forked from len0rd/rockbox
		
	
		
			
				
	
	
		
			945 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			945 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (c) 2011 Xiph.Org Foundation
 | |
|    Written by Jean-Marc Valin */
 | |
| /*
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions
 | |
|    are met:
 | |
| 
 | |
|    - Redistributions of source code must retain the above copyright
 | |
|    notice, this list of conditions and the following disclaimer.
 | |
| 
 | |
|    - Redistributions in binary form must reproduce the above copyright
 | |
|    notice, this list of conditions and the following disclaimer in the
 | |
|    documentation and/or other materials provided with the distribution.
 | |
| 
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
 | |
|    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include "config.h"
 | |
| #endif
 | |
| 
 | |
| #define ANALYSIS_C
 | |
| 
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "mathops.h"
 | |
| #include "kiss_fft.h"
 | |
| #include "celt.h"
 | |
| #include "modes.h"
 | |
| #include "arch.h"
 | |
| #include "quant_bands.h"
 | |
| #include "analysis.h"
 | |
| #include "mlp.h"
 | |
| #include "stack_alloc.h"
 | |
| #include "float_cast.h"
 | |
| 
 | |
| #ifndef M_PI
 | |
| #define M_PI 3.141592653
 | |
| #endif
 | |
| 
 | |
| #ifndef DISABLE_FLOAT_API
 | |
| 
 | |
| #define TRANSITION_PENALTY 10
 | |
| 
 | |
| static const float dct_table[128] = {
 | |
|         0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
 | |
|         0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
 | |
|         0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f,
 | |
|        -0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f,
 | |
|         0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f,
 | |
|        -0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f,
 | |
|         0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f,
 | |
|         0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f,
 | |
|         0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
 | |
|         0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
 | |
|         0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f,
 | |
|        -0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f,
 | |
|         0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f,
 | |
|        -0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f,
 | |
|         0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f,
 | |
|         0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f,
 | |
| };
 | |
| 
 | |
| static const float analysis_window[240] = {
 | |
|       0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f,
 | |
|       0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f,
 | |
|       0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f,
 | |
|       0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f,
 | |
|       0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f,
 | |
|       0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f,
 | |
|       0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f,
 | |
|       0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f,
 | |
|       0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f,
 | |
|       0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f,
 | |
|       0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f,
 | |
|       0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f,
 | |
|       0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f,
 | |
|       0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f,
 | |
|       0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f,
 | |
|       0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f,
 | |
|       0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f,
 | |
|       0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f,
 | |
|       0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f,
 | |
|       0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f,
 | |
|       0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f,
 | |
|       0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f,
 | |
|       0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f,
 | |
|       0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f,
 | |
|       0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f,
 | |
|       0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f,
 | |
|       0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f,
 | |
|       0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f,
 | |
|       0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f,
 | |
|       0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f,
 | |
| };
 | |
| 
 | |
