1
0
Fork 0
forked from len0rd/rockbox
foxbox/firmware/target/arm/imx233/system-imx233.c
Amaury Pouly 2b1159dda0 imx233: move power init to system init
Do low level power init in system_init(). This can be needed
since imx233 must be able to frequecy scale atfer system_init()
and kernel_init() and this is only possible if power system was
initialised.

Change-Id: I27c66ec0dccd60bda26a45be24683c0bfe72c6da
2012-12-29 01:40:35 +01:00

248 lines
7.5 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "kernel.h"
#include "system.h"
#include "gcc_extensions.h"
#include "system-target.h"
#include "cpu.h"
#include "clkctrl-imx233.h"
#include "pinctrl-imx233.h"
#include "timrot-imx233.h"
#include "dma-imx233.h"
#include "ssp-imx233.h"
#include "i2c-imx233.h"
#include "dcp-imx233.h"
#include "pwm-imx233.h"
#include "icoll-imx233.h"
#include "lradc-imx233.h"
#include "rtc-imx233.h"
#include "power-imx233.h"
#include "lcd.h"
#include "backlight-target.h"
#include "button.h"
#include "fmradio_i2c.h"
void imx233_chip_reset(void)
{
HW_CLKCTRL_RESET = HW_CLKCTRL_RESET_CHIP;
}
void system_reboot(void)
{
_backlight_off();
disable_irq();
/* use watchdog to reset */
imx233_chip_reset();
while(1);
}
void system_exception_wait(void)
{
/* make sure lcd and backlight are on */
lcd_update();
_backlight_on();
_backlight_set_brightness(DEFAULT_BRIGHTNESS_SETTING);
/* wait until button release (if a button is pressed) */
#ifdef HAVE_BUTTON_DATA
int data;
while(button_read_device(&data));
/* then wait until next button press */
while(!button_read_device(&data));
#else
while(button_read_device());
/* then wait until next button press */
while(!button_read_device());
#endif
}
int system_memory_guard(int newmode)
{
(void)newmode;
return 0;
}
static void set_page_tables(void)
{
/* map every memory region to itself */
map_section(0, 0, 0x1000, CACHE_NONE);
/* map RAM and enable caching for it */
map_section(DRAM_ORIG, CACHED_DRAM_ADDR, MEMORYSIZE, CACHE_ALL);
map_section(DRAM_ORIG, BUFFERED_DRAM_ADDR, MEMORYSIZE, BUFFERED);
}
void memory_init(void)
{
ttb_init();
set_page_tables();
enable_mmu();
}
void system_init(void)
{
/* NOTE: don't use anything here that might require tick task !
* It is initialized by kernel_init *after* system_init().
* The main() will naturally set cpu speed to normal after kernel_init()
* so don't bother if the cpu is running at 24MHz here. */
imx233_clkctrl_enable_clock(CLK_PLL, true);
imx233_rtc_init();
imx233_icoll_init();
imx233_pinctrl_init();
imx233_timrot_init();
imx233_dma_init();
imx233_ssp_init();
imx233_dcp_init();
imx233_pwm_init();
imx233_lradc_init();
imx233_power_init();
imx233_i2c_init();
imx233_clkctrl_enable_auto_slow_monitor(AS_CPU_INSTR, true);
imx233_clkctrl_enable_auto_slow_monitor(AS_CPU_DATA, true);
imx233_clkctrl_enable_auto_slow_monitor(AS_TRAFFIC, true);
imx233_clkctrl_enable_auto_slow_monitor(AS_TRAFFIC_JAM, true);
imx233_clkctrl_enable_auto_slow_monitor(AS_APBXDMA, true);
imx233_clkctrl_enable_auto_slow_monitor(AS_APBHDMA, true);
imx233_clkctrl_set_auto_slow_divisor(AS_DIV_8);
imx233_clkctrl_enable_auto_slow(true);
#if !defined(BOOTLOADER) &&(defined(SANSA_FUZEPLUS) || \
defined(CREATIVE_ZENXFI3) || defined(CREATIVE_ZENXFI2))
