1
0
Fork 0
forked from len0rd/rockbox
foxbox/firmware/target/arm/tcc780x/ata-nand-tcc780x.c
Rob Purchase addb5228ec D2: Further work-in-progress on the NAND driver.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@16308 a1c6a512-1295-4272-9138-f99709370657
2008-02-13 23:50:44 +00:00

698 lines
18 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 Rob Purchase
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "ata.h"
#include "ata-target.h"
#include "ata_idle_notify.h"
#include "system.h"
#include <string.h>
#include "thread.h"
#include "led.h"
#include "disk.h"
#include "panic.h"
#include "usb.h"
/* for compatibility */
int ata_spinup_time = 0;
long last_disk_activity = -1;
/** static, private data **/
static bool initialized = false;
static long next_yield = 0;
#define MIN_YIELD_PERIOD 2000
static struct mutex ata_mtx NOCACHEBSS_ATTR;
#define SECTOR_SIZE 512
/* TCC780x NAND Flash Controller */
#define NFC_CMD (*(volatile unsigned long *)0xF0053000)
#define NFC_SADDR (*(volatile unsigned long *)0xF005300C)
#define NFC_SDATA (*(volatile unsigned long *)0xF0053040)
#define NFC_WDATA (*(volatile unsigned long *)0xF0053010)
#define NFC_CTRL (*(volatile unsigned long *)0xF0053050)
#define NFC_IREQ (*(volatile unsigned long *)0xF0053060)
#define NFC_RST (*(volatile unsigned long *)0xF0053064)
/* NFC_CTRL flags */
#define NFC_16BIT (1<<26)
#define NFC_CS0 (1<<23)
#define NFC_CS1 (1<<22)
#define NFC_READY (1<<20)
/* Chip characteristics, initialised by nand_get_chip_info() */
static int page_size = 0;
static int spare_size = 0;
static int pages_per_block = 0;
static int blocks_per_bank = 0;
static int pages_per_bank = 0;
static int row_cycles = 0;
static int col_cycles = 0;
static int total_banks = 0;
static int sectors_per_page = 0;
static int bytes_per_segment = 0;
static int sectors_per_segment = 0;
/* Maximum values for static buffers */
#define MAX_PAGE_SIZE 4096
#define MAX_SPARE_SIZE 128
#define MAX_BLOCKS_PER_BANK 8192
#define MAX_BANKS 4
/*
Block translation table - maps logical Segment Number to physical page address
Format: 0xBTPPPPPP (B = Bank; T = Block Type flag; P = Page Address)
*/
static int segment_location[MAX_BLOCKS_PER_BANK * MAX_BANKS / 4];
static void nand_chip_select(int chip)
{
if (chip == -1)
{
/* Disable both chip selects */
GPIOB_CLEAR = (1<<21);
NFC_CTRL |= NFC_CS0 | NFC_CS1;
}
else
{
/* NFC chip select */
if (chip & 1)
{
NFC_CTRL &= ~NFC_CS0;
NFC_CTRL |= NFC_CS1;
}
else
{
NFC_CTRL |= NFC_CS0;
NFC_CTRL &= ~NFC_CS1;
}
/* Secondary chip select */
if (chip & 2)
{
GPIOB_SET = (1<<21);
}
else
{
GPIOB_CLEAR = (1<<21);
}
}
}
static void nand_read_id(int chip, unsigned char* id_buf)
{
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Reset NAND controller */
NFC_RST = 0;
/* Set slow cycle timings since the chip is as yet unidentified */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x353;
nand_chip_select(chip);
/* Set write protect */
GPIOB_CLEAR = (1<<19);
/* Reset command */
NFC_CMD = 0xFF;
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Read ID command, single address cycle */
NFC_CMD = 0x90;
NFC_SADDR = 0x00;
/* Read the 5 single bytes */
id_buf[0] = NFC_SDATA & 0xFF;
id_buf[1] = NFC_SDATA & 0xFF;
id_buf[2] = NFC_SDATA & 0xFF;
id_buf[3] = NFC_SDATA & 0xFF;
id_buf[4] = NFC_SDATA & 0xFF;
