forked from len0rd/rockbox
On MacOS, gcc is a symlink for clang. Patch gets rid of the warnings produced by clang, when it is set as HOSTCC, and fixes voicetools compilation on MacOS when calling make voicetools from the simulator directory. lua rb_defines_helper: format specifies type 'int' but the argument has type 'long' codecs: opus / speex (LOGF): format '%ld' expects argument of type 'long int', but argument 7 has type 'off_t' gigabeat: variable 'size' set but not used rdf2binary: a function declaration without a prototype is deprecated in all versions of C rbspeexdec: passing 'unsigned char *' to parameter of type 'char *' converts between pointers to integer types where one is of the unique plain 'char' type and the other is not hmac-sha1.c defining a type within 'offsetof' is a Clang extension Change-Id: I90539906698868f9589650585d865aee9f7e8539
516 lines
15 KiB
C
516 lines
15 KiB
C
/* sha1.c - Functions to compute SHA1 message digest of files or
|
|
memory blocks according to the NIST specification FIPS-180-1.
|
|
|
|
Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006 Free Software
|
|
Foundation, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2, or (at your option) any
|
|
later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
/* Written by Scott G. Miller
|
|
Credits:
|
|
Robert Klep <robert@ilse.nl> -- Expansion function fix
|
|
*/
|
|
|
|
#include "hmac-sha1.h"
|
|
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define SWAP(n) (n)
|
|
#else
|
|
# define SWAP(n) \
|
|
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
|
#endif
|
|
|
|
#define BLOCKSIZE 4096
|
|
#if BLOCKSIZE % 64 != 0
|
|
# error "invalid BLOCKSIZE"
|
|
#endif
|
|
|
|
/* This array contains the bytes used to pad the buffer to the next
|
|
64-byte boundary. (RFC 1321, 3.1: Step 1) */
|
|
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
|
|
|
|
|
/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
|
|
initialize it to the start constants of the SHA1 algorithm. This
|
|
must be called before using hash in the call to sha1_hash. */
|
|
void
|
|
sha1_init_ctx (struct sha1_ctx *ctx)
|
|
{
|
|
ctx->A = 0x67452301;
|
|
ctx->B = 0xefcdab89;
|
|
ctx->C = 0x98badcfe;
|
|
ctx->D = 0x10325476;
|
|
ctx->E = 0xc3d2e1f0;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
/* Put result from CTX in first 20 bytes following RESBUF. The result
|
|
must be in little endian byte order.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 32-bit value. */
|
|
void *
|
|
sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
|
|
{
|
|
((uint32_t *) resbuf)[0] = SWAP (ctx->A);
|
|
((uint32_t *) resbuf)[1] = SWAP (ctx->B);
|
|
((uint32_t *) resbuf)[2] = SWAP (ctx->C);
|
|
((uint32_t *) resbuf)[3] = SWAP (ctx->D);
|
|
((uint32_t *) resbuf)[4] = SWAP (ctx->E);
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 32-bit value. */
|
|
void *
|
|
sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
uint32_t bytes = ctx->buflen;
|
|
size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if (ctx->total[0] < bytes)
|
|
++ctx->total[1];
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
|
|
ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
|
|
|
|
memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
|
|
|
|
/* Process last bytes. */
|
|
sha1_process_block (ctx->buffer, size * 4, ctx);
|
|
|
|
return sha1_read_ctx (ctx, resbuf);
|
|
}
|
|
|
|
/* Compute SHA1 message digest for bytes read from STREAM. The
|
|
resulting message digest number will be written into the 16 bytes
|
|
beginning at RESBLOCK. */
|
|
int
|
|
sha1_stream (FILE *stream, void *resblock)
|
|
{
|
|
struct sha1_ctx ctx;
|
|
char buffer[BLOCKSIZE + 72];
|
|
size_t sum;
|
|
|
|
/* Initialize the computation context. */
|
|
sha1_init_ctx (&ctx);
|
|
|
|
/* Iterate over full file contents. */
|
|
while (1)
|
|
{
|
|
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
|
computation function processes the whole buffer so that with the
|
|
next round of the loop another block can be read. */
|
|
size_t n;
|
|
sum = 0;
|
|
|
|
/* Read block. Take care for partial reads. */
|
|
while (1)
|
|
{
|
|
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
|
|
|
sum += n;
|
|
|
|
if (sum == BLOCKSIZE)
|
|
break;
|
|
|
|
if (n == 0)
|
|
{
|
|
/* Check for the error flag IFF N == 0, so that we don't
|
|
exit the loop after a partial read due to e.g., EAGAIN
|
|
or EWOULDBLOCK. */
|
|
if (ferror (stream))
|
|
return 1;
|
|
goto process_partial_block;
|
|
}
|
|
|
|
/* We've read at least one byte, so ignore errors. But always
|
|
check for EOF, since feof may be true even though N > 0.
