/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Plugin for reprogramming only the second Rockbox image. * * Copyright (C) 2003 Jörg Hohensohn [IDC]Dragon * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "plugin.h" #ifndef UINT8 #define UINT8 unsigned char #endif #ifndef UINT16 #define UINT16 unsigned short #endif #ifndef UINT32 #define UINT32 unsigned long #endif // hard-coded values static volatile UINT8* FB = (UINT8*)0x02000000; // Flash base address #define SECTORSIZE 4096 // size of one flash sector #define ROCKBOX_DEST 0x09000000 #define ROCKBOX_EXEC 0x09000200 #define FILENAME "/rockbox.ucl" #define VERS_ADR 0xFE // position of firmware version value in Flash #define UCL_HEADER 26 // size of the header generated by uclpack typedef struct { UINT32 destination; // address to copy it to UINT32 size; // how many bytes of payload (to the next header) UINT32 execute; // entry point UINT32 flags; // uncompressed or compressed // end of header, now comes the payload } tImageHeader; // result of the CheckFirmwareFile() function typedef enum { eOK = 0, eFileNotFound, // errors from here on eTooBig, eTooSmall, eReadErr, eNotUCL, eWrongAlgorithm, eMultiBlocks, } tCheckResult; typedef struct { UINT8 manufacturer; UINT8 id; int size; char name[32]; } tFlashInfo; static struct plugin_api* rb; // here is a global api struct pointer #define SEC_SIZE 4096 // size of one flash sector static UINT8 sector[SEC_SIZE]; // better not place this on the stack... /***************** Flash Functions *****************/ // read the manufacturer and device ID bool ReadID(volatile UINT8* pBase, UINT8* pManufacturerID, UINT8* pDeviceID) { UINT8 not_manu, not_id; // read values before switching to ID mode UINT8 manu, id; // read values when in ID mode pBase = (UINT8*)((UINT32)pBase & 0xFFF80000); // round down to 512k align, to make shure not_manu = pBase[0]; // read the normal content not_id = pBase[1]; // should be 'A' (0x41) and 'R' (0x52) from the "ARCH" marker pBase[0x5555] = 0xAA; // enter command mode pBase[0x2AAA] = 0x55; pBase[0x5555] = 0x90; // ID command rb->sleep(HZ/50); // Atmel wants 20ms pause here manu = pBase[0]; id = pBase[1]; pBase[0] = 0xF0; // reset flash (back to normal read mode) rb->sleep(HZ/50); // Atmel wants 20ms pause here /* I assume success if the obtained values are different from the normal flash content. This is not perfectly bulletproof, they could theoretically be the same by chance, causing us to fail. */ if (not_manu != manu || not_id != id) // a value has changed { *pManufacturerID = manu; // return the results *pDeviceID = id; return true; // success } return false; // fail } // eraze the sector which contains the given address bool ErazeSector(volatile UINT8* pAddr) { volatile UINT8* pBase = (UINT8*)((UINT32)pAddr & 0xFFF80000); // round down to 512k align unsigned timeout = 43000; // the timeout loop should be no less than 25ms pBase[0x5555] = 0xAA; // enter command mode pBase[0x2AAA] = 0x55; pBase[0x5555] = 0x80; // eraze command pBase[0x5555] = 0xAA; // enter command mode pBase[0x2AAA] = 0x55; *pAddr = 0x30; // eraze the sector // I counted 7 instructions for this loop -> min. 0.58 us per round // Plus memory waitstates it will be much more, gives margin while (*pAddr != 0xFF && --timeout); // poll for erazed return (timeout != 0); } // address must be in an erazed location inline bool ProgramByte(volatile UINT8* pAddr, UINT8 data) { unsigned timeout = 35; // the timeout loop should be no less than 20us if (~*pAddr & data) // just a safety feature, not really necessary return false; // can't set any bit from 0 to 1 FB[0x5555] = 