| static const int tbands[NB_TBANDS+1] = {
 | |
|       4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240
 | |
| };
 | |
| 
 | |
| #define NB_TONAL_SKIP_BANDS 9
 | |
| 
 | |
| static opus_val32 silk_resampler_down2_hp(
 | |
|     opus_val32                  *S,                 /* I/O  State vector [ 2 ]                                          */
 | |
|     opus_val32                  *out,               /* O    Output signal [ floor(len/2) ]                              */
 | |
|     const opus_val32            *in,                /* I    Input signal [ len ]                                        */
 | |
|     int                         inLen               /* I    Number of input samples                                     */
 | |
| )
 | |
| {
 | |
|     int k, len2 = inLen/2;
 | |
|     opus_val32 in32, out32, out32_hp, Y, X;
 | |
|     opus_val64 hp_ener = 0;
 | |
|     /* Internal variables and state are in Q10 format */
 | |
|     for( k = 0; k < len2; k++ ) {
 | |
|         /* Convert to Q10 */
 | |
|         in32 = in[ 2 * k ];
 | |
| 
 | |
|         /* All-pass section for even input sample */
 | |
|         Y      = SUB32( in32, S[ 0 ] );
 | |
|         X      = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y);
 | |
|         out32  = ADD32( S[ 0 ], X );
 | |
|         S[ 0 ] = ADD32( in32, X );
 | |
|         out32_hp = out32;
 | |
|         /* Convert to Q10 */
 | |
|         in32 = in[ 2 * k + 1 ];
 | |
| 
 | |
|         /* All-pass section for odd input sample, and add to output of previous section */
 | |
|         Y      = SUB32( in32, S[ 1 ] );
 | |
|         X      = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
 | |
|         out32  = ADD32( out32, S[ 1 ] );
 | |
|         out32  = ADD32( out32, X );
 | |
|         S[ 1 ] = ADD32( in32, X );
 | |
| 
 | |
|         Y      = SUB32( -in32, S[ 2 ] );
 | |
|         X      = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
 | |
|         out32_hp  = ADD32( out32_hp, S[ 2 ] );
 | |
|         out32_hp  = ADD32( out32_hp, X );
 | |
|         S[ 2 ] = ADD32( -in32, X );
 | |
| 
 | |
|         hp_ener += out32_hp*(opus_val64)out32_hp;
 | |
|         /* Add, convert back to int16 and store to output */
 | |
|         out[ k ] = HALF32(out32);
 | |
|     }
 | |
| #ifdef FIXED_POINT
 | |
|     /* len2 can be up to 480, so we shift by 8 more to make it fit. */
 | |
|     hp_ener = hp_ener >> (2*SIG_SHIFT + 8);
 | |
| #endif
 | |
|     return (opus_val32)hp_ener;
 | |
| }
 | |
| 
 | |
| static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs)
 | |
| {
 | |
|    VARDECL(opus_val32, tmp);
 | |
|    opus_val32 scale;
 | |
|    int j;
 | |
|    opus_val32 ret = 0;
 | |
|    SAVE_STACK;
 | |
| 
 | |
|    if (subframe==0) return 0;
 | |
|    if (Fs == 48000)
 | |
|    {
 | |
|       subframe *= 2;
 | |
|       offset *= 2;
 | |
|    } else if (Fs == 16000) {
 | |
|       subframe = subframe*2/3;
 | |
|       offset = offset*2/3;
 | |
|    }
 | |
|    ALLOC(tmp, subframe, opus_val32);
 | |
| 
 | |
|    downmix(_x, tmp, subframe, offset, c1, c2, C);
 | |
| #ifdef FIXED_POINT
 | |
|    scale = (1<<SIG_SHIFT);
 | |
| #else
 | |
|    scale = 1.f/32768;
 | |
| #endif
 | |
|    if (c2==-2)
 | |
|       scale /= C;
 | |
|    else if (c2>-1)
 | |
|       scale /= 2;
 | |
|    for (j=0;j<subframe;j++)
 | |
|       tmp[j] *= scale;
 | |
|    if (Fs == 48000)
 | |
|    {
 | |
|       ret = silk_resampler_down2_hp(S, y, tmp, subframe);
 | |
|    } else if (Fs == 24000) {
 | |
|       OPUS_COPY(y, tmp, subframe);
 | |
|    } else if (Fs == 16000) {
 | |
|       VARDECL(opus_val32, tmp3x);
 | |
|       ALLOC(tmp3x, 3*subframe, opus_val32);
 | |
|       /* Don't do this at home! This resampler is horrible and it's only (barely)
 | |
|          usable for the purpose of the analysis because we don't care about all
 | |
|          the aliasing between 8 kHz and 12 kHz. */
 | |
|       for (j=0;j<subframe;j++)
 | |
|       {
 | |
|          tmp3x[3*j] = tmp[j];
 | |
|          tmp3x[3*j+1] = tmp[j];
 | |
|          tmp3x[3*j+2] = tmp[j];
 | |
|       }
 | |
|       silk_resampler_down2_hp(S, y, tmp3x, 3*subframe);
 | |
|    }
 | |
|    RESTORE_STACK;
 | |
|    return ret;
 | |
| }
 | |
| 
 | |
| void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs)
 | |
| {
 | |
|   /* Initialize reusable fields. */
 | |
|   tonal->arch = opus_select_arch();
 | |
|   tonal->Fs = Fs;
 | |
|   /* Clear remaining fields. */
 | |
|   tonality_analysis_reset(tonal);
 | |
| }
 | |
| 
 | |
| void tonality_analysis_reset(TonalityAnalysisState *tonal)
 | |
| {
 | |
|   /* Clear non-reusable fields. */
 | |
|   char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START;
 | |
|   OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal));
 | |
| }
 | |
| 
 | |
