFSIZE) {
panicf("Unsupported logical sector size: %d",
info->sector_size);
}
#else /* !MAX_VARIABLE_LOG_SECTOR */
if (info->sector_size != SECTOR_SIZE) {
panicf("Unsupported logical sector size: %d",
info->sector_size);
}
#endif /* !MAX_VARIABLE_LOG_SECTOR */
#endif /* STORAGE_ATA */
memset(sector, 0, DC_CACHE_BUFSIZE);
storage_read_sectors(IF_MD(drive,) 0, 1, sector);
bool init = false;
/* check that the boot sector is initialized */
if (BYTES2INT16(sector, 510) == 0xaa55)
{
/* For each drive, start at a different position, in order not to
destroy the first entry of drive 0. That one is needed to calculate
config sector position. */
struct partinfo *pinfo = &part[IF_MD_DRV(drive)*MAX_PARTITIONS_PER_DRIVE];
uint8_t is_gpt = 0;
disk_writer_lock();
/* parse partitions */
for (int i = 0; i < MAX_PARTITIONS_PER_DRIVE && i < 4; i++)
{
unsigned char* ptr = sector + 0x1be + 16*i;
pinfo[i].type = ptr[4];
pinfo[i].start = BYTES2INT32(ptr, 8);
pinfo[i].size = BYTES2INT32(ptr, 12);
DEBUGF("Part%d: Type %02x, start: %08lx size: %08lx\n",
i,pinfo[i].type,pinfo[i].start,pinfo[i].size);
/* extended? */
if ( pinfo[i].type == 5 )
{
/* not handled yet */
}
if (pinfo[i].type == PARTITION_TYPE_GPT_GUARD) {
is_gpt = 1;
}
}
while (is_gpt) {
/* Re-start partition parsing using GPT */
uint64_t part_lba;
uint32_t part_entries;
uint32_t part_entry_size;
unsigned char* ptr = sector;
// XXX this doesn't take into account virtual sector size... ugh.
storage_read_sectors(IF_MD(drive,) 1, 1, sector);
part_lba = BYTES2INT64(ptr, 0);
if (part_lba != 0x5452415020494645ULL) {
/* Try backup GPT header at final LBA of drive */
// XXX this doesn't take into account virtual sector size... ugh.
storage_read_sectors(IF_MD(drive,) info->num_sectors-1, 1, sector);
part_lba = BYTES2INT64(ptr, 0);
if (part_lba != 0x5452415020494645ULL) {
DEBUGF("GPT: Invalid signature\n");
break;
}
}
part_entry_size = BYTES2INT32(ptr, 8);
if (part_entry_size != 0x00010000) {
DEBUGF("GPT: Invalid version\n");
break;
}
part_entry_size = BYTES2INT32(ptr, 12);
if (part_entry_size != 0x5c) {
DEBUGF("GPT: Invalid header size\n");
break;
}
// XXX checksum header -- u32 @ offset 16
part_entry_size = BYTES2INT32(ptr, 24);
if (part_entry_size != 1) {
DEBUGF("GPT: Invalid header LBA\n");
break;
}
part_lba = BYTES2INT64(ptr, 72);
part_entries = BYTES2INT32(ptr, 80);
part_entry_size = BYTES2INT32(ptr, 84);
int part = 0;
reload:
storage_read_sectors(IF_MD(drive,) part_lba, 1, sector);
uint8_t *pptr = ptr;
while (part < MAX_PARTITIONS_PER_DRIVE && part_entries) {
if (pptr - ptr >= LOG_SECTOR_SIZE(drive)) {
part_lba++;
goto reload;
}
/* Parse GPT entry. We only care about the "General Data" type, ie:
EBD0A0A2-B9E5-4433-87C0-68B6B72699C7
LE32 LE16 LE16 BE16 BE16
*/
uint64_t tmp;
tmp = BYTES2INT32(pptr, 0);
if (tmp != 0xEBD0A0A2)
goto skip;
tmp = BYTES2INT16(pptr, 4);
if (tmp != 0xB9E5)
goto skip;
tmp = BYTES2INT16(pptr, 6);
if (tmp != 0x4433)
goto skip;
if (pptr[8] != 0x87 || pptr[9] != 0xc0)
goto skip;
if (pptr[10] != 0x68 || pptr[11] != 0xb6 || pptr[12] != 0xb7 ||
pptr[13] != 0x26 || pptr[14] != 0x99 || pptr[15] != 0xc7)
goto skip;
tmp = BYTES2INT64(pptr, 48); /* Flags */
if (tmp) {
DEBUGF("GPT: Skip parition with flags\n");
goto skip; /* Any flag makes us ignore this */
}
tmp = BYTES2INT64(pptr, 32); /* FIRST LBA */
#ifndef STORAGE_64BIT_SECTOR
if (tmp > UINT32_MAX) {
DEBUGF("GPT: partition starts after 2TiB mark\n");
goto skip;
}
#endif
if (tmp < 34) {