|
|
Otherwise, we could end up calling fread after EOF. */
|
|
if (feof (stream))
|
|
goto process_partial_block;
|
|
}
|
|
|
|
/* Process buffer with BLOCKSIZE bytes. Note that
|
|
BLOCKSIZE % 64 == 0
|
|
*/
|
|
sha1_process_block (buffer, BLOCKSIZE, &ctx);
|
|
}
|
|
|
|
process_partial_block:;
|
|
|
|
/* Process any remaining bytes. */
|
|
if (sum > 0)
|
|
sha1_process_bytes (buffer, sum, &ctx);
|
|
|
|
/* Construct result in desired memory. */
|
|
sha1_finish_ctx (&ctx, resblock);
|
|
return 0;
|
|
}
|
|
|
|
/* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
|
|
result is always in little endian byte order, so that a byte-wise
|
|
output yields to the wanted ASCII representation of the message
|
|
digest. */
|
|
void *
|
|
sha1_buffer (const char *buffer, size_t len, void *resblock)
|
|
{
|
|
struct sha1_ctx ctx;
|
|
|
|
/* Initialize the computation context. */
|
|
sha1_init_ctx (&ctx);
|
|
|
|
/* Process whole buffer but last len % 64 bytes. */
|
|
sha1_process_bytes (buffer, len, &ctx);
|
|
|
|
/* Put result in desired memory area. */
|
|
return sha1_finish_ctx (&ctx, resblock);
|
|
}
|
|
|
|
void
|
|
sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->buflen != 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
|
memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if (ctx->buflen > 64)
|
|
{
|
|
sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
|
|
|
|
ctx->buflen &= 63;
|
|
/* The regions in the following copy operation cannot overlap. */
|
|
memcpy (ctx->buffer,
|
|
&((char *) ctx->buffer)[(left_over + add) & ~63],
|
|
ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char *) buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len >= 64)
|
|
{
|
|
#if !_STRING_ARCH_unaligned
|
|
# define alignof(type) __alignof__(type)
|
|
# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
|
|
if (UNALIGNED_P (buffer))
|
|
while (len > 64)
|
|
{
|
|
sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
|
|
buffer = (const char *) buffer + 64;
|
|
len -= 64;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
sha1_process_block (buffer, len & ~63, ctx);
|
|
buffer = (const char *) buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes in internal buffer. */
|
|
if (len > 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
|
|
left_over += len;
|
|
if (left_over >= 64)
|
|
{
|
|
sha1_process_block (ctx->buffer, 64, ctx);
|
|
left_over -= 64;
|
|
memcpy (ctx->buffer, &ctx->buffer[16], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
/* --- Code below is the primary difference between md5.c and sha1.c --- */
|
|
|
|
/* SHA1 round constants */
|
|
#define K1 0x5a827999
|
|
#define K2 0x6ed9eba1
|
|
#define K3 0x8f1bbcdc
|
|
#define K4 0xca62c1d6
|
|
|
|
/* Round functions. Note that F2 is the same as F4. */
|
|
#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
|
|
#define F2(B,C,D) (B ^ C ^ D)
|
|
#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
|
|
#define F4(B,C,D) (B ^ C ^ D)
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 64 == 0.
