forked from len0rd/rockbox
The new code supports reading and writing UPG files. I kept the old keysig search code but it only supports the old format (the new format has too long keys anyway). Since we now have to support two types of encryption(DES and AES), I reorganized the crypto routines and clean-up some code. Change-Id: Ie9be220ec2431ec6d0bd11699fa0493b62e1cec2
512 lines
16 KiB
C
512 lines
16 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2012 Amaury Pouly
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "keysig_search.h"
|
|
#include "misc.h"
|
|
#include "mg.h"
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <pthread.h>
|
|
#include <stdbool.h>
|
|
|
|
#define cprintf(col, ...) do {color(col); printf(__VA_ARGS__); }while(0)
|
|
|
|
/** Generic search code */
|
|
|
|
/* The generator sends chunks to the workers. The exact type of chunks depends
|
|
* on the method used. */
|
|
static struct
|
|
{
|
|
pthread_mutex_t mutex; /* mutex for the whole structure */
|
|
pthread_cond_t avail_cond; /* condition to signal available or stop */
|
|
pthread_cond_t req_cond; /* condition to signal request or stop */
|
|
bool stop; /* if true, stop searcg */
|
|
void *chunk; /* pointer to chunk (NULL if not available) */
|
|
size_t chunk_sz; /* chunk size */
|
|
}g_producer;
|
|
|
|
/* init producer */
|
|
static void producer_init(void)
|
|
{
|
|
pthread_cond_init(&g_producer.avail_cond, NULL);
|
|
pthread_cond_init(&g_producer.req_cond, NULL);
|
|
pthread_mutex_init(&g_producer.mutex, NULL);
|
|
g_producer.stop = false;
|
|
g_producer.chunk = NULL;
|
|
g_producer.chunk_sz = 0;
|
|
}
|
|
|
|
/* consumer get: called by worker to get a new chunk, return NULL to stop */
|
|
static void *consumer_get(size_t *sz)
|
|
{
|
|
pthread_mutex_lock(&g_producer.mutex);
|
|
/* loop until stop or new chunk */
|
|
while(true)
|
|
{
|
|
/* stop if requested */
|
|
if(g_producer.stop)
|
|
{
|
|
pthread_mutex_unlock(&g_producer.mutex);
|
|
return NULL;
|
|
}
|
|
if(g_producer.chunk)
|
|
break;
|
|
/* request a new chunk */
|
|
pthread_cond_signal(&g_producer.req_cond);
|
|
/* wait for availability */
|
|
pthread_cond_wait(&g_producer.avail_cond, &g_producer.mutex);
|
|
}
|
|
void *c = g_producer.chunk;
|
|
if(sz)
|
|
*sz = g_producer.chunk_sz;
|
|
g_producer.chunk = NULL;
|
|
pthread_mutex_unlock(&g_producer.mutex);
|
|
/* request a new chunk, so that if other consumers are waiting, the producer
|
|
* will also wake them up */
|
|
pthread_cond_signal(&g_producer.req_cond);
|
|
return c;
|
|
}
|
|
|
|
/* stop: called by worker to stop the search */
|
|
static void consumer_stop(void)
|
|
{
|
|
pthread_mutex_lock(&g_producer.mutex);
|
|
/* set stop */
|
|
g_producer.stop = true;
|
|
/* wake up everyone */
|
|
pthread_cond_broadcast(&g_producer.req_cond);
|
|
pthread_cond_broadcast(&g_producer.avail_cond);
|
|
pthread_mutex_unlock(&g_producer.mutex);
|
|
}
|
|
|
|
/* producer yield: called by generator to give a new chunk, return true to stop */
|
|
static bool producer_yield(void *chunk, size_t sz)
|
|
{