DEBUGF("GPT: Invalid start LBA\n");
goto skip;
}
pinfo[part].start = tmp;
tmp = BYTES2INT64(pptr, 40); /* LAST LBA */
#ifndef STORAGE_64BIT_SECTOR
if (tmp > UINT32_MAX) {
DEBUGF("GPT: partition ends after 2TiB mark\n");
goto skip;
}
#endif
if (tmp <= pinfo[part].start) {
DEBUGF("GPT: Invalid end LBA\n");
goto skip;
}
pinfo[part].size = tmp - pinfo[part].start + 1;
pinfo[part].type = PARTITION_TYPE_FAT32_LBA;
DEBUGF("GPart%d: start: %016lx size: %016lx\n",
part,pinfo[part].start,pinfo[part].size);
part++;
skip:
pptr += part_entry_size;
part_entries--;
}
is_gpt = 0; /* To break out of the loop */
}
disk_writer_unlock();
init = true;
}
else
{
DEBUGF("Bad boot sector signature\n");
}
dc_release_buffer(sector);
return init;
}
bool disk_partinfo(int partition, struct partinfo *info)
{
if (partition < 0 || partition >= (int)ARRAYLEN(part) || !info)
return false;
disk_reader_lock();
*info = part[partition];
disk_reader_unlock();
return true;
}
int disk_mount(int drive)
{
int mounted = 0; /* reset partition-on-drive flag */
disk_writer_lock();
int volume = get_free_volume();
if (volume < 0)
{
DEBUGF("No Free Volumes\n");
disk_writer_unlock();
return 0;
}
if (!disk_init(IF_MD(drive)))
{
disk_writer_unlock();
return 0;
}
struct partinfo *pinfo = &part[IF_MD_DRV(drive)*4];
#ifdef MAX_VIRT_SECTOR_SIZE
disk_sector_multiplier[IF_MD_DRV(drive)] = 1;
#endif
/* try "superfloppy" mode */
DEBUGF("Trying to mount sector 0.\n");
if (!fat_mount(IF_MV(volume,) IF_MD(drive,) 0))
{
#ifdef MAX_VIRT_SECTOR_SIZE
disk_sector_multiplier[drive] = fat_get_bytes_per_sector(IF_MV(volume)) / LOG_SECTOR_SIZE(drive);
#endif
mounted = 1;
init_volume(&volumes[volume], drive, 0);
volume_onmount_internal(IF_MV(volume));
struct storage_info info;
storage_get_info(drive, &info);
pinfo[0].type = PARTITION_TYPE_FAT32_LBA;
pinfo[0].start = 0;
pinfo[0].size = info.num_sectors;
}
if (mounted == 0 && volume != -1) /* not a "superfloppy"? */
{
for (int i = CONFIG_DEFAULT_PARTNUM;
volume != -1 && i < MAX_PARTITIONS_PER_DRIVE && mounted < NUM_VOLUMES_PER_DRIVE;
i++)
{
if (pinfo[i].type == 0 || pinfo[i].type == 5)
continue; /* skip free/extended partitions */
DEBUGF("Trying to mount partition %d.\n", i);
#ifdef MAX_VIRT_SECTOR_SIZE
for (int j = 1; j <= (MAX_VIRT_SECTOR_SIZE/LOG_SECTOR_SIZE(drive)); j <<= 1)
{
if (!fat_mount(IF_MV(volume,) IF_MD(drive,) pinfo[i].start * j))
{
pinfo[i].start *= j;
pinfo[i].size *= j;
mounted++;
init_volume(&volumes[volume], drive, i);
disk_sector_multiplier[drive] = j;
volume_onmount_internal(IF_MV(volume));
volume = get_free_volume(); /* prepare next entry */
break;
}
}
#else /* ndef MAX_VIRT_SECTOR_SIZE */
if (!fat_mount(IF_MV(volume,) IF_MD(drive,) pinfo[i].start))
{
mounted++;
init_volume(&volumes[volume], drive, i);
volume_onmount_internal(IF_MV(volume));
volume = get_free_volume(); /* prepare next entry */
}
#endif /* MAX_VIRT_SECTOR_SIZE */
}
#if defined(MAX_VIRT_SECTOR_SIZE) && defined(MAX_PHYS_SECTOR_SIZE)
if (mounted)
ata_set_phys_sector_mult(disk_sector_multiplier[drive]);
#endif
}
disk_writer_unlock();
return mounted;
}
int disk_mount_all(void)
{
int mounted = 0;
disk_writer_lock();
/* reset all mounted partitions */
volume_onunmount_internal(IF_MV(-1));
fat_init();
/* mark all volumes as free */
for (int i = 0; i < NUM_VOLUMES; i++)
mark_free_volume(&volumes[i]);
for (int i = 0; i < NUM_DRIVES; i++)
{
#ifdef HAVE_HOTSWAP
if (storage_present(i))
#endif
mounted += disk_mount(i);
}
disk_writer_unlock();
