/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2009 Wincent Balin * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "plugin.h" #include "pdbox.h" #include "ctype.h" #include "m_pd.h" #include "s_stuff.h" /* This implementation of strncat is taken from lua plug-in. */ /* gcc is broken and has a non-SUSv2 compliant internal prototype. * This causes it to warn about a type mismatch here. Ignore it. */ char *rb_strncat(char *s, const char *t, size_t n) { char *dest = s; register char *max; s += strlen(s); if((max = s + n) == s) goto strncat_fini; while(true) { if(!(*s = *t)) break; if(++s == max) break; ++t; #ifndef WANT_SMALL_STRING_ROUTINES if(!(*s = *t)) break; if(++s == max) break; ++t; if(!(*s = *t)) break; if(++s == max) break; ++t; if(!(*s = *t)) break; if(++s == max) break; ++t; #endif } *s = 0; strncat_fini: return dest; } /* Implementation of floor, original. */ float rb_floor(float value) { /* If value is negative, decrement value to match function's definition. */ if(value < 0.0) { value -= 1.0; } /* Truncate fractional part (convert to integer) and afterwards convert back to double. */ return (float) ((int) value); } /* Implementation of strtod() and atof(), taken from SanOS (http://www.jbox.dk/sanos/). */ static int rb_errno = 0; double rb_strtod(const char *str, char **endptr) { double number; int exponent; int negative; char *p = (char *) str; double p10; int n; int num_digits; int num_decimals; /* Reset Rockbox errno -- W.B. */ #ifdef ROCKBOX rb_errno = 0; #endif // Skip leading whitespace while (isspace(*p)) p++; // Handle optional sign negative = 0; switch (*p) { case '-': negative = 1; // Fall through to increment position case '+': p++; } number = 0.; exponent = 0; num_digits = 0; num_decimals = 0; // Process string of digits while (isdigit(*p)) { number = number * 10. + (*p - '0'); p++; num_digits++; } // Process decimal part if (*p == '.') { p++; while (isdigit(*p)) { number = number * 10. + (*p - '0'); p++; num_digits++; num_decimals++; } exponent -= num_decimals; } if (num_digits == 0) { #ifdef ROCKBOX rb_errno = 1; #else errno = ERANGE; #endif return 0.0; } // Correct for sign if (negative) number = -number; // Process an exponent string if (*p == 'e' || *p == 'E') { // Handle optional sign negative = 0; switch(*++p) { case '-': negative = 1; // Fall through to increment pos case '+': p++; } // Process string of digits n = 0; while (isdigit(*p)) { n = n * 10 + (*p - '0'); p++; } if (negative) exponent -= n; else exponent += n; } #ifndef ROCKBOX if (exponent < DBL_MIN_EXP || exponent > DBL_MAX_EXP) { errno = ERANGE; return HUGE_VAL; } #endif // Scale the result p10 = 10.; n = exponent; if (n < 0) n = -n; while (n) { if (n & 1) { if (exponent < 0) number /= p10; else number *= p10; } n >>= 1; p10 *= p10; } #ifndef ROCKBOX if (number == HUGE_VAL) errno = ERANGE; #endif if (endptr) *endptr = p; return number; } double rb_atof(const char *str) { return rb_strtod(str, NULL); } /* Implementation of ftoa(), original. */ void rb_ftoan(float f, char* out, int size) { #define SBUFSIZE 12 char sbuf[SBUFSIZE]; /* Zero out string. */ *out = '\0'; size--; /* Handle negative numbers. */ if(f < 0.0) { f = -f; strcat(out, "-"); size--; } /* Find and convert integer part. */ int int_part = (int) f; snprintf(sbuf, SBUFSIZE-1, "%d", int_part); int int_part_len = strlen(sbuf); if(size < int_part_len) return; /* Append integral part to output string. */ strcat(out, sbuf); size -= int_part_len; /* Check whether further content is possible. */ if(size <= 0) return; /* Append decimal point. */ strcat(out, "."); size--; /* Calculate first rest and convert it. */ float rest1 = (f - (float) int_part) * 1000000000.0; int irest1 = (int) rest1; snprintf(sbuf, SBUFSIZE-1, "%09d", irest1); /* Append first rest to output string. */ int rest1_len = strlen(sbuf); int rest1_minlen = MIN(size, rest1_len); strncat(out, sbuf, rest1_minlen); size -= rest1_minlen; /* Check whether output string still has enough space. */ if(size <= 0) return; /* Calculate second rest and convert it. */ float rest2 = (rest1 - (float) irest1) * 1000000000.0; int irest2 = (int) rest2; snprintf(sbuf, SBUFSIZE-1, "%09d", irest2); /* Append second rest to the output string. */ int rest2_len = strlen(sbuf); int rest2_minlen = MIN(size, rest2_len); strncat(out, sbuf, rest2_minlen); } /* Implementation of atol(), adapted from the atoi() implementation in Rockbox. */ long rb_atol(const char* str) { long value = 0L; long sign = 1L; while (isspace(*str)) { str++; } if ('-' == *str) { sign = -1L; str++; } else if ('+' == *str) { str++; } while ('0' == *str) { str++; } while (isdigit(*str)) { value = (value * 10L) + (*str - '0'); str++; } return value * sign; } /* Implementation of sin() and cos(), adapted from http://lab.polygonal.de/2007/07/18/fast-and-accurate-sinecosine-approximation/ */ float rb_sin(float rad) { /* Trim input value to -PI..PI interval. */ if(rad < -3.14159265) rad += 6.28318531; else if(rad > 3.14159265) rad -= 6.28318531; if(rad < 0) return (1.27323954 * rad + 