|
|
pthread_mutex_lock(&g_producer.mutex);
|
|
/* wait until stop or request */
|
|
while(true)
|
|
{
|
|
/* stop if requested */
|
|
if(g_producer.stop)
|
|
{
|
|
pthread_mutex_unlock(&g_producer.mutex);
|
|
return true;
|
|
}
|
|
/* if the chunk is empty, fill it */
|
|
if(g_producer.chunk == NULL)
|
|
break;
|
|
/* otherwise wait for request */
|
|
pthread_cond_wait(&g_producer.req_cond, &g_producer.mutex);
|
|
}
|
|
g_producer.chunk = malloc(sz);
|
|
memcpy(g_producer.chunk, chunk, sz);
|
|
g_producer.chunk_sz = sz;
|
|
/* signal availability */
|
|
pthread_cond_signal(&g_producer.avail_cond);
|
|
pthread_mutex_unlock(&g_producer.mutex);
|
|
return false;
|
|
}
|
|
|
|
static void producer_stop(void)
|
|
{
|
|
pthread_mutex_lock(&g_producer.mutex);
|
|
/* if we are not already stopping and there is a chunk still waiting to
|
|
* be consumed, wait until next request */
|
|
if(!g_producer.stop && g_producer.chunk)
|
|
pthread_cond_wait(&g_producer.req_cond, &g_producer.mutex);
|
|
/* set stop */
|
|
g_producer.stop = true;
|
|
/* wake up everyone */
|
|
pthread_cond_broadcast(&g_producer.avail_cond);
|
|
pthread_mutex_unlock(&g_producer.mutex);
|
|
}
|
|
|
|
/* Key search methods
|
|
*
|
|
* This code tries to find the key and signature of a device using an upgrade
|
|
* file. It more or less relies on brute force and makes the following assumptions.
|
|
* It assumes the key and the signature are hexadecimal strings (it appears to be
|
|
* true thus far). The code lists all possible keys and decrypts the first
|
|
* 8 bytes of the file. If the decrypted signature happens to be an hex string,
|
|
* the code reports the key and signature as potentially valid. Note that some
|
|
* key/sig pairs may not be valid but since the likelyhood of decrypting a
|
|
* random 8-byte sequence using an hex string key and to produce an hex string
|
|
* is very small, there should be almost no false positive.
|
|
*
|
|
* Since the key is supposedly random, the code starts by looking at "balanced"
|
|
* keys: keys with slightly more digits (0-9) than letters (a-f) and then moving
|
|
* towards very unbalanced strings (only digits or only letters).
|
|
*/
|
|
|
|
static struct
|
|
{
|
|
pthread_mutex_t mutex;
|
|
uint8_t *enc_buf;
|
|
size_t enc_buf_sz;
|
|
bool found_keysig;
|
|
uint8_t key[NWZ_KEY_SIZE]; /* result */
|
|
uint8_t sig[NWZ_SIG_SIZE]; /* result */
|
|
}g_keysig_search;
|
|
|
|
static bool is_hex[256];
|
|
static bool is_alnum[256];
|
|
static bool is_init = false;
|
|
|
|
static void keysig_search_init()
|
|
{
|
|
if(is_init) return;
|
|
is_init = true;
|
|
memset(is_hex, 0, sizeof(is_hex));
|
|
for(int i = '0'; i <= '9'; i++)
|
|
{
|
|
is_alnum[i] = true;
|
|
is_hex[i] = true;
|
|
}
|
|
for(int i = 'a'; i <= 'f'; i++)
|
|
is_hex[i] = true;
|
|
for(int i = 'A'; i <= 'F'; i++)
|
|
is_hex[i] = true;
|
|
for(int i = 'a'; i <= 'z'; i++)
|
|
is_alnum[i] = true;
|
|
for(int i = 'A'; i <= 'Z'; i++)
|
|
is_alnum[i] = true;
|
|
}
|
|
|
|
static bool hex_validate_sig(uint8_t *arr)
|
|
{
|
|
for(int i = 0; i < 8; i++)