|
|
Most of this code comes from GnuPG's cipher/sha1.c. */
|
|
|
|
void
|
|
sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
|
|
{
|
|
const uint32_t *words = buffer;
|
|
size_t nwords = len / sizeof (uint32_t);
|
|
const uint32_t *endp = words + nwords;
|
|
uint32_t x[16];
|
|
uint32_t a = ctx->A;
|
|
uint32_t b = ctx->B;
|
|
uint32_t c = ctx->C;
|
|
uint32_t d = ctx->D;
|
|
uint32_t e = ctx->E;
|
|
|
|
/* First increment the byte count. RFC 1321 specifies the possible
|
|
length of the file up to 2^64 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += len;
|
|
if (ctx->total[0] < len)
|
|
++ctx->total[1];
|
|
|
|
#define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
|
|
|
|
#define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
|
|
^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
|
|
, (x[I&0x0f] = rol(tm, 1)) )
|
|
|
|
#define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
|
|
+ F( B, C, D ) \
|
|
+ K \
|
|
+ M; \
|
|
B = rol( B, 30 ); \
|
|
} while(0)
|
|
|
|
while (words < endp)
|
|
{
|
|
uint32_t tm;
|
|
int t;
|
|
for (t = 0; t < 16; t++)
|
|
{
|
|
x[t] = SWAP (*words);
|
|
words++;
|
|
}
|
|
|
|
R( a, b, c, d, e, F1, K1, x[ 0] );
|
|
R( e, a, b, c, d, F1, K1, x[ 1] );
|
|
R( d, e, a, b, c, F1, K1, x[ 2] );
|
|
R( c, d, e, a, b, F1, K1, x[ 3] );
|
|
R( b, c, d, e, a, F1, K1, x[ 4] );
|
|
R( a, b, c, d, e, F1, K1, x[ 5] );
|
|
R( e, a, b, c, d, F1, K1, x[ 6] );
|
|
R( d, e, a, b, c, F1, K1, x[ 7] );
|
|
R( c, d, e, a, b, F1, K1, x[ 8] );
|
|
R( b, c, d, e, a, F1, K1, x[ 9] );
|
|
R( a, b, c, d, e, F1, K1, x[10] );
|
|
R( e, a, b, c, d, F1, K1, x[11] );
|
|
R( d, e, a, b, c, F1, K1, x[12] );
|
|
R( c, d, e, a, b, F1, K1, x[13] );
|
|
R( b, c, d, e, a, F1, K1, x[14] );
|
|
R( a, b, c, d, e, F1, K1, x[15] );
|
|
R( e, a, b, c, d, F1, K1, M(16) );
|
|
R( d, e, a, b, c, F1, K1, M(17) );
|
|
R( c, d, e, a, b, F1, K1, M(18) );
|
|
R( b, c, d, e, a, F1, K1, M(19) );
|
|
R( a, b, c, d, e, F2, K2, M(20) );
|
|
R( e, a, b, c, d, F2, K2, M(21) );
|
|
R( d, e, a, b, c, F2, K2, M(22) );
|
|
R( c, d, e, a, b, F2, K2, M(23) );
|
|
R( b, c, d, e, a, F2, K2, M(24) );
|
|
R( a, b, c, d, e, F2, K2, M(25) );
|
|
R( e, a, b, c, d, F2, K2, M(26) );
|
|
R( d, e, a, b, c, F2, K2, M(27) );
|
|
R( c, d, e, a, b, F2, K2, M(28) );
|
|
R( b, c, d, e, a, F2, K2, M(29) );
|
|
R( a, b, c, d, e, F2, K2, M(30) );
|
|
R( e, a, b, c, d, F2, K2, M(31) );
|
|
R( d, e, a, b, c, F2, K2, M(32) );
|
|
R( c, d, e, a, b, F2, K2, M(33) );
|
|
R( b, c, d, e, a, F2, K2, M(34) );
|
|
R( a, b, c, d, e, F2, K2, M(35) );
|
|
R( e, a, b, c, d, F2, K2, M(36) );
|
|
R( d, e, a, b, c, F2, K2, M(37) );
|
|
R( c, d, e, a, b, F2, K2, M(38) );
|
|
R( b, c, d, e, a, F2, K2, M(39) );
|
|
R( a, b, c, d, e, F3, K3, M(40) );
|
|
R( e, a, b, c, d, F3, K3, M(41) );
|
|
R( d, e, a, b, c, F3, K3, M(42) );
|
|
R( c, d, e, a, b, F3, K3, M(43) );
|
|
R( b, c, d, e, a, F3, K3, M(44) );
|
|
R( a, b, c, d, e, F3, K3, M(45) );
|
|
R( e, a, b, c, d, F3, K3, M(46) );
|
|
R( d, e, a, b, c, F3, K3, M(47) );
|
|
R( c, d, e, a, b, F3, K3, M(48) );
|
|
R( b, c, d, e, a, F3, K3, M(49) );