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
static void nand_read_uid(int chip, unsigned int* uid_buf)
{
int i;
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Set cycle timing (stp = 1, pw = 3, hold = 1) */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131;
nand_chip_select(chip);
/* Set write protect */
GPIOB_CLEAR = 1<<19;
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Undocumented (SAMSUNG specific?) commands set the chip into a
special mode allowing a normally-hidden UID block to be read. */
NFC_CMD = 0x30;
NFC_CMD = 0x65;
/* Read command */
NFC_CMD = 0x00;
/* Write row/column address */
for (i = 0; i < col_cycles; i++) NFC_SADDR = 0;
for (i = 0; i < row_cycles; i++) NFC_SADDR = 0;
/* End of read */
NFC_CMD = 0x30;
/* Wait until complete */
while (!(NFC_CTRL & NFC_READY)) {};
/* Copy data to buffer (data repeats after 8 words) */
for (i = 0; i < 8; i++)
{
uid_buf[i] = NFC_WDATA;
}
/* Reset the chip back to normal mode */
NFC_CMD = 0xFF;
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
/* NB: size must be divisible by 4 due to 32-bit read */
static void nand_read_raw(int chip, int row, int column, int size, void* buf)
{
int i;
/* Currently this relies on a word-aligned input buffer */
unsigned int* int_buf = (unsigned int*)buf;
if ((unsigned int)buf & 3) panicf("nand_read_raw() non-aligned input buffer");
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Set cycle timing (stp = 1, pw = 3, hold = 1) */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131;
nand_chip_select(chip);
/* Set write protect */
GPIOB_CLEAR = (1<<19);
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Read command */
NFC_CMD = 0x00;
/* Write column address */
for (i = 0; i < col_cycles; i++)
{
NFC_SADDR = column & 0xFF;
column = column >> 8;
}
/* Write row address */
for (i = 0; i < row_cycles; i++)
{
NFC_SADDR = row & 0xFF;
row = row >> 8;
}
/* End of read command */
NFC_CMD = 0x30;
/* Wait until complete */
while (!(NFC_CTRL & NFC_READY)) {};
/* Read data into page buffer */
for (i = 0; i < (size/4); i++)
{
int_buf[i] = NFC_WDATA;
}
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
/* NB: Output buffer must currently be word-aligned */
static bool nand_read_sector(int segment, int sector, void* buf)
{
int physaddr = segment_location[segment];
int bank = physaddr >> 28;
int page = physaddr & 0xffffff;
int page_in_seg = sector / sectors_per_page;
int sec_in_page = sector % sectors_per_page;
/* TODO: Check if there are any 0x15 pages referring to this segment/sector
combination. If present we need to read that data instead. */
if (physaddr == -1) return false;
if (page_in_seg & 1)
{
/* Data is located in block+1 */
page += pages_per_block;
}
if (page_in_seg & 2)
{
/* Data is located in second plane */
page += (blocks_per_bank/2) * pages_per_block;
}
page += page_in_seg/4;
nand_read_raw(bank, page,
sec_in_page * (SECTOR_SIZE+16),
SECTOR_SIZE, buf);
/* TODO: Read the 16 spare bytes, perform ECC correction */
return true;
}
static void nand_get_chip_info(void)
{
bool found = false;
unsigned char manuf_id;
unsigned char id_buf[8];
/* Read chip id from bank 0 */
nand_read_id(0, id_buf);
manuf_id = id_buf[0];
switch (manuf_id)
{
case 0xEC: /* SAMSUNG */
switch(id_buf[1]) /* Chip Id */
{
case 0xD5: /* K9LAG08UOM */
page_size = 2048;
spare_size = 64;