|
|
if(!is_hex[arr[i]])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool alnum_validate_sig(uint8_t *arr)
|
|
{
|
|
for(int i = 0; i < 8; i++)
|
|
if(!is_alnum[arr[i]])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
struct upg_header_t
|
|
{
|
|
uint8_t sig[NWZ_SIG_SIZE];
|
|
uint32_t nr_files;
|
|
uint32_t pad; // make sure structure size is a multiple of 8
|
|
} __attribute__((packed));
|
|
|
|
typedef bool (*sig_validate_fn_t)(uint8_t *key);
|
|
|
|
static bool check_key(uint8_t key[NWZ_KEY_SIZE], sig_validate_fn_t validate)
|
|
{
|
|
struct upg_header_t hdr;
|
|
mg_decrypt_fw(g_keysig_search.enc_buf, sizeof(hdr), (void *)&hdr, key);
|
|
if(validate(hdr.sig))
|
|
{
|
|
/* the signature looks correct, so check the header to be sure */
|
|
/* we expect the number of files to be small and the padding to be 0 */
|
|
if(hdr.nr_files == 0 || hdr.nr_files > 10 || hdr.pad != 0)
|
|
return false;
|
|
cprintf(RED, " Found key: %.8s (sig=%.8s, nr_files=%u)\n", key, hdr.sig, (unsigned)hdr.nr_files);
|
|
pthread_mutex_lock(&g_keysig_search.mutex);
|
|
g_keysig_search.found_keysig = true;
|
|
memcpy(g_keysig_search.key, key, NWZ_KEY_SIZE);
|
|
memcpy(g_keysig_search.sig, hdr.sig, NWZ_SIG_SIZE);
|
|
pthread_mutex_unlock(&g_keysig_search.mutex);
|
|
consumer_stop();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/** Hex search */
|
|
|
|
struct hex_chunk_t
|
|
{
|
|
uint8_t key[NWZ_KEY_SIZE]; /* partially pre-filled key */
|
|
bool upper_case; /* allow upper case in letters */
|
|
int pos;
|
|
int rem_letters;
|
|
int rem_digits;
|
|
};
|
|
|
|
static bool hex_rec(bool producer, struct hex_chunk_t *ch)
|
|
{
|
|
/* we list the first 4 pos in generator, and remaining 4 in workers */
|
|
if(producer && ch->pos == 4)
|
|
{
|
|
//printf("yield(%.8s,%d,%d,%d)\n", ch->key, ch->pos, ch->rem_digits, ch->rem_letters);
|
|
return producer_yield(ch, sizeof(struct hex_chunk_t));
|
|
}
|
|
/* filled the key ? */
|
|
if(!producer && ch->pos == NWZ_KEY_SIZE)
|
|
return check_key(ch->key, hex_validate_sig);
|
|
/* list next possibilities
|
|
*
|
|
* NOTE (42) Since the cipher is DES, the key is actually 56-bit: the least
|
|
* significant bit of each byte is an (unused) parity bit. We thus only
|
|
* generate keys where the least significant bit is 0. */
|
|
int p = ch->pos++;
|
|
int step = (p % 2) ? 2 : 1; // skip significant bit at positions 1, 3, 5 and 7
|
|
if(ch->rem_digits > 0)
|
|
{
|
|
ch->rem_digits--;
|
|
/* NOTE (42) */
|
|
for(int i = '0'; i <= '9'; i += step)
|
|
{
|
|
ch->key[p] = i;
|
|
if(hex_rec(producer, ch))
|
|
return true;
|
|
}
|
|
ch->rem_digits++;
|
|
}
|
|
if(ch->rem_letters > 0)
|
|
{
|
|
ch->rem_letters--;
|
|
/* NOTE (42) */
|
|
for(int i = 'a'; i <= 'f'; i += step)
|
|
{
|
|
ch->key[p] = i;
|
|
if(hex_rec(producer, ch))
|
|
return true;
|
|
}
|
|
if(ch->upper_case)
|
|
{
|
|
for(int i = 'A'; i <= 'F'; i += step)
|
|
{
|
|
ch->key[p] = i;
|
|
if(hex_rec(producer, ch))
|
|
return true;
|
|
}
|
|
}
|
|
ch->rem_letters++;
|
|
}
|
|
ch->pos--;
|
|
return false;
|
|