| void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len)
 | |
| {
 | |
|    int pos;
 | |
|    int curr_lookahead;
 | |
|    float tonality_max;
 | |
|    float tonality_avg;
 | |
|    int tonality_count;
 | |
|    int i;
 | |
|    int pos0;
 | |
|    float prob_avg;
 | |
|    float prob_count;
 | |
|    float prob_min, prob_max;
 | |
|    float vad_prob;
 | |
|    int mpos, vpos;
 | |
|    int bandwidth_span;
 | |
| 
 | |
|    pos = tonal->read_pos;
 | |
|    curr_lookahead = tonal->write_pos-tonal->read_pos;
 | |
|    if (curr_lookahead<0)
 | |
|       curr_lookahead += DETECT_SIZE;
 | |
| 
 | |
|    /* On long frames, look at the second analysis window rather than the first. */
 | |
|    if (len > tonal->Fs/50 && pos != tonal->write_pos)
 | |
|    {
 | |
|       pos++;
 | |
|       if (pos==DETECT_SIZE)
 | |
|          pos=0;
 | |
|    }
 | |
|    if (pos == tonal->write_pos)
 | |
|       pos--;
 | |
|    if (pos<0)
 | |
|       pos = DETECT_SIZE-1;
 | |
|    pos0 = pos;
 | |
|    OPUS_COPY(info_out, &tonal->info[pos], 1);
 | |
|    tonality_max = tonality_avg = info_out->tonality;
 | |
|    tonality_count = 1;
 | |
|    /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */
 | |
|    bandwidth_span = 6;
 | |
|    /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */
 | |
|    for (i=0;i<3;i++)
 | |
|    {
 | |
|       pos++;
 | |
|       if (pos==DETECT_SIZE)
 | |
|          pos = 0;
 | |
|       if (pos == tonal->write_pos)
 | |
|          break;
 | |
|       tonality_max = MAX32(tonality_max, tonal->info[pos].tonality);
 | |
|       tonality_avg += tonal->info[pos].tonality;
 | |
|       tonality_count++;
 | |
|       info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
 | |
|       bandwidth_span--;
 | |
|    }
 | |
|    pos = pos0;
 | |
|    /* Look back in time to see if any has a wider bandwidth than the current frame. */
 | |
|    for (i=0;i<bandwidth_span;i++)
 | |
|    {
 | |
|       pos--;
 | |
|       if (pos < 0)
 | |
|          pos = DETECT_SIZE-1;
 | |
|       if (pos == tonal->write_pos)
 | |
|          break;
 | |
|       info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
 | |
|    }
 | |
|    info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f);
 | |
| 
 | |
|    mpos = vpos = pos0;
 | |
|    /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and
 | |
|       ~1 frame delay in the VAD prob. */
 | |
|    if (curr_lookahead > 15)
 | |
|    {
 | |
|       mpos += 5;
 | |
|       if (mpos>=DETECT_SIZE)
 | |
|          mpos -= DETECT_SIZE;
 | |
|       vpos += 1;
 | |
|       if (vpos>=DETECT_SIZE)
 | |
|          vpos -= DETECT_SIZE;
 | |
|    }
 | |
| 
 | |
|    /* The following calculations attempt to minimize a "badness function"
 | |
|       for the transition. When switching from speech to music, the badness
 | |
|       of switching at frame k is
 | |
|       b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
 | |
|       where
 | |
|       v_i is the activity probability (VAD) at frame i,
 | |
|       p_i is the music probability at frame i
 | |
|       T is the probability threshold for switching
 | |
|       S is the penalty for switching during active audio rather than silence
 | |
|       the current frame has index i=0
 | |
| 
 | |
|       Rather than apply badness to directly decide when to switch, what we compute
 | |
|       instead is the threshold for which the optimal switching point is now. When
 | |
|       considering whether to switch now (frame 0) or at frame k, we have:
 | |
|       S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
 | |
|       which gives us:
 | |
|       T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i )
 | |
|       We take the min threshold across all positive values of k (up to the maximum
 | |
|       amount of lookahead we have) to give us the threshold for which the current
 | |
|       frame is the optimal switch point.
 | |
| 
 | |
|       The last step is that we need to consider whether we want to switch at all.
 | |
|       For that we use the average of the music probability over the entire window.
 | |
|       If the threshold is higher than that average we're not going to
 | |
|       switch, so we compute a min with the average as well. The result of all these
 | |
|       min operations is music_prob_min, which gives the threshold for switching to music
 | |
|       if we're currently encoding for speech.
 | |
| 
 | |
|       We do the exact opposite to compute music_prob_max which is used for switching
 | |
|       from music to speech.
 | |
|     */
 | |
|    prob_min = 1.f;
 | |
|    prob_max = 0.f;
 | |
|    vad_prob = tonal->info[vpos].activity_probability;
 | |
|    prob_count = MAX16(.1f, vad_prob);
 | |
|    prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob;
 | |