0.405284735 * rad * rad); else return (1.27323954 * rad - 0.405284735 * rad * rad); } float rb_cos(float rad) { /* Compute cosine: sin(x + PI/2) = cos(x) */ rad += 1.57079632; if(rad > 3.14159265) rad -= 6.28318531; return rb_sin(rad); } /* Emulation of fscanf(fd, "%f", (float*) xxx); Basically a reimplementation of rb_strtod() above. */ int rb_fscanf_f(int fd, float* f) { #define FSCANF_F_BUFSIZE 64 char buf[FSCANF_F_BUFSIZE]; /* Read line from file. */ int bytes_read = rb->read_line(fd, buf, FSCANF_F_BUFSIZE-1); /* Terminate string. */ if(bytes_read >= FSCANF_F_BUFSIZE) buf[FSCANF_F_BUFSIZE-1] = '\0'; else buf[bytes_read-1] = '\0'; /* Convert buffer to float. */ *f = rb_atof(buf); /* If there was an error, no float was read. */ if(rb_errno) return 0; return 1; } /* Emulation of fprintf(fd, "%f\n", (float*) xxx); */ int rb_fprintf_f(int fd, float f) { #define FPRINTF_F_BUFSIZE 64 char buf[FPRINTF_F_BUFSIZE]; const char* next_line = "\n"; /* Convert float to string. */ rb_ftoan(f, buf, sizeof(buf)-1); /* Add next line character. */ strcat(buf, next_line); /* Write string into file. */ return write(fd, buf, strlen(buf)); } /* Natural logarithm. Taken from glibc-2.8 */ static const float ln2_hi = 6.9313812256e-01, /* 0x3f317180 */ ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */ two25 = 3.355443200e+07, /* 0x4c000000 */ Lg1 = 6.6666668653e-01, /* 3F2AAAAB */ Lg2 = 4.0000000596e-01, /* 3ECCCCCD */ Lg3 = 2.8571429849e-01, /* 3E924925 */ Lg4 = 2.2222198546e-01, /* 3E638E29 */ Lg5 = 1.8183572590e-01, /* 3E3A3325 */ Lg6 = 1.5313838422e-01, /* 3E1CD04F */ Lg7 = 1.4798198640e-01; /* 3E178897 */ static const float zero = 0.0; /* A union which permits us to convert between a float and a 32 bit int. */ typedef union { float value; uint32_t word; } ieee_float_shape_type; /* Get a 32 bit int from a float. */ #define GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.value = (d); \ (i) = gf_u.word; \ } while (0) /* Set a float from a 32 bit int. */ #define SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.word = (i); \ (d) = sf_u.value; \ } while (0) float rb_log(float x) { float hfsq, f, s, z, R, w, t1, t2, dk; int32_t k, ix, i, j; GET_FLOAT_WORD(ix,x); k=0; if (ix < 0x00800000) { /* x < 2**-126 */ if ((ix&0x7fffffff)==0) return -two25/(x-x); /* log(+-0)=-inf */ if (ix<0) return (x-x)/(x-x); /* log(-#) = NaN */ k -= 25; x *= two25; /* subnormal number, scale up x */ GET_FLOAT_WORD(ix,x); } if (ix >= 0x7f800000) return x+x; k += (ix>>23)-127; ix &= 0x007fffff; i = (ix+(0x95f64<<3))&0x800000; SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */ k += (i>>23); f = x-(float)1.0; if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */ if(f==zero) { if(k==0) return zero; else { dk=(float)k; return dk*ln2_hi+dk*ln2_lo; } } R = f*f*((float)0.5-(float)0.33333333333333333*f); if(k==0) return f-R; else { dk=(float)k; return dk*ln2_hi-((R-dk*ln2_lo)-f); } } s = f/((float)2.0+f); dk = (float)k; z = s*s; i = ix-(0x6147a<<3); w = z*z; j = (0x6b851<<3)-ix; t1= w*(Lg2+w*(Lg4+w*Lg6)); t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); i |= j; R = t2+t1; if(i>0) { hfsq=(float)0.5*f*f; if(k==0) return f-(hfsq-s*(hfsq+R)); else return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); } else { if(k==0) return f-s*(f-R); else return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); } } /* Logarithm for 10th base, taken from glibc-2.8 */ static const float ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */ log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */ log10_2lo = 7.9034151668e-07; /* 0x355427db */ float rb_log10(float x) { float y,z; int32_t i,k,hx; GET_FLOAT_WORD(hx,x); k=0; if (hx < 0x00800000) { /* x < 2**-126 */ if ((hx&0x7fffffff)==0) return -two25/(x-x); /* log(+-0)=-inf */ if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */ k -= 25; x *= two25; /* subnormal number, scale up x */ GET_FLOAT_WORD(hx,x); } if (hx >= 0x7f800000) return x+x; k += (hx>>23)-127; i = ((uint32_t)k&0x80000000)>>31; hx = (hx&0x007fffff)|((0x7f-i)<<23); y = (float)(k+i); SET_FLOAT_WORD(x,hx); z = y*log10_2lo + ivln10*rb_log(x); return z+y*log10_2hi; } /* Power function, Taken from glibc-2.8 */ int rb_isinf(float x) { int32_t ix, t; GET_FLOAT_WORD(ix,x); t = ix & 0x7fffffff; t ^= 0x7f800000; t |= -t; return ~(t >> 31) & (ix >> 30); } float rb_copysignf(float x, float y) { uint32_t ix, iy; GET_FLOAT_WORD(ix,x); GET_FLOAT_WORD(iy,y); SET_FLOAT_WORD(x,(ix&0x7fffffff)|(iy&0x80000000)); return x; } static const float huge = 1.0e+30, tiny = 1.0e-30, twom25 = 2.9802322388e-08; /* 0x33000000 */ float rb_scalbnf(float x, int n) { int32_t k, ix; GET_FLOAT_WORD(ix,x); k = (ix&0x7f800000)>>23; /* extract exponent */ if (k==0) { /* 0 or subnormal x */ if ((ix&0x7fffffff)==0) return x; /* +-0 */ x *= two25; GET_FLOAT_WORD(ix,x); k = ((ix&0x7f800000)>>23) - 25; } if (k==0xff) return x+x; /* NaN or Inf */ k = k+n; if (n> 50000 || k > 0xfe) return huge*rb_copysignf(huge,x); /* overflow */ if (n< -50000) return tiny*rb_copysignf(tiny,x); /*underflow*/ if (k > 