}
|
|
|
|
static void *hex_worker(void *arg)
|
|
{
|
|
(void) arg;
|
|
while(true)
|
|
{
|
|
struct hex_chunk_t *ch = consumer_get(NULL);
|
|
if(ch == NULL)
|
|
break;
|
|
hex_rec(false, ch);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool hex_producer_list(bool upper_case, int nr_digits, int nr_letters)
|
|
{
|
|
struct hex_chunk_t ch;
|
|
cprintf(BLUE, " Listing keys with %d letters and %d digits\n", nr_letters,
|
|
nr_digits);
|
|
memset(ch.key, ' ', 8);
|
|
ch.pos = 0;
|
|
ch.upper_case = upper_case;
|
|
ch.rem_letters = nr_letters;
|
|
ch.rem_digits = nr_digits;
|
|
return hex_rec(true, &ch);
|
|
}
|
|
|
|
void *hex_producer(void *arg)
|
|
{
|
|
(void) arg;
|
|
// sorted by probability:
|
|
bool stop = hex_producer_list(false, 5, 3) // 5 digits, 3 letters: 0.281632
|
|
|| hex_producer_list(false, 6, 2) // 6 digits, 2 letters: 0.234693
|
|
|| hex_producer_list(false, 4, 4) // 4 digits, 4 letters: 0.211224
|
|
|| hex_producer_list(false, 7, 1) // 7 digits, 1 letters: 0.111759
|
|
|| hex_producer_list(false, 3, 5) // 3 digits, 5 letters: 0.101388
|
|
|| hex_producer_list(false, 2, 6) // 2 digits, 6 letters: 0.030416
|
|
|| hex_producer_list(false, 8, 0) // 8 digits, 0 letters: 0.023283
|
|
|| hex_producer_list(false, 1, 7) // 1 digits, 7 letters: 0.005214
|
|
|| hex_producer_list(false, 0, 8);// 0 digits, 8 letters: 0.000391
|
|
if(!stop)
|
|
producer_stop();
|
|
return NULL;
|
|
}
|
|
|
|
void *hex_producer_up(void *arg)
|
|
{
|
|
(void) arg;
|
|
// sorted by probability:
|
|
// TODO sort
|
|
bool stop = hex_producer_list(true, 5, 3) // 5 digits, 3 letters: 0.281632
|
|
|| hex_producer_list(true, 6, 2) // 6 digits, 2 letters: 0.234693
|
|
|| hex_producer_list(true, 4, 4) // 4 digits, 4 letters: 0.211224
|
|
|| hex_producer_list(true, 7, 1) // 7 digits, 1 letters: 0.111759
|
|
|| hex_producer_list(true, 3, 5) // 3 digits, 5 letters: 0.101388
|
|
|| hex_producer_list(true, 2, 6) // 2 digits, 6 letters: 0.030416
|
|
|| hex_producer_list(true, 8, 0) // 8 digits, 0 letters: 0.023283
|
|
|| hex_producer_list(true, 1, 7) // 1 digits, 7 letters: 0.005214
|
|
|| hex_producer_list(true, 0, 8);// 0 digits, 8 letters: 0.000391
|
|
if(!stop)
|
|
producer_stop();
|
|
return NULL;
|
|
}
|
|
|
|
/** Alphanumeric search */
|
|
|
|
struct alnum_chunk_t
|
|
{
|
|
uint8_t key[NWZ_KEY_SIZE]; /* partially pre-filled key */
|
|
int pos;
|
|
};
|
|
|
|
static bool alnum_rec(bool producer, struct alnum_chunk_t *ch)
|
|
{
|
|
/* we list the first 5 pos in generator, and remaining 3 in workers */
|
|
if(producer && ch->pos == 4)
|
|
{
|
|
//printf("yield(%.8s,%d)\n", ch->key, ch->pos);
|
|
return producer_yield(ch, sizeof(struct alnum_chunk_t));
|
|
}
|
|
/* filled the key ? */
|
|
if(!producer && ch->pos == NWZ_KEY_SIZE)
|
|
return check_key(ch->key, alnum_validate_sig);
|
|
/* list next possibilities
|
|
*
|
|
* NOTE (42) Since the cipher is DES, the key is actually 56-bit: the least
|
|
* significant bit of each byte is an (unused) parity bit. We thus only
|
|
* generate keys where the least significant bit is 0. */