|    while (1)
 | |
|    {
 | |
|       float pos_vad;
 | |
|       mpos++;
 | |
|       if (mpos==DETECT_SIZE)
 | |
|          mpos = 0;
 | |
|       if (mpos == tonal->write_pos)
 | |
|          break;
 | |
|       vpos++;
 | |
|       if (vpos==DETECT_SIZE)
 | |
|          vpos = 0;
 | |
|       if (vpos == tonal->write_pos)
 | |
|          break;
 | |
|       pos_vad = tonal->info[vpos].activity_probability;
 | |
|       prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min);
 | |
|       prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max);
 | |
|       prob_count += MAX16(.1f, pos_vad);
 | |
|       prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob;
 | |
|    }
 | |
|    info_out->music_prob = prob_avg/prob_count;
 | |
|    prob_min = MIN16(prob_avg/prob_count, prob_min);
 | |
|    prob_max = MAX16(prob_avg/prob_count, prob_max);
 | |
|    prob_min = MAX16(prob_min, 0.f);
 | |
|    prob_max = MIN16(prob_max, 1.f);
 | |
| 
 | |
|    /* If we don't have enough look-ahead, do our best to make a decent decision. */
 | |
|    if (curr_lookahead < 10)
 | |
|    {
 | |
|       float pmin, pmax;
 | |
|       pmin = prob_min;
 | |
|       pmax = prob_max;
 | |
|       pos = pos0;
 | |
|       /* Look for min/max in the past. */
 | |
|       for (i=0;i<IMIN(tonal->count-1, 15);i++)
 | |
|       {
 | |
|          pos--;
 | |
|          if (pos < 0)
 | |
|             pos = DETECT_SIZE-1;
 | |
|          pmin = MIN16(pmin, tonal->info[pos].music_prob);
 | |
|          pmax = MAX16(pmax, tonal->info[pos].music_prob);
 | |
|       }
 | |
|       /* Bias against switching on active audio. */
 | |
|       pmin = MAX16(0.f, pmin - .1f*vad_prob);
 | |
|       pmax = MIN16(1.f, pmax + .1f*vad_prob);
 | |
|       prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min);
 | |
|       prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max);
 | |
|    }
 | |
|    info_out->music_prob_min = prob_min;
 | |
|    info_out->music_prob_max = prob_max;
 | |
| 
 | |
|    /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */
 | |
|    tonal->read_subframe += len/(tonal->Fs/400);
 | |
|    while (tonal->read_subframe>=8)
 | |
|    {
 | |
|       tonal->read_subframe -= 8;
 | |
|       tonal->read_pos++;
 | |
|    }
 | |
|    if (tonal->read_pos>=DETECT_SIZE)
 | |
|       tonal->read_pos-=DETECT_SIZE;
 | |
| }
 | |
| 
 | |
| static const float std_feature_bias[9] = {
 | |
|       5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f,
 | |
|       2.163313f, 1.260756f, 1.116868f, 1.918795f
 | |
| };
 | |
| 
 | |
| #define LEAKAGE_OFFSET 2.5f
 | |
| #define LEAKAGE_SLOPE 2.f
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
| /* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to
 | |
|    compensate for that in the energy. */
 | |
| #define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT)))
 | |
| #define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e))
 | |
| #else
 | |
| #define SCALE_ENER(e) (e)
 | |
| #endif
 | |
| 
 | |
| static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix)
 | |
| {
 | |
|     int i, b;
 | |
|     const kiss_fft_state *kfft;
 | |
|     VARDECL(kiss_fft_cpx, in);
 | |
|     VARDECL(kiss_fft_cpx, out);
 | |
|     int N = 480, N2=240;
 | |
|     float * OPUS_RESTRICT A = tonal->angle;
 | |
|     float * OPUS_RESTRICT dA = tonal->d_angle;
 | |
|     float * OPUS_RESTRICT d2A = tonal->d2_angle;
 | |
|     VARDECL(float, tonality);
 | |
|     VARDECL(float, noisiness);
 | |
|     float band_tonality[NB_TBANDS];
 | |
|     float logE[NB_TBANDS];
 | |
|     float BFCC[8];
 | |
|     float features[25];
 | |
|     float frame_tonality;
 | |
|     float max_frame_tonality;
 | |
|     /*float tw_sum=0;*/
 | |
|     float frame_noisiness;
 | |
|     const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI);
 | |
|     float slope=0;
 | |
|     float frame_stationarity;
 | |
|     float relativeE;
 | |
|     float frame_probs[2];
 | |
|     float alpha, alphaE, alphaE2;
 | |
|     float frame_loudness;
 | |
|     float bandwidth_mask;
 | |
|     int is_masked[NB_TBANDS+1];
 | |
|     int bandwidth=0;
 | |
|     float maxE = 0;
 | |
|     float noise_floor;
 | |
|     int remaining;
 | |
|     AnalysisInfo *info;
 | |
|     float hp_ener;
 | |
|     float tonality2[240];
 | |
|     float midE[8];
 | |
|     float spec_variability=0;
 | |
|     float band_log2[NB_TBANDS+1];
 | |
|     float leakage_from[NB_TBANDS+1];
 | |
|     float leakage_to[NB_TBANDS+1];
 | |
|     float layer_out[MAX_NEURONS];
 | |
|     float below_max_pitch;
 | |
|     float above_max_pitch;
 | |
|     SAVE_STACK;
 | |
| 
 | |
|     alpha = 1.f/IMIN(10, 1+tonal->count);
 | |
|     alphaE = 1.f/IMIN(25, 1+tonal->count);
 | |
|     /* Noise floor related decay for bandwidth detection: -2.2 dB/second */