0) /* normal result */ {SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); return x;} if (k <= -25) return tiny*rb_copysignf(tiny,x); /*underflow*/ k += 25; /* subnormal result */ SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); return x*twom25; } static const float bp[] = {1.0, 1.5,}, dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */ dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */ one = 1.0, two = 2.0, two24 = 16777216.0, /* 0x4b800000 */ /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ L1 = 6.0000002384e-01, /* 0x3f19999a */ L2 = 4.2857143283e-01, /* 0x3edb6db7 */ L3 = 3.3333334327e-01, /* 0x3eaaaaab */ L4 = 2.7272811532e-01, /* 0x3e8ba305 */ L5 = 2.3066075146e-01, /* 0x3e6c3255 */ L6 = 2.0697501302e-01, /* 0x3e53f142 */ P1 = 1.6666667163e-01, /* 0x3e2aaaab */ P2 = -2.7777778450e-03, /* 0xbb360b61 */ P3 = 6.6137559770e-05, /* 0x388ab355 */ P4 = -1.6533901999e-06, /* 0xb5ddea0e */ P5 = 4.1381369442e-08; /* 0x3331bb4c */ static const float lg2 = 6.9314718246e-01, /* 0x3f317218 */ lg2_h = 6.93145752e-01, /* 0x3f317200 */ lg2_l = 1.42860654e-06, /* 0x35bfbe8c */ ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */ cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */ cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */ cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */ ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */ ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/ ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/ float rb_pow(float x, float y) { float z, ax, z_h, z_l, p_h, p_l; float y1, t1, t2, r, s, t, u, v, w; int32_t i, j, k, yisint, n; int32_t hx, hy, ix, iy, is; GET_FLOAT_WORD(hx,x); GET_FLOAT_WORD(hy,y); ix = hx&0x7fffffff; iy = hy&0x7fffffff; /* y==zero: x**0 = 1 */ if(iy==0) return one; /* x==+-1 */ if(x == 1.0) return one; if(x == -1.0 && rb_isinf(y)) return one; /* +-NaN return x+y */ if(ix > 0x7f800000 || iy > 0x7f800000) return x+y; /* determine if y is an odd int when x < 0 * yisint = 0 ... y is not an integer * yisint = 1 ... y is an odd int * yisint = 2 ... y is an even int */ yisint = 0; if(hx<0) { if(iy>=0x4b800000) yisint = 2; /* even integer y */ else if(iy>=0x3f800000) { k = (iy>>23)-0x7f; /* exponent */ j = iy>>(23-k); if((j<<(23-k))==iy) yisint = 2-(j&1); } } /* special value of y */ if (iy==0x7f800000) { /* y is +-inf */ if (ix==0x3f800000) return y - y; /* inf**+-1 is NaN */ else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */ return (hy>=0)? y: zero; else /* (|x|<1)**-,+inf = inf,0 */ return (hy<0)?-y: zero; } if(iy==0x3f800000) { /* y is +-1 */ if(hy<0) return one/x; else return x; } if(hy==0x40000000) return x*x; /* y is 2 */ if(hy==0x3f000000) { /* y is 0.5 */ if(hx>=0) /* x >= +0 */ return rb_sqrt(x); } ax = rb_fabs(x); /* special value of x */ if(ix==0x7f800000||ix==0||ix==0x3f800000){ z = ax; /*x is +-0,+-inf,+-1*/ if(hy<0) z = one/z; /* z = (1/|x|) */ if(hx<0) { if(((ix-0x3f800000)|yisint)==0) { z = (z-z)/(z-z); /* (-1)**non-int is NaN */ } else if(yisint==1) z = -z; /* (x<0)**odd = -(|x|**odd) */ } return z; } /* (x<0)**(non-int) is NaN */ if(((((uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); /* |y| is huge */ if(iy>0x4d000000) { /* if |y| > 2**27 */ /* over/underflow if x is not close to one */ if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny; if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny; /* now |1-x| is tiny <= 2**-20, suffice to compute log(x) by x-x^2/2+x^3/3-x^4/4 */ t = x-1; /* t has 20 trailing zeros */ w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25)); u = ivln2_h*t; /* ivln2_h has 16 sig. bits */ v = t*ivln2_l-w*ivln2; t1 = u+v; GET_FLOAT_WORD(is,t1); SET_FLOAT_WORD(t1,is&0xfffff000); t2 = v-(t1-u); } else { float s2, s_h, s_l, t_h, t_l; n = 0; /* take care subnormal number */ if(ix<0x00800000) {ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); } n += ((ix)>>23)-0x7f; j = ix&0x007fffff; /* determine interval */ ix = j|0x3f800000; /* normalize ix */ if(j<=0x1cc471) k=0; /* |x|>1)|0x20000000)+0x0040000+(k<<21)); t_l = ax - (t_h-bp[k]); s_l = v*((u-s_h*t_h)-s_h*t_l); /* compute log(ax) */ s2 = s*s; r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); r += s_l*(s_h+s); s2 = s_h*s_h; t_h = (float)3.0+s2+r; GET_FLOAT_WORD(is,t_h); SET_FLOAT_WORD(t_h,is&0xfffff000); t_l = r-((t_h-(float)3.0)-s2); /* u+v = s*(1+...) */ u = s_h*t_h; v = s_l*t_h+t_l*s; /* 2/(3log2)*(s+...) */ p_h = u+v; GET_FLOAT_WORD(is,p_h); SET_FLOAT_WORD(p_h,is&0xfffff000); p_l = v-(p_h-u); z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ z_l = cp_l*p_h+p_l*cp+dp_l[k]; /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ t = (float)n; t1 = (((z_h+z_l)+dp_h[k])+t); GET_FLOAT_WORD(is,t1); SET_FLOAT_WORD(t1,is&0xfffff000); t2 = z_l-(((t1-t)-dp_h[k])-z_h); } s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ if(((((uint32_t)hx>>31)-1)|(yisint-1))==0) s = -one; /* (-ve)**(odd int) */ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ GET_FLOAT_WORD(is,y); SET_FLOAT_WORD(y1,is&0xfffff000); p_l = (y-y1)*t1+y*t2; p_h = y1*t1; z = p_l+p_h; GET_FLOAT_WORD(j,z); if (j>0x43000000) /* if z > 128 */ return s*huge*huge; /* overflow */ else if (j==0x43000000) { /* if z == 128 */ if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ } else if ((j&0x7fffffff)>0x43160000) /* z <= -150 */ return s*tiny*tiny; /* underflow */ else if ((uint32_t) j==0xc3160000){ /* z == -150 */ if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ } /* * compute 2**(p_h+p_l) */ i = j&0x7fffffff; k = (i>>23)-0x7f; n = 0; if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */ n = j+(0x00800000>>(k+1)); k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */ SET_FLOAT_WORD(t,n&~(0x007fffff>>k)); n = ((n&0x007fffff)|0x00800000)>>(23-k); if(j<0) n = -n; p_h -= t; } t = p_l+p_h; GET_FLOAT_WORD(is,t); SET_FLOAT_WORD(t,is&0xfffff000); u = t*lg2_h; v = (p_l-(t-p_h))*lg2+t*lg2_l; z = u+v; w = v-(z-u); t = z*z; t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); r = (z*t1)/(t1-two)-(w+z*w); z = one-(r-z); GET_FLOAT_WORD(j,z); j += (n<<23); if((j>>23)<=0) z = rb_scalbnf(z,n); /* subnormal output */ else SET_FLOAT_WORD(z,j); return s*z; } /* Square root function, original. */ float rb_sqrt(float x) { float z; int32_t sign = (int)0x80000000; int32_t ix,s,q,m,t,i; uint32_t r; GET_FLOAT_WORD(ix,x); /* take care of Inf and NaN */ if((ix&0x7f800000)==0x7f800000) { return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf sqrt(-inf)=sNaN */ } /* take care of zero */ if(ix<=0) { if((ix&(~sign))==0) return x;/* sqrt(+-0) = +-0 */ else if(ix<0) return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ } /* normalize x */ m = (ix>>23); if(m==0) { /* subnormal x */ for(i=0;(ix&0x00800000)==0;i++) ix<<=1; m -= i-1; } m -= 127; /* unbias exponent */ ix = (ix&0x007fffff)|0x00800000; if(m&1) /* odd m, double x to make it even */ ix += ix; m >>= 1; /* m = [m/2] */ /* generate sqrt(x) bit by bit */ ix += ix; q = s = 0; /* q = sqrt(x) */ r = 0x01000000; /* r = moving bit from right to left */ while(r!=0) { t = s+r; if(t<=ix) { s = t+r; ix -= t; q += r; } ix += ix; r>>=1; } /* use floating add to find out rounding direction */ if(ix!=0) { z = one-tiny; /* trigger inexact flag */ if (z>=one) { z = one+tiny; if (z>one) q += 2; else q += (q&1); } } ix = (q>>1)+0x3f000000; ix += (m <<23); SET_FLOAT_WORD(z,ix); return z; } /* Absolute value, taken from glibc-2.8 */ float rb_fabs(float x) { uint32_t ix; GET_FLOAT_WORD(ix,x); SET_FLOAT_WORD(x,ix&0x7fffffff); return x; } /* Arc tangent, taken from glibc-2.8. */ static const float atanhi[] = { 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */ 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */ 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */ 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */ }; static const float atanlo[] = { 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */ 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */ 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */ 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */ }; static const float aT[] = { 3.3333334327e-01, /* 0x3eaaaaaa */ -2.0000000298e-01, /* 0xbe4ccccd */ 1.4285714924e-01, /* 0x3e124925 */ -1.1111110449e-01, /* 0xbde38e38 */ 9.0908870101e-02, /* 0x3dba2e6e */ -7.6918758452e-02, /* 0xbd9d8795 */ 6.6610731184e-02, /* 0x3d886b35 */ -5.8335702866e-02, /* 0xbd6ef16b */ 4.9768779427e-02, /* 0x3d4bda59 */ -3.6531571299e-02, /* 0xbd15a221 */ 1.6285819933e-02, /* 0x3c8569d7 */ }; float rb_atan(float x) { float w,s1,s2,z; int32_t ix,hx,id; GET_FLOAT_WORD(hx,x); ix = hx&0x7fffffff; if(ix>=0x50800000) { /* if |x| >= 2^34 */ if(ix>0x7f800000) return x+x; /* NaN */ if(hx>0) return atanhi[3]+atanlo[3]; else return -atanhi[3]-atanlo[3]; } if (ix < 0x3ee00000) { /* |x| < 0.4375 */ if (ix < 0x31000000) { /* |x| < 2^-29 */ if(huge+x>one) return x; /* raise inexact */ } id = -1; } else { x = rb_fabs(x); if (ix < 0x3f980000) { /* |x| < 1.1875 */ if (ix < 0x3f300000) { /* 7/16 <=|x|<11/16 */ id = 0; x = ((float)2.0*x-one)/((float)2.0+x); } else { /* 11/16<=|x|< 19/16 */ id = 1; x = (x-one)/(x+one); } } else { if (ix < 0x401c0000) { /* |x| < 2.4375 */ id = 2; x = (x-(float)1.5)/(one+(float)1.5*x); } else { /* 2.4375 <= |x| < 2^66 */ id = 3; x = -(float)1.0/x; } }} /* end of argument reduction */ z = x*x; w = z*z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); if (id<0) return x - x*(s1+s2); else { z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); return (hx<0)? -z:z; } } /* Arc tangent from two variables, original. */ static const float pi_o_4 = 7.8539818525e-01, /* 0x3f490fdb */ pi_o_2 = 1.5707963705e+00, /* 0x3fc90fdb */ pi = 3.1415927410e+00, /* 0x40490fdb */ pi_lo = -8.7422776573e-08; /* 0xb3bbbd2e */ float rb_atan2(float x, float y) { float z; int32_t k,m,hx,hy,ix,iy; GET_FLOAT_WORD(hx,x); ix = hx&0x7fffffff; GET_FLOAT_WORD(hy,y); iy = hy&0x7fffffff; if((ix>0x7f800000)|| (iy>0x7f800000)) /* x or y is NaN */ return x+y; if(hx==0x3f800000) return rb_atan(y); /* x=1.0 */ m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ /* when y = 0 */ if(iy==0) { switch(m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return pi+tiny;/* atan(+0,-anything) = pi */ case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if(ix==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; /* when x is INF */ if(ix==0x7f800000) { if(iy==0x7f800000) { switch(m) { case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ case 2: return (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ } } else { switch(m) { case 0: return zero ; /* atan(+...,+INF) */ case 1: return -zero ; /* atan(-...,+INF) */ case 2: return pi+tiny ; /* atan(+...,-INF) */ case 3: return -pi-tiny ; /* atan(-...,-INF) */ } } } /* when y is INF */ if(iy==0x7f800000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; /* compute y/x */ k = (iy-ix)>>23; if(k > 60) z=pi_o_2+(float)0.5*pi_lo; /* |y/x| > 2**60 */ else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ else z=rb_atan(rb_fabs(y/x)); /* safe to do y/x */ switch (m) { case 0: return z ; /* atan(+,+) */ case 1: { uint32_t zh; GET_FLOAT_WORD(zh,z); SET_FLOAT_WORD(z,zh ^ 0x80000000); } return z ; /* atan(-,+) */ case 2: return pi-(z-pi_lo);/* atan(+,-) */ default: /* case 3 */ return (z-pi_lo)-pi;/* atan(-,-) */ } } /* Sine hyperbolic, taken from glibc-2.8 */ static const float o_threshold = 8.8721679688e+01,/* 0x42b17180 */ invln2 = 1.4426950216e+00,/* 0x3fb8aa3b */ /* scaled coefficients related to expm1 */ Q1 = -3.3333335072e-02, /* 0xbd088889 */ Q2 = 1.5873016091e-03, /* 0x3ad00d01 */ Q3 = -7.9365076090e-05, /* 0xb8a670cd */ Q4 = 4.0082177293e-06, /* 0x36867e54 */ Q5 = -2.0109921195e-07; /* 0xb457edbb */ float rb_expm1(float x) { float y,hi,lo,c=0,t,e,hxs,hfx,r1; int32_t k,xsb; uint32_t hx; GET_FLOAT_WORD(hx,x); xsb = hx&0x80000000; /* sign bit of x */ if(xsb==0) y=x; else y= -x; /* y = |x| */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out huge and non-finite argument */ if(hx >= 0x4195b844) { /* if |x|>=27*ln2 */ if(hx >= 0x42b17218) { /* if |x|>=88.721... */ if(hx>0x7f800000) return x+x; /* NaN */ if(hx==0x7f800000) return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ if(x > o_threshold) return huge*huge; /* overflow */ } if(xsb!=0) { /* x < -27*ln2, return -1.0 with inexact */ if(x+tiny<(float)0.0) /* raise inexact */ return tiny-one; /* return -1 */ } } /* argument reduction */ if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */ if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */ if(xsb==0) {hi = x - ln2_hi; lo = ln2_lo; k = 1;} else {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} } else { k = invln2*x+((xsb==0)?(float)0.5:(float)-0.5); t = k; hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ lo = t*ln2_lo; } x = hi - lo; c = (hi-x)-lo; } else if(hx < 0x33000000) { /* when |x|<2**-25, return x */ t = huge+x; /* return x with inexact flags when x!=0 */ return x - (t-(huge+x)); } else k = 0; /* x is now in primary range */ hfx = (float)0.5*x; hxs = x*hfx; r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); t = (float)3.0-r1*hfx; e = hxs*((r1-t)/((float)6.0 - x*t)); if(k==0) return x - (x*e-hxs); /* c is 0 */ else { e = (x*(e-c)-c); e -= hxs; if(k== -1) return (float)0.5*(x-e)-(float)0.5; if(k==1) { if(x < (float)-0.25) return -(float)2.0*(e-(x+(float)0.5)); else return one+(float)2.0*(x-e); } if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ int32_t i; y = one-(e-x); GET_FLOAT_WORD(i,y); SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */ return y-one; } t = one; if(k<23) { int32_t i; SET_FLOAT_WORD(t,0x3f800000 - (0x1000000>>k)); /* t=1-2^-k */ y = t-(e-x); GET_FLOAT_WORD(i,y); SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */ } else { int32_t i; SET_FLOAT_WORD(t,((0x7f-k)<<23)); /* 2^-k */ y = x-(e+t); y += one; GET_FLOAT_WORD(i,y); SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */ } } return y; } static const float shuge = 1.0e37; float rb_sinh(float x) { float t,w,h; int32_t ix,jx; GET_FLOAT_WORD(jx,x); ix = jx&0x7fffffff; /* x is INF or NaN */ if(ix>=0x7f800000) return x+x; h = 0.5; if (jx<0) h = -h; /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ if (ix < 0x41b00000) { /* |x|<22 */ if (ix<0x31800000) /* |x|<2**-28 */ if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ t = rb_expm1(rb_fabs(x)); if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one)); return h*(t+t/(t+one)); } /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ if (ix < 0x42b17180) return h*rb_exp(rb_fabs(x)); /* |x| in [log(maxdouble), overflowthresold] */ if (ix<=0x42b2d4fc) { w = rb_exp((float)0.5*rb_fabs(x)); t = h*w; return t*w; } /* |x| > overflowthresold, sinh(x) overflow */ return x*shuge; } /* Tangent, taken from glibc-2.8 */ static const float pio4 = 7.8539812565e-01, /* 0x3f490fda */ pio4lo= 3.7748947079e-08, /* 0x33222168 */ T[] = { 3.3333334327e-01, /* 0x3eaaaaab */ 1.3333334029e-01, /* 0x3e088889 */ 5.3968254477e-02, /* 0x3d5d0dd1 */ 2.1869488060e-02, /* 0x3cb327a4 */ 8.8632395491e-03, /* 0x3c11371f */ 3.5920790397e-03, /* 0x3b6b6916 */ 1.4562094584e-03, /* 0x3abede48 */ 5.8804126456e-04, /* 0x3a1a26c8 */ 