pages_per_block = 128;
blocks_per_bank = 8192;
col_cycles = 2;
row_cycles = 3;
found = true;
break;
case 0xD7: /* K9LBG08UOM */
page_size = 4096;
spare_size = 128;
pages_per_block = 128;
blocks_per_bank = 8192;
col_cycles = 2;
row_cycles = 3;
found = true;
break;
}
break;
}
if (!found)
{
panicf("Unknown NAND: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x",
id_buf[0],id_buf[1],id_buf[2],id_buf[3],id_buf[4]);
}
pages_per_bank = blocks_per_bank * pages_per_block;
bytes_per_segment = page_size * pages_per_block * 4;
sectors_per_page = page_size / SECTOR_SIZE;
sectors_per_segment = bytes_per_segment / SECTOR_SIZE;
/* Establish how many banks are present */
nand_read_id(1, id_buf);
if (id_buf[0] == manuf_id)
{
/* Bank 1 is populated, now check if banks 2/3 are valid */
nand_read_id(2, id_buf);
if (id_buf[0] == manuf_id)
{
/* Bank 2 returned matching id - check if 2/3 are shadowing 0/1 */
unsigned int uid_buf0[8];
unsigned int uid_buf2[8];
nand_read_uid(0, uid_buf0);
nand_read_uid(2, uid_buf2);
if (memcmp(uid_buf0, uid_buf2, 32) == 0)
{
/* UIDs match, assume banks 2/3 are shadowing 0/1 */
total_banks = 2;
}
else
{
/* UIDs differ, assume banks 2/3 are valid */
total_banks = 4;
}
}
else
{
/* Bank 2 returned differing id - assume 2/3 are junk */
total_banks = 2;
}
}
else
{
/* Bank 1 returned differing id - assume it is junk */
total_banks = 1;
}
/* Check block 0, page 0 for "BMPM" string & total_banks byte. If this is
confirmed for all D2s we can remove the above code & nand_read_uid(). */
nand_read_raw(0, /* bank */
0, /* page */
page_size, /* offset */
8, id_buf);
if (strncmp(id_buf, "BMPM", 4)) panicf("BMPM tag not present");
if (id_buf[4] != total_banks) panicf("BMPM total_banks mismatch");
}
/* TEMP testing function */
#ifdef BOOTLOADER
#include "lcd.h"
extern int line;
unsigned int buf[(MAX_PAGE_SIZE + MAX_SPARE_SIZE) / 4];
static void nand_test(void)
{
int i;
unsigned int seq_segments = 0;
#if 0
int chip,page;
#endif
printf("%d banks", total_banks);
printf("* %d pages", pages_per_bank);
printf("* %d bytes per page", page_size);
i = 0;
while (segment_location[i] != -1
&& i++ < (blocks_per_bank * total_banks / 4))
{
seq_segments++;
}
printf("%d sequential segments found (%dMb)", seq_segments,
(seq_segments*bytes_per_segment)>>20);
while (!button_read_device()) {};
while (button_read_device()) {};
#if 0
/* Read & display sequential pages */
for (chip = 0; chip < total_banks; chip++)
{
for (page = 0x0; page < 0x100; page++)
{
nand_read_raw(chip, page, 0, page_size+spare_size, buf);
for (i = 0; i < (page_size+spare_size)/4; i += 132)
{
int j,interesting = 0;
line = 0;
printf("c:%d p:%lx i:%d", chip, page, i);
for (j=i; j<(i+131); j++)
{
if (buf[j] != 0xffffffff) interesting = 1;
}
if (interesting)
{
for (j=i; j<(i+63); j+=4)
{
printf("%lx %lx %lx %lx",
buf[j], buf[j+1], buf[j+2], buf[j+3]);
}
printf("--->");
while (!button_read_device()) {};
while (button_read_device()) {};
line = 1;
printf("<---");
for (j=j; j<(i+131); j+=4)
{
printf("%lx %lx %lx %lx",
buf[j], buf[j+1], buf[j+2], buf[j+3]);
}
while (!button_read_device()) {};
while (button_read_device()) {};
reset_screen();
}
}
}
}
#endif
}
#endif
/* API Functions */
void ata_led(bool onoff)
{
led(onoff);
}
int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount,
void* inbuf)
{
#ifdef HAVE_MULTIVOLUME