 | |
|     alphaE2 = 1.f/IMIN(100, 1+tonal->count);
 | |
|     if (tonal->count <= 1) alphaE2 = 1;
 | |
| 
 | |
|     if (tonal->Fs == 48000)
 | |
|     {
 | |
|        /* len and offset are now at 24 kHz. */
 | |
|        len/= 2;
 | |
|        offset /= 2;
 | |
|     } else if (tonal->Fs == 16000) {
 | |
|        len = 3*len/2;
 | |
|        offset = 3*offset/2;
 | |
|     }
 | |
| 
 | |
|     kfft = celt_mode->mdct.kfft[0];
 | |
|     if (tonal->count==0)
 | |
|        tonal->mem_fill = 240;
 | |
|     tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x,
 | |
|           &tonal->inmem[tonal->mem_fill], tonal->downmix_state,
 | |
|           IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs);
 | |
|     if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE)
 | |
|     {
 | |
|        tonal->mem_fill += len;
 | |
|        /* Don't have enough to update the analysis */
 | |
|        RESTORE_STACK;
 | |
|        return;
 | |
|     }
 | |
|     hp_ener = tonal->hp_ener_accum;
 | |
|     info = &tonal->info[tonal->write_pos++];
 | |
|     if (tonal->write_pos>=DETECT_SIZE)
 | |
|        tonal->write_pos-=DETECT_SIZE;
 | |
| 
 | |
|     ALLOC(in, 480, kiss_fft_cpx);
 | |
|     ALLOC(out, 480, kiss_fft_cpx);
 | |
|     ALLOC(tonality, 240, float);
 | |
|     ALLOC(noisiness, 240, float);
 | |
|     for (i=0;i<N2;i++)
 | |
|     {
 | |
|        float w = analysis_window[i];
 | |
|        in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]);
 | |
|        in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]);
 | |
|        in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]);
 | |
|        in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]);
 | |
|     }
 | |
|     OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240);
 | |
|     remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill);
 | |
|     tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x,
 | |
|           &tonal->inmem[240], tonal->downmix_state, remaining,
 | |
|           offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs);
 | |
|     tonal->mem_fill = 240 + remaining;
 | |
|     opus_fft(kfft, in, out, tonal->arch);
 | |
| #ifndef FIXED_POINT
 | |
|     /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */
 | |
|     if (celt_isnan(out[0].r))
 | |
|     {
 | |
|        info->valid = 0;
 | |
|        RESTORE_STACK;
 | |
|        return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     for (i=1;i<N2;i++)
 | |
|     {
 | |
|        float X1r, X2r, X1i, X2i;
 | |
|        float angle, d_angle, d2_angle;
 | |
|        float angle2, d_angle2, d2_angle2;
 | |
|        float mod1, mod2, avg_mod;
 | |
|        X1r = (float)out[i].r+out[N-i].r;
 | |
|        X1i = (float)out[i].i-out[N-i].i;
 | |
|        X2r = (float)out[i].i+out[N-i].i;
 | |
|        X2i = (float)out[N-i].r-out[i].r;
 | |
| 
 | |
|        angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r);
 | |
|        d_angle = angle - A[i];
 | |
|        d2_angle = d_angle - dA[i];
 | |
| 
 | |
|        angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r);
 | |
|        d_angle2 = angle2 - angle;
 | |
|        d2_angle2 = d_angle2 - d_angle;
 | |
| 
 | |
|        mod1 = d2_angle - (float)float2int(d2_angle);
 | |
|        noisiness[i] = ABS16(mod1);
 | |
|        mod1 *= mod1;
 | |
|        mod1 *= mod1;
 | |
| 
 | |
|        mod2 = d2_angle2 - (float)float2int(d2_angle2);
 | |
|        noisiness[i] += ABS16(mod2);
 | |
|        mod2 *= mod2;
 | |
|        mod2 *= mod2;
 | |
| 
 | |
|        avg_mod = .25f*(d2A[i]+mod1+2*mod2);
 | |
|        /* This introduces an extra delay of 2 frames in the detection. */
 | |
|        tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f;
 | |
|        /* No delay on this detection, but it's less reliable. */
 | |
|        tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f;
 | |
| 
 | |
|        A[i] = angle2;
 | |
|        dA[i] = d_angle2;
 | |
|        d2A[i] = mod2;
 | |
|     }
 | |
|     for (i=2;i<N2-1;i++)
 | |
|     {
 | |
|        float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1]));
 | |
|        tonality[i] = .9f*MAX32(tonality[i], tt-.1f);
 | |
|     }
 | |
|     frame_tonality = 0;
 | |
|     max_frame_tonality = 0;
 | |
|     /*tw_sum = 0;*/
 | |
|     info->activity = 0;
 | |
|     frame_noisiness = 0;
 | |
|     frame_stationarity = 0;
 | |
|     if (!tonal->count)
 | |
|     {
 | |
|        for (b=0;b<NB_TBANDS;b++)
 | |
|        {
 | |
|           tonal->lowE[b] = 1e10;
 | |
|           tonal->highE[b] = -1e10;
 | |
|        }
 | |
|     }
 | |
|     relativeE = 0;
 | |
|     frame_loudness = 0;
 | |
|     /* The energy of the very first band is special because of DC. */
 | |
|     {
 | |
|        float E = 0;
 | |
|        float X1r, X2r;
 | |