2.4646313977e-04, /* 0x398137b9 */ 7.8179444245e-05, /* 0x38a3f445 */ 7.1407252108e-05, /* 0x3895c07a */ -1.8558637748e-05, /* 0xb79bae5f */ 2.5907305826e-05, /* 0x37d95384 */ }; float kernel_tan(float x, float y, int iy) { float z,r,v,w,s; int32_t ix,hx; GET_FLOAT_WORD(hx,x); ix = hx&0x7fffffff; /* high word of |x| */ if(ix<0x31800000) /* x < 2**-28 */ {if((int)x==0) { /* generate inexact */ if((ix|(iy+1))==0) return one/rb_fabs(x); else return (iy==1)? x: -one/x; } } if(ix>=0x3f2ca140) { /* |x|>=0.6744 */ if(hx<0) {x = -x; y = -y;} z = pio4-x; w = pio4lo-y; x = z+w; y = 0.0; } z = x*x; w = z*z; /* Break x^5*(T[1]+x^2*T[2]+...) into * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) */ r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); s = z*x; r = y + z*(s*(r+v)+y); r += T[0]*s; w = x+r; if(ix>=0x3f2ca140) { v = (float)iy; return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r))); } if(iy==1) return w; else { /* if allow error up to 2 ulp, simply return -1.0/(x+r) here */ /* compute -1.0/(x+r) accurately */ float a,t; int32_t i; z = w; GET_FLOAT_WORD(i,z); SET_FLOAT_WORD(z,i&0xfffff000); v = r-(z - x); /* z+v = r+x */ t = a = -(float)1.0/w; /* a = -1.0/w */ GET_FLOAT_WORD(i,t); SET_FLOAT_WORD(t,i&0xfffff000); s = (float)1.0+t*z; return t+a*(s+t*v); } } static const int init_jk[] = {4,7,9}; /* initial value for jk */ static const float PIo2[] = { 1.5703125000e+00, /* 0x3fc90000 */ 4.5776367188e-04, /* 0x39f00000 */ 2.5987625122e-05, /* 0x37da0000 */ 7.5437128544e-08, /* 0x33a20000 */ 6.0026650317e-11, /* 0x2e840000 */ 7.3896444519e-13, /* 0x2b500000 */ 5.3845816694e-15, /* 0x27c20000 */ 5.6378512969e-18, /* 0x22d00000 */ 8.3009228831e-20, /* 0x1fc40000 */ 3.2756352257e-22, /* 0x1bc60000 */ 6.3331015649e-25, /* 0x17440000 */ }; static const float two8 = 2.5600000000e+02, /* 0x43800000 */ twon8 = 3.9062500000e-03; /* 0x3b800000 */ int kernel_rem_pio2(float *x, float *y, int e0, int nx, int prec, const int32_t *ipio2) { int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; float z,fw,f[20],fq[20],q[20]; /* initialize jk*/ jk = init_jk[prec]; jp = jk; /* determine jx,jv,q0, note that 3>q0 */ jx = nx-1; jv = (e0-3)/8; if(jv<0) jv=0; q0 = e0-8*(jv+1); /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ j = jv-jx; m = jx+jk; for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j]; /* compute q[0],q[1],...q[jk] */ for (i=0;i<=jk;i++) { for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; } jz = jk; recompute: /* distill q[] into iq[] reversingly */ for(i=0,j=jz,z=q[jz];j>0;i++,j--) { fw = (float)((int32_t)(twon8* z)); iq[i] = (int32_t)(z-two8*fw); z = q[j-1]+fw; } /* compute n */ z = rb_scalbnf(z,q0); /* actual value of z */ z -= (float)8.0*rb_floor(z*(float)0.125); /* trim off integer >= 8 */ n = (int32_t) z; z -= (float)n; ih = 0; if(q0>0) { /* need iq[jz-1] to determine n */ i = (iq[jz-1]>>(8-q0)); n += i; iq[jz-1] -= i<<(8-q0); ih = iq[jz-1]>>(7-q0); } else if(q0==0) ih = iq[jz-1]>>8; else if(z>=(float)0.5) ih=2; if(ih>0) { /* q > 0.5 */ n += 1; carry = 0; for(i=0;i0) { /* rare case: chance is 1 in 12 */ switch(q0) { case 1: iq[jz-1] &= 0x7f; break; case 2: iq[jz-1] &= 0x3f; break; } } if(ih==2) { z = one - z; if(carry!=0) z -= rb_scalbnf(one,q0); } } /* check if recomputation is needed */ if(z==zero) { j = 0; for (i=jz-1;i>=jk;i--) j |= iq[i]; if(j==0) { /* need recomputation */ for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ f[jx+i] = (float) ipio2[jv+i]; for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; } jz += k; goto recompute; } } /* chop off zero terms */ if(z==(float)0.0) { jz -= 1; q0 -= 8; while(iq[jz]==0) { jz--; q0-=8;} } else { /* break z into 8-bit if necessary */ z = rb_scalbnf(z,-q0); if(z>=two8) { fw = (float)((int32_t)(twon8*z)); iq[jz] = (int32_t)(z-two8*fw); jz += 1; q0 += 8; iq[jz] = (int32_t) fw; } else iq[jz] = (int32_t) z ; } /* convert integer "bit" chunk to floating-point value */ fw = rb_scalbnf(one,q0); for(i=jz;i>=0;i--) { q[i] = fw*(float)iq[i]; fw*=twon8; } /* compute PIo2[0,...,jp]*q[jz,...,0] */ for(i=jz;i>=0;i--) { for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; fq[jz-i] = fw; } /* compress fq[] into y[] */ switch(prec) { case 0: fw = 0.0; for (i=jz;i>=0;i--) fw += fq[i]; y[0] = (ih==0)? fw: -fw; break; case 1: case 2: fw = 0.0; for (i=jz;i>=0;i--) fw += fq[i]; y[0] = (ih==0)? fw: -fw; fw = fq[0]-fw; for (i=1;i<=jz;i++) fw += fq[i]; y[1] = (ih==0)? fw: -fw; break; case 3: /* painful */ for (i=jz;i>0;i--) { fw = fq[i-1]+fq[i]; fq[i] += fq[i-1]-fw; fq[i-1] = fw; } for (i=jz;i>1;i--) { fw = fq[i-1]+fq[i]; fq[i] += fq[i-1]-fw; fq[i-1] = fw; } for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; if(ih==0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } } return n&7; } static const int32_t two_over_pi[] = { 0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC, 0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62, 0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63, 0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A, 