fmradio_i2c_init();
#endif
}
bool imx233_us_elapsed(uint32_t ref, unsigned us_delay)
{
uint32_t cur = HW_DIGCTL_MICROSECONDS;
if(ref + us_delay <= ref)
return !(cur > ref) && !(cur < (ref + us_delay));
else
return (cur < ref) || cur >= (ref + us_delay);
}
void imx233_reset_block(volatile uint32_t *block_reg)
{
/* soft-reset */
__REG_SET(*block_reg) = __BLOCK_SFTRST;
/* make sure block is gated off */
while(!(*block_reg & __BLOCK_CLKGATE));
/* bring block out of reset */
__REG_CLR(*block_reg) = __BLOCK_SFTRST;
while(*block_reg & __BLOCK_SFTRST);
/* make sure clock is running */
__REG_CLR(*block_reg) = __BLOCK_CLKGATE;
while(*block_reg & __BLOCK_CLKGATE);
}
void udelay(unsigned us)
{
uint32_t ref = HW_DIGCTL_MICROSECONDS;
while(!imx233_us_elapsed(ref, us));
}
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
void set_cpu_frequency(long frequency)
{
/* don't change the frequency if it is useless (changes are expensive) */
if(cpu_frequency == frequency)
return;
cpu_frequency = frequency;
/* disable auto-slow (enable back afterwards) */
imx233_clkctrl_enable_auto_slow(false);
/* go back to a known state in safe way:
* clk_p@24 MHz
* clk_h@6 MHz
* WARNING: we must absolutely avoid that clk_h be too low or too high
* during the change. We first change the clk_p/clk_h ratio to 4 so
* that it cannot be too high (480/4=120 MHz max) or too low
* (24/4=6 MHz min). Then we switch clk_p to bypass. We chose a ratio of 4
* which is greater than all clk_p/clk_h ratios used below so that further
* changes are safe too */
imx233_clkctrl_set_clock_divisor(CLK_HBUS, 4);
imx233_clkctrl_set_bypass_pll(CLK_CPU, true);
switch(frequency)
{
case IMX233_CPUFREQ_454_MHz:
/* set VDDD to 1.550 mV (brownout at 1.450 mV) */
imx233_power_set_regulator(REGULATOR_VDDD, 1550, 1450);
/* clk_h@clk_p/3 */
imx233_clkctrl_set_clock_divisor(CLK_HBUS, 3);
/* clk_p@ref_cpu/1*18/19 */
imx233_clkctrl_set_fractional_divisor(CLK_CPU, 19);
imx233_clkctrl_set_clock_divisor(CLK_CPU, 1);
imx233_clkctrl_set_bypass_pll(CLK_CPU, false);
/* ref_cpu@480 MHz
* ref_emi@480 MHz
* clk_emi@130.91 MHz
* clk_p@454.74 MHz
* clk_h@130.91 MHz */
break;
case IMX233_CPUFREQ_261_MHz:
/* set VDDD to 1.275 mV (brownout at 1.175 mV) */
imx233_power_set_regulator(REGULATOR_VDDD, 1275, 1175);
/* clk_h@clk_p/2 */
imx233_clkctrl_set_clock_divisor(CLK_HBUS, 2);
/* clk_p@ref_cpu/1*18/33 */
imx233_clkctrl_set_fractional_divisor(CLK_CPU, 33);
imx233_clkctrl_set_clock_divisor(CLK_CPU, 1);
imx233_clkctrl_set_bypass_pll(CLK_CPU, false);
/* ref_cpu@480 MHz
* ref_emi@480 MHz
* clk_emi@130.91 MHz
* clk_p@261.82 MHz
* clk_h@130.91 MHz */
break;
default:
break;
}
/* enable auto slow again */
imx233_clkctrl_enable_auto_slow(true);
}
#endif
void imx233_enable_usb_controller(bool enable)
{
if(enable)
__REG_CLR(HW_DIGCTL_CTRL) = HW_DIGCTL_CTRL__USB_CLKGATE;
else
__REG_SET(HW_DIGCTL_CTRL) = HW_DIGCTL_CTRL__USB_CLKGATE;
}
void imx233_enable_usb_phy(bool enable)
{
if(enable)
{
__REG_CLR(HW_USBPHY_CTRL) = __BLOCK_CLKGATE | __BLOCK_SFTRST;
__REG_CLR(HW_USBPHY_PWD) = HW_USBPHY_PWD__ALL;
}
else
{
__REG_SET(HW_USBPHY_PWD) = HW_USBPHY_PWD__ALL;
__REG_SET(HW_USBPHY_CTRL) = __BLOCK_CLKGATE | __BLOCK_SFTRST;
}
}