|
|
int p = ch->pos++;
|
|
/* NOTE (42) */
|
|
int step = (p % 2) ? 2 : 1; // skip significant bit at positions 1, 3, 5 and 7
|
|
for(int i = '0'; i <= '9'; i += step)
|
|
{
|
|
ch->key[p] = i;
|
|
if(alnum_rec(producer, ch))
|
|
return true;
|
|
}
|
|
/* NOTE (42) */
|
|
for(int i = 'a'; i <= 'z'; i += step)
|
|
{
|
|
ch->key[p] = i;
|
|
if(alnum_rec(producer, ch))
|
|
return true;
|
|
}
|
|
ch->pos--;
|
|
return false;
|
|
}
|
|
|
|
static void *alnum_worker(void *arg)
|
|
{
|
|
(void) arg;
|
|
while(true)
|
|
{
|
|
struct alnum_chunk_t *ch = consumer_get(NULL);
|
|
if(ch == NULL)
|
|
break;
|
|
alnum_rec(false, ch);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void *alnum_producer(void *arg)
|
|
{
|
|
(void) arg;
|
|
struct alnum_chunk_t ch;
|
|
cprintf(BLUE, " Listing alphanumeric keys\n");
|
|
memset(ch.key, ' ', 8);
|
|
ch.pos = 0;
|
|
if(!alnum_rec(true, &ch))
|
|
producer_stop();
|
|
return NULL;
|
|
}
|
|
|
|
typedef void *(*routine_t)(void *);
|
|
|
|
bool keysig_search(int method, uint8_t *enc_buf, size_t buf_sz,
|
|
keysig_notify_fn_t notify, void *user, int nr_threads)
|
|
{
|
|
/* init producer */
|
|
producer_init();
|
|
/* init search */
|
|
keysig_search_init();
|
|
pthread_mutex_init(&g_keysig_search.mutex, NULL);
|
|
g_keysig_search.enc_buf = enc_buf;
|
|
g_keysig_search.enc_buf_sz = buf_sz;
|
|
g_keysig_search.found_keysig = false;
|
|
/* get methods */
|
|
routine_t worker_fn = NULL;
|
|
routine_t producer_fn = NULL;
|
|
if(method == KEYSIG_SEARCH_XDIGITS)
|
|
{
|
|
worker_fn = hex_worker;
|
|
producer_fn = hex_producer;
|
|
}
|
|
else if(method == KEYSIG_SEARCH_XDIGITS_UP)
|
|
{
|
|
worker_fn = hex_worker;
|
|
producer_fn = hex_producer_up;
|
|
}
|
|
else if(method == KEYSIG_SEARCH_ALNUM)
|
|
{
|
|
worker_fn = alnum_worker;
|
|
producer_fn = alnum_producer;
|
|
}
|
|
else
|
|
{
|
|
printf("Invalid method\n");
|
|
return false;
|
|
}
|
|
/* create workers */
|
|
pthread_t *worker = malloc(sizeof(pthread_t) * nr_threads);
|
|
pthread_t producer;
|
|
for(int i = 0; i < nr_threads; i++)
|
|
pthread_create(&worker[i], NULL, worker_fn, NULL);
|
|
pthread_create(&producer, NULL, producer_fn, NULL);
|
|
/* wait for all threads */
|
|
pthread_join(producer, NULL);
|
|
for(int i = 0; i < nr_threads; i++)
|
|
pthread_join(worker[i], NULL);
|
|
free(worker);
|
|
if(g_keysig_search.found_keysig)
|
|
notify(user, g_keysig_search.key, g_keysig_search.sig);
|
|
return g_keysig_search.found_keysig;
|
|
}
|
|
|
|
struct keysig_search_desc_t keysig_search_desc[KEYSIG_SEARCH_LAST] =
|
|
{
|
|
[KEYSIG_SEARCH_NONE] =
|
|
{
|
|
.name = "none",
|
|
.comment = "don't use",
|
|
},
|
|
[KEYSIG_SEARCH_XDIGITS] =
|
|
{
|
|
.name = "xdigits",
|
|
.comment = "Try to find an hexadecimal string keysig"
|
|
},
|
|
[KEYSIG_SEARCH_XDIGITS_UP] =
|
|
{
|
|
.name = "xdigits-up",
|
|
.comment = "Try to find an hexadecimal string keysig, including upper case"
|
|
},
|
|
[KEYSIG_SEARCH_ALNUM] =
|
|
{
|
|
.name = "alnum",
|
|
.comment = "Try to find an alphanumeric string keysig"
|
|
},
|
|
};
|