0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09, 0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29, 0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44, 0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41, 0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C, 0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8, 0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11, 0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF, 0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E, 0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5, 0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92, 0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08, 0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0, 0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3, 0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85, 0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80, 0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA, 0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B, }; static const int32_t npio2_hw[] = { 0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00, 0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00, 0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100, 0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00, 0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00, 0x4242c700, 0x42490f00 }; /* * invpio2: 24 bits of 2/pi * pio2_1: first 17 bit of pi/2 * pio2_1t: pi/2 - pio2_1 * pio2_2: second 17 bit of pi/2 * pio2_2t: pi/2 - (pio2_1+pio2_2) * pio2_3: third 17 bit of pi/2 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) */ static const float half = 5.0000000000e-01, /* 0x3f000000 */ invpio2 = 6.3661980629e-01, /* 0x3f22f984 */ pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */ pio2_1t = 1.0804334124e-05, /* 0x37354443 */ pio2_2 = 1.0804273188e-05, /* 0x37354400 */ pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */ pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */ pio2_3t = 6.1232342629e-17; /* 0x248d3132 */ int32_t rem_pio2(float x, float *y) { float z,w,t,r,fn; float tx[3]; int32_t e0,i,j,nx,n,ix,hx; GET_FLOAT_WORD(hx,x); ix = hx&0x7fffffff; if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */ {y[0] = x; y[1] = 0; return 0;} if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */ if(hx>0) { z = x - pio2_1; if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */ y[0] = z - pio2_1t; y[1] = (z-y[0])-pio2_1t; } else { /* near pi/2, use 24+24+24 bit pi */ z -= pio2_2; y[0] = z - pio2_2t; y[1] = (z-y[0])-pio2_2t; } return 1; } else { /* negative x */ z = x + pio2_1; if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */ y[0] = z + pio2_1t; y[1] = (z-y[0])+pio2_1t; } else { /* near pi/2, use 24+24+24 bit pi */ z += pio2_2; y[0] = z + pio2_2t; y[1] = (z-y[0])+pio2_2t; } return -1; } } if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */ t = rb_fabs(x); n = (int32_t) (t*invpio2+half); fn = (float)n; r = t-fn*pio2_1; w = fn*pio2_1t; /* 1st round good to 40 bit */ if(n<32&&(int32_t)(ix&0xffffff00)!=npio2_hw[n-1]) { y[0] = r-w; /* quick check no cancellation */ } else { uint32_t high; j = ix>>23; y[0] = r-w; GET_FLOAT_WORD(high,y[0]); i = j-((high>>23)&0xff); if(i>8) { /* 2nd iteration needed, good to 57 */ t = r; w = fn*pio2_2; r = t-w; w = fn*pio2_2t-((t-r)-w); y[0] = r-w; GET_FLOAT_WORD(high,y[0]); i = j-((high>>23)&0xff); if(i>25) { /* 3rd iteration need, 74 bits acc */ t = r; /* will cover all possible cases */ w = fn*pio2_3; r = t-w; w = fn*pio2_3t-((t-r)-w); y[0] = r-w; } } } y[1] = (r-y[0])-w; if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} else return n; } /* * all other (large) arguments */ if(ix>=0x7f800000) { /* x is inf or NaN */ y[0]=y[1]=x-x; return 0; } /* set z = scalbn(|x|,ilogb(x)-7) */ e0 = (ix>>23)-134; /* e0 = ilogb(z)-7; */ SET_FLOAT_WORD(z, ix - ((int32_t)(e0<<23))); for(i=0;i<2;i++) { tx[i] = (float)((int32_t)(z)); z = (z-tx[i])*two8; } tx[2] = z; nx = 3; while(tx[nx-1]==zero) nx--; /* skip zero term */ n = kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} return n; } float rb_tan(float x) { float y[2],z=0.0; int32_t n, ix; GET_FLOAT_WORD(ix,x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3f490fda) return kernel_tan(x,z,1); /* tan(Inf or NaN) is NaN */ else if (ix>=0x7f800000) return x-x; /* NaN */ /* argument reduction needed */ else { n = rem_pio2(x,y); return kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even -1 -- n odd */ } } /* Exponential function, taken from glibc-2.8 As it uses double values and udefines some symbols, it was moved to the end of the source code */ #define W52 (2.22044605e-16) #define W55 (2.77555756e-17) #define W58 (3.46944695e-18) #define W59 (1.73472348e-18) #define W60 (8.67361738e-19) const float __exp_deltatable[178] = { 0*W60, 16558714*W60, -10672149*W59, 1441652*W60, -15787963*W55, 462888*W60, 7291806*W60, 1698880*W60, -14375103*W58, -2021016*W60, 728829*W60, -3759654*W60, 3202123*W60, -10916019*W58, -251570*W60, -1043086*W60, 8207536*W60, -409964*W60, -5993931*W60, -475500*W60, 