|        X1r = 2*(float)out[0].r;
 | |
|        X2r = 2*(float)out[0].i;
 | |
|        E = X1r*X1r + X2r*X2r;
 | |
|        for (i=1;i<4;i++)
 | |
|        {
 | |
|           float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
 | |
|                      + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
 | |
|           E += binE;
 | |
|        }
 | |
|        E = SCALE_ENER(E);
 | |
|        band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f);
 | |
|     }
 | |
|     for (b=0;b<NB_TBANDS;b++)
 | |
|     {
 | |
|        float E=0, tE=0, nE=0;
 | |
|        float L1, L2;
 | |
|        float stationarity;
 | |
|        for (i=tbands[b];i<tbands[b+1];i++)
 | |
|        {
 | |
|           float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
 | |
|                      + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
 | |
|           binE = SCALE_ENER(binE);
 | |
|           E += binE;
 | |
|           tE += binE*MAX32(0, tonality[i]);
 | |
|           nE += binE*2.f*(.5f-noisiness[i]);
 | |
|        }
 | |
| #ifndef FIXED_POINT
 | |
|        /* Check for extreme band energies that could cause NaNs later. */
 | |
|        if (!(E<1e9f) || celt_isnan(E))
 | |
|        {
 | |
|           info->valid = 0;
 | |
|           RESTORE_STACK;
 | |
|           return;
 | |
|        }
 | |
| #endif
 | |
| 
 | |
|        tonal->E[tonal->E_count][b] = E;
 | |
|        frame_noisiness += nE/(1e-15f+E);
 | |
| 
 | |
|        frame_loudness += (float)sqrt(E+1e-10f);
 | |
|        logE[b] = (float)log(E+1e-10f);
 | |
|        band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f);
 | |
|        tonal->logE[tonal->E_count][b] = logE[b];
 | |
|        if (tonal->count==0)
 | |
|           tonal->highE[b] = tonal->lowE[b] = logE[b];
 | |
|        if (tonal->highE[b] > tonal->lowE[b] + 7.5)
 | |
|        {
 | |
|           if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b])
 | |
|              tonal->highE[b] -= .01f;
 | |
|           else
 | |
|              tonal->lowE[b] += .01f;
 | |
|        }
 | |
|        if (logE[b] > tonal->highE[b])
 | |
|        {
 | |
|           tonal->highE[b] = logE[b];
 | |
|           tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]);
 | |
|        } else if (logE[b] < tonal->lowE[b])
 | |
|        {
 | |
|           tonal->lowE[b] = logE[b];
 | |
|           tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]);
 | |
|        }
 | |
|        relativeE += (logE[b]-tonal->lowE[b])/(1e-15f + (tonal->highE[b]-tonal->lowE[b]));
 | |
| 
 | |
|        L1=L2=0;
 | |
|        for (i=0;i<NB_FRAMES;i++)
 | |
|        {
 | |
|           L1 += (float)sqrt(tonal->E[i][b]);
 | |
|           L2 += tonal->E[i][b];
 | |
|        }
 | |
| 
 | |
|        stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2));
 | |
|        stationarity *= stationarity;
 | |
|        stationarity *= stationarity;
 | |
|        frame_stationarity += stationarity;
 | |
|        /*band_tonality[b] = tE/(1e-15+E)*/;
 | |
|        band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]);
 | |
| #if 0
 | |
|        if (b>=NB_TONAL_SKIP_BANDS)
 | |
|        {
 | |
|           frame_tonality += tweight[b]*band_tonality[b];
 | |
|           tw_sum += tweight[b];
 | |
|        }
 | |
| #else
 | |
|        frame_tonality += band_tonality[b];
 | |
|        if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS)
 | |
|           frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS];
 | |
| #endif
 | |
|        max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality);
 | |
|        slope += band_tonality[b]*(b-8);
 | |
|        /*printf("%f %f ", band_tonality[b], stationarity);*/
 | |
|        tonal->prev_band_tonality[b] = band_tonality[b];
 | |
|     }
 | |
| 
 | |
|     leakage_from[0] = band_log2[0];
 | |
|     leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET;
 | |
|     for (b=1;b<NB_TBANDS+1;b++)
 | |
|     {
 | |
|        float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4;
 | |
|        leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]);
 | |
|        leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET);
 | |
|     }
 | |
|     for (b=NB_TBANDS-2;b>=0;b--)
 | |
|     {
 | |
|        float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4;
 | |
|        leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]);
 | |
|        leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]);
 | |
|     }
 | |
|     celt_assert(NB_TBANDS+1 <= LEAK_BANDS);
 | |
|     for (b=0;b<NB_TBANDS+1;b++)
 | |
|     {
 | |
|        /* leak_boost[] is made up of two terms. The first, based on leakage_to[],
 | |
|           represents the boost needed to overcome the amount of analysis leakage
 | |
|           cause in a weaker band b by louder neighbouring bands.