0xAA; // enter command mode FB[0x2AAA] = 0x55; FB[0x5555] = 0xA0; // byte program command *pAddr = data; // I counted 7 instructions for this loop -> min. 0.58 us per round // Plus memory waitstates it will be much more, gives margin while (*pAddr != data && --timeout); // poll for programmed return (timeout != 0); } // this returns true if supported and fills the info struct bool GetFlashInfo(tFlashInfo* pInfo) { rb->memset(pInfo, 0, sizeof(tFlashInfo)); if (!ReadID(FB, &pInfo->manufacturer, &pInfo->id)) return false; if (pInfo->manufacturer == 0xBF) // SST { if (pInfo->id == 0xD6) { pInfo->size = 256* 1024; // 256k rb->strcpy(pInfo->name, "SST39VF020"); return true; } else if (pInfo->id == 0xD7) { pInfo->size = 512* 1024; // 512k rb->strcpy(pInfo->name, "SST39VF040"); return true; } else return false; } return false; } /*********** Tool Functions ************/ // place a 32 bit value into memory, big endian void Write32(UINT8* pByte, UINT32 value) { pByte[0] = (UINT8)(value >> 24); pByte[1] = (UINT8)(value >> 16); pByte[2] = (UINT8)(value >> 8); pByte[3] = (UINT8)(value); } // read a 32 bit value from memory, big endian UINT32 Read32(UINT8* pByte) { UINT32 value = 0; value |= (UINT32)pByte[0] << 24; value |= (UINT32)pByte[1] << 16; value |= (UINT32)pByte[2] << 8; value |= (UINT32)pByte[3]; return value; } // get the start address of the second image tImageHeader* GetSecondImage(void) { tImageHeader* pImage1; UINT32 pos = 0; // dafault: not found UINT32* pFlash = (UINT32*)FB; UINT16 version = *(UINT16*)(FB + VERS_ADR); if (version < 200) // at least 2.00 { return 0; // not our flash layout } // determine the first image position pos = pFlash[2] + pFlash[3]; // position + size of the bootloader = after it pos = (pos + 3) & ~3; // be shure it's 32 bit aligned pImage1 = (tImageHeader*)pos; if (pImage1->destination != ROCKBOX_DEST || pImage1->execute != ROCKBOX_EXEC) return 0; // seems to be no Rockbox stuff in here if (pImage1->size != 0) { // success, we have a second image pos = (UINT32)pImage1 + sizeof(tImageHeader) + pImage1->size; if (((pos + SECTORSIZE-1) & ~(SECTORSIZE-1)) != pos) { // not sector-aligned pos = 0; // sanity check failed } } return (tImageHeader*)pos; } /*********** Image File Functions ************/ // so far, only compressed images in UCL NRV algorithm 2e supported tCheckResult CheckImageFile(char* filename, int space, tImageHeader* pHeader) { int i; int fd; int filesize; // size info int fileread = 0; // total size as read from the file int read; // how many for this sector // magic file header for compressed files static const UINT8 magic[8] = { 0x00,0xe9,0x55,0x43,0x4c,0xff,0x01,0x1a }; UINT8 ucl_header[UCL_HEADER]; fd = rb->open(filename, O_RDONLY); if (fd < 0) return eFileNotFound; filesize = rb->filesize(fd); if (filesize - (int)sizeof(ucl_header) - 8 > space) { rb->close(fd); return eTooBig; } else if (filesize < 50000) // give it some reasonable lower limit { rb->close(fd); return eTooSmall; } // do some sanity checks read = rb->read(fd, ucl_header, sizeof(ucl_header)); fileread += read; if (read != sizeof(ucl_header)) { rb->close(fd); return eReadErr; } // compare the magic header for (i=0; i<8; i++) { if (ucl_header[i] != magic[i]) { rb->close(fd); return eNotUCL; } } // check for supported algorithm if (ucl_header[12] != 0x2E) { rb->close(fd); return eWrongAlgorithm; } pHeader->size = Read32(ucl_header + 22); // compressed size if (pHeader->size != filesize - sizeof(ucl_header) - 8) { rb->close(fd); return eMultiBlocks; } if (Read32(ucl_header + 18) > pHeader->size) // compare with uncompressed size { // normal case pHeader->flags = 0x00000001; // flags for UCL compressed } else { pHeader->flags = 0x00000000; // very unlikely, content was not compressible } // check if we can read the whole file do { read = rb->read(fd, sector, SEC_SIZE); fileread += read; } while (read == SEC_SIZE); rb->close(fd); if (fileread != filesize) return eReadErr; // fill in the hardcoded rest of the header pHeader->destination = ROCKBOX_DEST; pHeader->execute = ROCKBOX_EXEC; return eOK; } // returns the # of failures, 0 on success unsigned ProgramImageFile(char* filename, UINT8* pos, tImageHeader* pImageHeader, int start, int size) { int i; int fd; int read; // how many for this sector unsigned failures = 0; fd = rb->open(filename, O_RDONLY); if (fd < 0) return false; // no error checking necessary here, we checked for minimum size already rb->lseek(fd, start, SEEK_SET); // go to start position *(tImageHeader*)sector = *pImageHeader; // copy header into sector buffer read = rb->read(fd, sector + sizeof(tImageHeader), SEC_SIZE - sizeof(tImageHeader)); // payload behind size -= read; read += sizeof(tImageHeader); // to be programmed, but not part of the file do { if (!ErazeSector(pos)) { // nothing we can do, let the programming count the errors } for (i=0; iread(fd, sector, (size > SEC_SIZE) ? SEC_SIZE : size); // payload for next sector size -= read; } while (read > 0); rb->close(fd); return failures; } // returns the # of failures, 0 on success unsigned VerifyImageFile(char* filename, UINT8* pos, tImageHeader* pImageHeader, int start, int size) { int i; int fd; int read; // how many for this sector unsigned failures = 0; fd = rb->open(filename, O_RDONLY); if (fd < 0) return false; // no error checking necessary here, we checked for minimum size already rb->lseek(fd, start, SEEK_SET); // go to start position *(tImageHeader*)sector = *pImageHeader; // copy header into sector buffer read = rb->read(fd, sector + sizeof(tImageHeader), SEC_SIZE - sizeof(tImageHeader)); // payload behind size -= read; read += sizeof(tImageHeader); // to be programmed, but not part of the file do { for (i=0; iread(fd, sector, (size > SEC_SIZE) ? SEC_SIZE : size); // payload for next sector size -= read; } while (read); rb->close(fd); return failures; } /***************** User Interface Functions *****************/ /* (to be changed for Player) */ #ifdef HAVE_LCD_BITMAP // helper for DoUserDialog() void ShowFlashInfo(tFlashInfo* pInfo, tImageHeader* pImageHeader) { char buf[32]; if (!pInfo->manufacturer) { rb->lcd_puts(0, 0, "Flash: M=?? D=??"); } else { if (pInfo->size) { rb->snprintf(buf, sizeof(buf), "Flash size: %d KB", pInfo->size / 1024); rb->lcd_puts(0, 0, buf); } else { rb->lcd_puts(0, 0, "Unsupported chip"); } } if (pImageHeader) { rb->snprintf(buf, sizeof(buf), "Image at %d KB", ((UINT8*)pImageHeader - FB) / 1024); rb->lcd_puts(0, 1, buf); } else { rb->lcd_puts(0, 1, "No image found!"); } rb->lcd_update(); } // Kind of our main function, defines the application flow. void DoUserDialog(void) { tImageHeader ImageHeader; tFlashInfo FlashInfo; char buf[32]; int button; int rc; // generic return code UINT32 space, aligned_size, true_size; UINT8* pos; rb->lcd_setfont(FONT_SYSFIXED); pos = (void*)GetSecondImage(); rc = GetFlashInfo(&FlashInfo); ShowFlashInfo(&FlashInfo, (void*)pos); if (FlashInfo.size == 0) // no valid chip { rb->splash(HZ*3, 0, true, "Not flashable"); return; // exit } else if (pos == 0) { rb->splash(HZ*3, 0, true, "No Image"); return; // exit } rb->lcd_puts(0, 3, "using file:"); rb->lcd_puts(0, 4, FILENAME); rb->lcd_puts(0, 6, "[F1] to check file"); rb->lcd_puts(0, 7, "other key to exit"); rb->lcd_update(); button = rb->button_get(true); button = rb->button_get(true); if (button != BUTTON_F1) { return; } rb->lcd_clear_display(); rb->lcd_puts(0, 0, "checking..."); rb->lcd_update(); space = FlashInfo.size - (pos-FB + sizeof(ImageHeader)); // size minus start rc = CheckImageFile(FILENAME, space, &ImageHeader); rb->lcd_puts(0, 0, "checked:"); switch (rc) { case eOK: rb->lcd_puts(0, 1, "File OK."); break; case eNotUCL: rb->lcd_puts(0, 1, "File not UCL "); rb->lcd_puts(0, 2, "compressed."); rb->lcd_puts(0, 3, "Use uclpack --2e"); rb->lcd_puts(0, 4, " --10 rockbox.bin"); break; case eWrongAlgorithm: rb->lcd_puts(0, 1, "Wrong algorithm"); rb->lcd_puts(0, 2, "for compression."); rb->lcd_puts(0, 3, "Use uclpack --2e"); rb->lcd_puts(0, 4, " --10 rockbox.bin"); break; case eFileNotFound: rb->lcd_puts(0, 1, "File not found."); rb->lcd_puts(0, 2, "Put this in root:"); rb->lcd_puts(0, 4, FILENAME); break; case eTooBig: rb->lcd_puts(0, 1, "File too big,"); rb->lcd_puts(0, 2, "won't fit in chip."); break; case eTooSmall: rb->lcd_puts(0, 1, "File too small."); rb->lcd_puts(0, 2, "Incomplete?"); break; case eReadErr: rb->lcd_puts(0, 1, "File read error."); break; case eMultiBlocks: rb->lcd_puts(0, 1, "File invalid."); rb->lcd_puts(0, 2, "Blocksize"); rb->lcd_puts(0, 3, " too small?"); break; default: rb->lcd_puts(0, 1, "Check failed."); break; } if (rc == eOK) { // was OK rb->lcd_puts(0, 6, "[F2] to program"); rb->lcd_puts(0, 7, "other key to exit"); } else { // error occured rb->lcd_puts(0, 6, "Any key to exit"); } rb->lcd_update(); button = rb->button_get(true); button = rb->button_get(true); if (button != BUTTON_F2) { return; } true_size = ImageHeader.size; aligned_size = ((sizeof(tImageHeader) + true_size + SECTORSIZE-1) & ~(SECTORSIZE-1)) - sizeof(tImageHeader); // round up to next flash sector ImageHeader.size = aligned_size; // increase image size such that we reach the next sector rb->lcd_clear_display(); rb->lcd_puts(0, 0, "Programming..."); rb->lcd_update(); rc = ProgramImageFile(FILENAME, pos, &ImageHeader, UCL_HEADER, true_size); if (rc) { // errors rb->lcd_clear_display(); rb->lcd_puts(0, 0, "Error:"); rb->lcd_puts(0, 1, "Programming fail!"); rb->snprintf(buf, sizeof(buf), "%d errors", rc); rb->lcd_puts(0, 2, buf); rb->lcd_update(); button = rb->button_get(true); button = rb->button_get(true); } rb->lcd_clear_display(); rb->lcd_puts(0, 0, "Verifying..."); rb->lcd_update(); rc = VerifyImageFile(FILENAME, pos, &ImageHeader, UCL_HEADER, true_size); rb->lcd_clear_display(); if (rc == 0) { rb->lcd_puts(0, 0, "Verify OK."); } else { rb->lcd_puts(0, 0, "Error:"); rb->lcd_puts(0, 1, "Verify fail!"); rb->snprintf(buf, sizeof(buf), "%d errors", rc); rb->lcd_puts(0, 2, buf); rb->lcd_puts(0, 3, "Use safe image"); rb->lcd_puts(0, 4, "if booting hangs:"); rb->lcd_puts(0, 5, "F1 during power-on"); } rb->lcd_puts(0, 7, "Any key to exit"); rb->lcd_update(); button = rb->button_get(true); button = rb->button_get(true); } #else // HAVE_LCD_BITMAP // Player implementation has to go here void DoUserDialog(void) { } #endif // HAVE_LCD_BITMAP /***************** Plugin Entry Point *****************/ enum plugin_status plugin_start(struct plugin_api* api, void* parameter) { /* this macro should be called as the first thing you do in the plugin. it test that the api version and model the plugin was compiled for matches the machine it is running on */ TEST_PLUGIN_API(api); /* if you don't use the parameter, you can do like this to avoid the compiler warning about it */ (void)parameter; rb = api; /* copy to global api pointer */ /* now go ahead and have fun! */ DoUserDialog(); return PLUGIN_OK; }