(void)drive; /* unused for now */
#endif
mutex_lock(&ata_mtx);
while (incount > 0)
{
int done = 0;
int segment = start / sectors_per_segment;
int secmod = start % sectors_per_segment;
while (incount > 0 && secmod < sectors_per_segment)
{
if (!nand_read_sector(segment, secmod, inbuf))
{
mutex_unlock(&ata_mtx);
return -1;
}
inbuf += SECTOR_SIZE;
incount--;
secmod++;
done++;
}
if (done < 0)
{
mutex_unlock(&ata_mtx);
return -1;
}
start += done;
}
mutex_unlock(&ata_mtx);
return 0;
}
int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count,
const void* outbuf)
{
#warning function not implemented
(void)start;
(void)count;
(void)outbuf;
return 0;
}
void ata_spindown(int seconds)
{
/* null */
(void)seconds;
}
bool ata_disk_is_active(void)
{
/* null */
return 0;
}
void ata_sleep(void)
{
/* null */
}
void ata_spin(void)
{
/* null */
}
/* Hardware reset protocol as specified in chapter 9.1, ATA spec draft v5 */
int ata_hard_reset(void)
{
/* null */
return 0;
}
int ata_soft_reset(void)
{
/* null */
return 0;
}
void ata_enable(bool on)
{
/* null - flash controller is enabled/disabled as needed. */
(void)on;
}
int ata_init(void)
{
int i, bank, page;
unsigned int spare_buf[4];
if (initialized) return 0;
/* Get chip characteristics and number of banks */
nand_get_chip_info();
for (i = 0; i < (MAX_BLOCKS_PER_BANK * MAX_BANKS / 4); i++)
{
segment_location[i] = -1;
}
/* Scan banks to build up block translation table */
for (bank = 0; bank < total_banks; bank++)
{
for (page = 0; page < pages_per_bank/2; page += pages_per_block*2)
{
unsigned char segment_flag;
unsigned char stored_flag;
unsigned short segment_id;
unsigned char* buf_ptr = (unsigned char*)spare_buf;
/* Read spare bytes from first sector of each segment */
nand_read_raw(bank, page,
SECTOR_SIZE, /* offset */
16, spare_buf);
segment_id = (buf_ptr[6] << 8) | buf_ptr[7];
segment_flag = buf_ptr[4];
stored_flag = (segment_location[segment_id] >> 24) & 0xf;
#if defined(BOOTLOADER) && 0
if (segment_flag == 0x15)
{
printf("Segment %lx: c:%lx p:%lx, type:%lx, stored:x%lx",
segment_id, bank, page, segment_flag, stored_flag);
while (!button_read_device()) {};
while (button_read_device()) {};
}
#endif
if (segment_flag == 0x13 || segment_flag == 0x17)
{
if (segment_id < (blocks_per_bank * total_banks / 4))
{
#if defined(BOOTLOADER) && 0
if (segment_location[segment_id] != -1 && stored_flag != 0x3)
{
int orig_bank = segment_location[segment_id] >> 28;
int orig_page = segment_location[segment_id] & 0xFFFFFF;
printf("Segment %d already set! (stored flag:x%lx)",
segment_id, stored_flag);
printf("0x%08x 0x%08x 0x%08x 0x%08x",
spare_buf[0],spare_buf[1],spare_buf[2],spare_buf[3]);
nand_read_raw(orig_bank, orig_page,
SECTOR_SIZE,
16, spare_buf);
printf("0x%08x 0x%08x 0x%08x 0x%08x",
spare_buf[0],spare_buf[1],spare_buf[2],spare_buf[3]);
}
#endif
/* Write bank, block type & physical address into table */
segment_location[segment_id]
= page | (bank << 28) | ((segment_flag & 0xf) << 24);
}
else
{
panicf("Invalid segment id:%d found", segment_id);
}
}
}
}
initialized = true;
#ifdef BOOTLOADER
/* TEMP - print out some diagnostics */
nand_test();
#endif
return 0;
}
/* TEMP: This will return junk, it's here for compilation only */
unsigned short* ata_get_identify(void)
{
return (unsigned short*)0x21000000; /* Unused DRAM */
}