 | |
|           The second, based on leakage_from[], applies to a loud band b for
 | |
|           which the quantization noise causes synthesis leakage to the weaker
 | |
|           neighbouring bands. */
 | |
|        float boost = MAX16(0, leakage_to[b] - band_log2[b]) +
 | |
|              MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET));
 | |
|        info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost));
 | |
|     }
 | |
|     for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0;
 | |
| 
 | |
|     for (i=0;i<NB_FRAMES;i++)
 | |
|     {
 | |
|        int j;
 | |
|        float mindist = 1e15f;
 | |
|        for (j=0;j<NB_FRAMES;j++)
 | |
|        {
 | |
|           int k;
 | |
|           float dist=0;
 | |
|           for (k=0;k<NB_TBANDS;k++)
 | |
|           {
 | |
|              float tmp;
 | |
|              tmp = tonal->logE[i][k] - tonal->logE[j][k];
 | |
|              dist += tmp*tmp;
 | |
|           }
 | |
|           if (j!=i)
 | |
|              mindist = MIN32(mindist, dist);
 | |
|        }
 | |
|        spec_variability += mindist;
 | |
|     }
 | |
|     spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS);
 | |
|     bandwidth_mask = 0;
 | |
|     bandwidth = 0;
 | |
|     maxE = 0;
 | |
|     noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)));
 | |
|     noise_floor *= noise_floor;
 | |
|     below_max_pitch=0;
 | |
|     above_max_pitch=0;
 | |
|     for (b=0;b<NB_TBANDS;b++)
 | |
|     {
 | |
|        float E=0;
 | |
|        float Em;
 | |
|        int band_start, band_end;
 | |
|        /* Keep a margin of 300 Hz for aliasing */
 | |
|        band_start = tbands[b];
 | |
|        band_end = tbands[b+1];
 | |
|        for (i=band_start;i<band_end;i++)
 | |
|        {
 | |
|           float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
 | |
|                      + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
 | |
|           E += binE;
 | |
|        }
 | |
|        E = SCALE_ENER(E);
 | |
|        maxE = MAX32(maxE, E);
 | |
|        if (band_start < 64)
 | |
|        {
 | |
|           below_max_pitch += E;
 | |
|        } else {
 | |
|           above_max_pitch += E;
 | |
|        }
 | |
|        tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
 | |
|        Em = MAX32(E, tonal->meanE[b]);
 | |
|        /* Consider the band "active" only if all these conditions are met:
 | |
|           1) less than 90 dB below the peak band (maximal masking possible considering
 | |
|              both the ATH and the loudness-dependent slope of the spreading function)
 | |
|           2) above the PCM quantization noise floor
 | |
|           We use b+1 because the first CELT band isn't included in tbands[]
 | |
|        */
 | |
|        if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start)))
 | |
|           bandwidth = b+1;
 | |
|        /* Check if the band is masked (see below). */
 | |
|        is_masked[b] = E < (tonal->prev_bandwidth >= b+1  ? .01f : .05f)*bandwidth_mask;
 | |
|        /* Use a simple follower with 13 dB/Bark slope for spreading function. */
 | |
|        bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
 | |
|     }
 | |
|     /* Special case for the last two bands, for which we don't have spectrum but only
 | |
|        the energy above 12 kHz. The difficulty here is that the high-pass we use
 | |
|        leaks some LF energy, so we need to increase the threshold without accidentally cutting
 | |
|        off the band. */
 | |
|     if (tonal->Fs == 48000) {
 | |
|        float noise_ratio;
 | |
|        float Em;
 | |
|        float E = hp_ener*(1.f/(60*60));
 | |
|        noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f;
 | |
| 
 | |
| #ifdef FIXED_POINT
 | |
|        /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */
 | |
|        E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE);
 | |
| #endif
 | |
|        above_max_pitch += E;
 | |
|        tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
 | |
|        Em = MAX32(E, tonal->meanE[b]);
 | |
|        if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160)
 | |
|           bandwidth = 20;
 | |
|        /* Check if the band is masked (see below). */
 | |
|        is_masked[b] = E < (tonal->prev_bandwidth == 20  ? .01f : .05f)*bandwidth_mask;
 | |
|     }
 | |
|     if (above_max_pitch > below_max_pitch)
 | |
|        info->max_pitch_ratio = below_max_pitch/above_max_pitch;
 | |
|     else
 | |
|        info->max_pitch_ratio = 1;
 | |
|     /* In some cases, resampling aliasing can create a small amount of energy in the first band
 | |
|        being cut. So if the last band is masked, we don't include it.  */
 | |
|     if (bandwidth == 20 && is_masked[NB_TBANDS])
 | |
|        bandwidth-=2;
 | |
|     else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1])
 | |
|        bandwidth--;
 | |
|     if (tonal->count<=2)
 | |
|        bandwidth = 20;