return mounted;
}
int disk_unmount(int drive)
{
if (!CHECK_DRV(drive))
return 0;
int unmounted = 0;
disk_writer_lock();
for (int i = 0; i < NUM_VOLUMES; i++)
{
struct volumeinfo *vi = &volumes[i];
/* unmount any volumes on the drive */
if (vi->drive == drive)
{
mark_free_volume(vi); /* FIXME: should do this after unmount? */
volume_onunmount_internal(IF_MV(i));
fat_unmount(IF_MV(i));
unmounted++;
}
}
disk_writer_unlock();
return unmounted;
}
int disk_unmount_all(void)
{
int unmounted = 0;
disk_writer_lock();
volume_onunmount_internal(IF_MV(-1));
for (int i = 0; i < NUM_DRIVES; i++)
{
#ifdef HAVE_HOTSWAP
if (storage_present(i))
#endif
unmounted += disk_unmount(i);
}
disk_writer_unlock();
return unmounted;
}
bool disk_present(IF_MD_NONVOID(int drive))
{
int rc = -1;
if (CHECK_DRV(drive))
{
void *sector = dc_get_buffer();
if (sector)
{
rc = storage_read_sectors(IF_MD(drive,) 0, 1, sector);
dc_release_buffer(sector);
}
}
return rc == 0;
}
/** Volume-centric functions **/
void volume_recalc_free(IF_MV_NONVOID(int volume))
{
if (!CHECK_VOL(volume))
return;
/* FIXME: this is crummy but the only way to ensure a correct freecount
if other threads are writing and changing the fsinfo; it is possible
to get multiple threads calling here and also writing and get correct
freespace counts, however a bit complicated to do; if thou desireth I
shall implement the concurrent version -- jethead71 */
disk_writer_lock();
fat_recalc_free(IF_MV(volume));
disk_writer_unlock();
}
unsigned int volume_get_cluster_size(IF_MV_NONVOID(int volume))
{
if (!CHECK_VOL(volume))
return 0;
disk_reader_lock();
unsigned int clustersize = fat_get_cluster_size(IF_MV(volume));
disk_reader_unlock();
return clustersize;
}
void volume_size(IF_MV(int volume,) sector_t *sizep, sector_t *freep)
{
disk_reader_lock();
if (!CHECK_VOL(volume) || !fat_size(IF_MV(volume,) sizep, freep))
{
if (sizep) *sizep = 0;
if (freep) *freep = 0;
}
disk_reader_unlock();
}
#if defined (HAVE_HOTSWAP) || defined (HAVE_MULTIDRIVE) \
|| defined (HAVE_DIRCACHE) || defined(HAVE_BOOTDATA)
enum volume_info_type
{
#ifdef HAVE_HOTSWAP
VP_REMOVABLE,
VP_PRESENT,
#endif
#if defined (HAVE_MULTIDRIVE) || defined (HAVE_DIRCACHE)
VP_DRIVE,
#endif
VP_PARTITION,
};
static int volume_properties(int volume, enum volume_info_type infotype)
{
int res = -1;
disk_reader_lock();
if (CHECK_VOL(volume))
{
struct volumeinfo *vi = &volumes[volume];
switch (infotype)
{
#ifdef HAVE_HOTSWAP
case VP_REMOVABLE:
res = storage_removable(vi->drive) ? 1 : 0;
break;
case VP_PRESENT:
res = storage_present(vi->drive) ? 1 : 0;
break;
#endif
#if defined(HAVE_MULTIDRIVE) || defined(HAVE_DIRCACHE)
case VP_DRIVE:
res = vi->drive;
break;
#endif
case VP_PARTITION:
res = vi->partition;
break;
}
}
disk_reader_unlock();
return res;
}
#ifdef HAVE_HOTSWAP
bool volume_removable(int volume)
{
return volume_properties(volume, VP_REMOVABLE) > 0;
}
bool volume_present(int volume)
{
return volume_properties(volume, VP_PRESENT) > 0;
}
#endif /* HAVE_HOTSWAP */
#ifdef HAVE_MULTIDRIVE
int volume_drive(int volume)
{
return volume_properties(volume, VP_DRIVE);
}
#endif /* HAVE_MULTIDRIVE */
int volume_partition(int volume)
{
return volume_properties(volume, VP_PARTITION);
}
#ifdef HAVE_DIRCACHE
bool volume_ismounted(IF_MV_NONVOID(int volume))
{
return volume_properties(IF_MV_VOL(volume), VP_DRIVE) >= 0;
}
#endif /* HAVE_DIRCACHE */
#endif /* HAVE_HOTSWAP || HAVE_MULTIDRIVE || HAVE_DIRCACHE || HAVE_BOOTDATA */