|
|
R( a, b, c, d, e, F3, K3, M(50) );
|
|
R( e, a, b, c, d, F3, K3, M(51) );
|
|
R( d, e, a, b, c, F3, K3, M(52) );
|
|
R( c, d, e, a, b, F3, K3, M(53) );
|
|
R( b, c, d, e, a, F3, K3, M(54) );
|
|
R( a, b, c, d, e, F3, K3, M(55) );
|
|
R( e, a, b, c, d, F3, K3, M(56) );
|
|
R( d, e, a, b, c, F3, K3, M(57) );
|
|
R( c, d, e, a, b, F3, K3, M(58) );
|
|
R( b, c, d, e, a, F3, K3, M(59) );
|
|
R( a, b, c, d, e, F4, K4, M(60) );
|
|
R( e, a, b, c, d, F4, K4, M(61) );
|
|
R( d, e, a, b, c, F4, K4, M(62) );
|
|
R( c, d, e, a, b, F4, K4, M(63) );
|
|
R( b, c, d, e, a, F4, K4, M(64) );
|
|
R( a, b, c, d, e, F4, K4, M(65) );
|
|
R( e, a, b, c, d, F4, K4, M(66) );
|
|
R( d, e, a, b, c, F4, K4, M(67) );
|
|
R( c, d, e, a, b, F4, K4, M(68) );
|
|
R( b, c, d, e, a, F4, K4, M(69) );
|
|
R( a, b, c, d, e, F4, K4, M(70) );
|
|
R( e, a, b, c, d, F4, K4, M(71) );
|
|
R( d, e, a, b, c, F4, K4, M(72) );
|
|
R( c, d, e, a, b, F4, K4, M(73) );
|
|
R( b, c, d, e, a, F4, K4, M(74) );
|
|
R( a, b, c, d, e, F4, K4, M(75) );
|
|
R( e, a, b, c, d, F4, K4, M(76) );
|
|
R( d, e, a, b, c, F4, K4, M(77) );
|
|
R( c, d, e, a, b, F4, K4, M(78) );
|
|
R( b, c, d, e, a, F4, K4, M(79) );
|
|
|
|
a = ctx->A += a;
|
|
b = ctx->B += b;
|
|
c = ctx->C += c;
|
|
d = ctx->D += d;
|
|
e = ctx->E += e;
|
|
}
|
|
}
|
|
|
|
/* memxor.c -- perform binary exclusive OR operation of two memory blocks.
|
|
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
/* Written by Simon Josefsson. The interface was inspired by memxor
|
|
in Niels Möller's Nettle. */
|
|
|
|
void *
|
|
memxor (void * dest, const void * src, size_t n)
|
|
{
|
|
char const *s = src;
|
|
char *d = dest;
|
|
|
|
for (; n > 0; n--)
|
|
*d++ ^= *s++;
|
|
|
|
return dest;
|
|
}
|
|
|
|
/* hmac-sha1.c -- hashed message authentication codes
|
|
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
/* Written by Simon Josefsson. */
|
|
|
|
#define IPAD 0x36
|
|
#define OPAD 0x5c
|
|
|
|
int
|
|
hmac_sha1 (const void *key, size_t keylen,
|
|
const void *in, size_t inlen, void *resbuf)
|
|
{
|
|
struct sha1_ctx inner;
|
|
struct sha1_ctx outer;
|
|
char optkeybuf[20];
|
|
char block[64];
|
|
char innerhash[20];
|
|
|
|
/* Reduce the key's size, so that it becomes <= 64 bytes large. */
|
|
|
|
if (keylen > 64)
|
|
{
|
|
struct sha1_ctx keyhash;
|
|
|
|
sha1_init_ctx (&keyhash);
|
|
sha1_process_bytes (key, keylen, &keyhash);
|
|
sha1_finish_ctx (&keyhash, optkeybuf);
|
|
|
|
key = optkeybuf;
|
|
keylen = 20;
|
|
}
|
|
|
|
/* Compute INNERHASH from KEY and IN. */
|
|
|
|
sha1_init_ctx (&inner);
|
|
|
|
memset (block, IPAD, sizeof (block));
|
|
memxor (block, key, keylen);
|
|
|
|
sha1_process_block (block, 64, &inner);
|
|
sha1_process_bytes (in, inlen, &inner);
|
|
|
|
sha1_finish_ctx (&inner, innerhash);
|
|
|
|
/* Compute result from KEY and INNERHASH. */
|
|
|
|
sha1_init_ctx (&outer);
|
|
|
|
memset (block, OPAD, sizeof (block));
|
|
memxor (block, key, keylen);
|
|
|
|
sha1_process_block (block, 64, &outer);
|
|
sha1_process_bytes (innerhash, 20, &outer);
|
|
|
|
sha1_finish_ctx (&outer, resbuf);
|
|
|
|
return 0;
|
|
}
|