 | |
|     frame_loudness = 20*(float)log10(frame_loudness);
 | |
|     tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness);
 | |
|     tonal->lowECount *= (1-alphaE);
 | |
|     if (frame_loudness < tonal->Etracker-30)
 | |
|        tonal->lowECount += alphaE;
 | |
| 
 | |
|     for (i=0;i<8;i++)
 | |
|     {
 | |
|        float sum=0;
 | |
|        for (b=0;b<16;b++)
 | |
|           sum += dct_table[i*16+b]*logE[b];
 | |
|        BFCC[i] = sum;
 | |
|     }
 | |
|     for (i=0;i<8;i++)
 | |
|     {
 | |
|        float sum=0;
 | |
|        for (b=0;b<16;b++)
 | |
|           sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]);
 | |
|        midE[i] = sum;
 | |
|     }
 | |
| 
 | |
|     frame_stationarity /= NB_TBANDS;
 | |
|     relativeE /= NB_TBANDS;
 | |
|     if (tonal->count<10)
 | |
|        relativeE = .5f;
 | |
|     frame_noisiness /= NB_TBANDS;
 | |
| #if 1
 | |
|     info->activity = frame_noisiness + (1-frame_noisiness)*relativeE;
 | |
| #else
 | |
|     info->activity = .5*(1+frame_noisiness-frame_stationarity);
 | |
| #endif
 | |
|     frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS));
 | |
|     frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f);
 | |
|     tonal->prev_tonality = frame_tonality;
 | |
| 
 | |
|     slope /= 8*8;
 | |
|     info->tonality_slope = slope;
 | |
| 
 | |
|     tonal->E_count = (tonal->E_count+1)%NB_FRAMES;
 | |
|     tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX);
 | |
|     info->tonality = frame_tonality;
 | |
| 
 | |
|     for (i=0;i<4;i++)
 | |
|        features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i];
 | |
| 
 | |
|     for (i=0;i<4;i++)
 | |
|        tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i];
 | |
| 
 | |
|     for (i=0;i<4;i++)
 | |
|         features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]);
 | |
|     for (i=0;i<3;i++)
 | |
|         features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8];
 | |
| 
 | |
|     if (tonal->count > 5)
 | |
|     {
 | |
|        for (i=0;i<9;i++)
 | |
|           tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i];
 | |
|     }
 | |
|     for (i=0;i<4;i++)
 | |
|        features[i] = BFCC[i]-midE[i];
 | |
| 
 | |
|     for (i=0;i<8;i++)
 | |
|     {
 | |
|        tonal->mem[i+24] = tonal->mem[i+16];
 | |
|        tonal->mem[i+16] = tonal->mem[i+8];
 | |
|        tonal->mem[i+8] = tonal->mem[i];
 | |
|        tonal->mem[i] = BFCC[i];
 | |
|     }
 | |
|     for (i=0;i<9;i++)
 | |
|        features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i];
 | |
|     features[18] = spec_variability - 0.78f;
 | |
|     features[20] = info->tonality - 0.154723f;
 | |
|     features[21] = info->activity - 0.724643f;
 | |
|     features[22] = frame_stationarity - 0.743717f;
 | |
|     features[23] = info->tonality_slope + 0.069216f;
 | |
|     features[24] = tonal->lowECount - 0.067930f;
 | |
| 
 | |
|     compute_dense(&layer0, layer_out, features);
 | |
|     compute_gru(&layer1, tonal->rnn_state, layer_out);
 | |
|     compute_dense(&layer2, frame_probs, tonal->rnn_state);
 | |
| 
 | |
|     /* Probability of speech or music vs noise */
 | |
|     info->activity_probability = frame_probs[1];
 | |
|     info->music_prob = frame_probs[0];
 | |
| 
 | |
|     /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/
 | |
| #ifdef MLP_TRAINING
 | |
|     for (i=0;i<25;i++)
 | |
|        printf("%f ", features[i]);
 | |
|     printf("\n");
 | |
| #endif
 | |
| 
 | |
|     info->bandwidth = bandwidth;
 | |
|     tonal->prev_bandwidth = bandwidth;
 | |
|     /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/
 | |
|     info->noisiness = frame_noisiness;
 | |
|     info->valid = 1;
 | |
|     RESTORE_STACK;
 | |
| }
 | |
| 
 | |
| void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm,
 | |
|                  int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs,
 | |
|                  int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info)
 | |
| {
 | |
|    int offset;
 | |
|    int pcm_len;
 | |
| 
 | |
|    analysis_frame_size -= analysis_frame_size&1;
 | |
|    if (analysis_pcm != NULL)
 | |
|    {
 | |
|       /* Avoid overflow/wrap-around of the analysis buffer */
 | |
|       analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size);
 | |
| 
 | |
|       pcm_len = analysis_frame_size - analysis->analysis_offset;
 | |
|       offset = analysis->analysis_offset;
 | |
|       while (pcm_len>0) {
 | |
|          tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix);
 | |
|          offset += Fs/50;
 | |
|          pcm_len -= Fs/50;
 | |
|       }
 | |
|       analysis->analysis_offset = analysis_frame_size;
 | |
| 
 | |
|       analysis->analysis_offset -= frame_size;
 | |
|    }
 | |
| 
 | |
|    analysis_info->valid = 0;
 | |
|    tonality_get_info(analysis, analysis_info, frame_size);
 | |
| }
 | |
| 
 | |
| #endif /* DISABLE_FLOAT_API */
 |