2237522*W60, 324170*W60, -244117*W60, 32077*W60, 123907*W60, -1019734*W60, -143*W60, 813077*W60, 743345*W60, 462461*W60, 629794*W60, 2125066*W60, -2339121*W60, -337951*W60, 9922067*W60, -648704*W60, 149407*W60, -2687209*W60, -631608*W60, 2128280*W60, -4882082*W60, 2001360*W60, 175074*W60, 2923216*W60, -538947*W60, -1212193*W60, -1920926*W60, -1080577*W60, 3690196*W60, 2643367*W60, 2911937*W60, 671455*W60, -1128674*W60, 593282*W60, -5219347*W60, -1941490*W60, 11007953*W60, 239609*W60, -2969658*W60, -1183650*W60, 942998*W60, 699063*W60, 450569*W60, -329250*W60, -7257875*W60, -312436*W60, 51626*W60, 555877*W60, -641761*W60, 1565666*W60, 884327*W60, -10960035*W60, -2004679*W60, -995793*W60, -2229051*W60, -146179*W60, -510327*W60, 1453482*W60, -3778852*W60, -2238056*W60, -4895983*W60, 3398883*W60, -252738*W60, 1230155*W60, 346918*W60, 1109352*W60, 268941*W60, -2930483*W60, -1036263*W60, -1159280*W60, 1328176*W60, 2937642*W60, -9371420*W60, -6902650*W60, -1419134*W60, 1442904*W60, -1319056*W60, -16369*W60, 696555*W60, -279987*W60, -7919763*W60, 252741*W60, 459711*W60, -1709645*W60, 354913*W60, 6025867*W60, -421460*W60, -853103*W60, -338649*W60, 962151*W60, 955965*W60, 784419*W60, -3633653*W60, 2277133*W60, -8847927*W52, 1223028*W60, 5907079*W60, 623167*W60, 5142888*W60, 2599099*W60, 1214280*W60, 4870359*W60, 593349*W60, -57705*W60, 7761209*W60, -5564097*W60, 2051261*W60, 6216869*W60, 4692163*W60, 601691*W60, -5264906*W60, 1077872*W60, -3205949*W60, 1833082*W60, 2081746*W60, -987363*W60, -1049535*W60, 2015244*W60, 874230*W60, 2168259*W60, -1740124*W60, -10068269*W60, -18242*W60, -3013583*W60, 580601*W60, -2547161*W60, -535689*W60, 2220815*W60, 1285067*W60, 2806933*W60, -983086*W60, -1729097*W60, -1162985*W60, -2561904*W60, 801988*W60, 244351*W60, 1441893*W60, -7517981*W60, 271781*W60, -15021588*W60, -2341588*W60, -919198*W60, 1642232*W60, 4771771*W60, -1220099*W60, -3062372*W60, 628624*W60, 1278114*W60, 13083513*W60, -10521925*W60, 3180310*W60, -1659307*W60, 3543773*W60, 2501203*W60, 4151*W60, -340748*W60, -2285625*W60, 2495202*W60 }; const double __exp_atable[355] /* __attribute__((mode(DF))) */ = { 0.707722561055888932371, /* 0x0.b52d4e46605c27ffd */ 0.709106182438804188967, /* 0x0.b587fb96f75097ffb */ 0.710492508843861281234, /* 0x0.b5e2d649899167ffd */ 0.711881545564593931623, /* 0x0.b63dde74d36bdfffe */ 0.713273297897442870573, /* 0x0.b699142f945f87ffc */ 0.714667771153751463236, /* 0x0.b6f477909c4ea0001 */ 0.716064970655995725059, /* 0x0.b75008aec758f8004 */ 0.717464901723956938193, /* 0x0.b7abc7a0eea7e0002 */ 0.718867569715736398602, /* 0x0.b807b47e1586c7ff8 */ 0.720272979947266023271, /* 0x0.b863cf5d10e380003 */ 0.721681137825144314297, /* 0x0.b8c01855195c37ffb */ 0.723092048691992950199, /* 0x0.b91c8f7d213740004 */ 0.724505717938892290800, /* 0x0.b97934ec5002d0007 */ 0.725922150953176470431, /* 0x0.b9d608b9c92ea7ffc */ 0.727341353138962865022, /* 0x0.ba330afcc29e98003 */ 0.728763329918453162104, /* 0x0.ba903bcc8618b7ffc */ 0.730188086709957051568, /* 0x0.baed9b40591ba0000 */ 0.731615628948127705309, /* 0x0.bb4b296f931e30002 */ 0.733045962086486091436, /* 0x0.bba8e671a05617ff9 */ 0.734479091556371366251, /* 0x0.bc06d25dd49568001 */ 0.735915022857225542529, /* 0x0.bc64ed4bce8f6fff9 */ 0.737353761441304711410, /* 0x0.bcc33752f915d7ff9 */ 0.738795312814142124419, /* 0x0.bd21b08af98e78005 */ 0.740239682467211168593, /* 0x0.bd80590b65e9a8000 */ 0.741686875913991849885, /* 0x0.bddf30ebec4a10000 */ 0.743136898669507939299, /* 0x0.be3e38443c84e0007 */ 0.744589756269486091620, /* 0x0.be9d6f2c1d32a0002 */ 0.746045454254026796384, /* 0x0.befcd5bb59baf8004 */ 0.747503998175051087583, /* 0x0.bf5c6c09ca84c0003 */ 0.748965393601880857739, /* 0x0.bfbc322f5b18b7ff8 */ 0.750429646104262104698, /* 0x0.c01c2843f776fffff */ 0.751896761271877989160, /* 0x0.c07c4e5fa18b88002 */ 0.753366744698445112140, /* 0x0.c0dca49a5fb18fffd */ 0.754839601988627206827, /* 0x0.c13d2b0c444db0005 */ 0.756315338768691947122, /* 0x0.c19de1cd798578006 */ 0.757793960659406629066, /* 0x0.c1fec8f623723fffd */ 0.759275473314173443536, /* 0x0.c25fe09e8a0f47ff8 */ 0.760759882363831851927, /* 0x0.c2c128dedc88f8000 */ 0.762247193485956486805, /* 0x0.c322a1cf7d6e7fffa */ 0.763737412354726363781, /* 0x0.c3844b88cb9347ffc */ 0.765230544649828092739, /* 0x0.c3e626232bd8f7ffc */ 0.766726596071518051729, /* 0x0.c44831b719bf18002 */ 0.768225572321911687194, /* 0x0.c4aa6e5d12d078001 */ 0.769727479119219348810, /* 0x0.c50cdc2da64a37ffb */ 0.771232322196981678892, /* 0x0.c56f7b41744490001 */ 0.772740107296721268087, /* 0x0.c5d24bb1259e70004 */ 0.774250840160724651565, /* 0x0.c6354d95640dd0007 */ 0.775764526565368872643, /* 0x0.c6988106fec447fff */ 0.777281172269557396602, /* 0x0.c6fbe61eb1bd0ffff */ 0.778800783068235302750, /* 0x0.c75f7cf560942fffc */ 0.780323364758801041312, /* 0x0.c7c345a3f1983fffe */ 0.781848923151573727006, /* 0x0.c8274043594cb0002 */ 0.783377464064598849602, /* 0x0.c88b6cec94b3b7ff9 */ 0.784908993312207869935, /* 0x0.c8efcbb89cba27ffe */ 0.786443516765346961618, /* 0x0.c9545cc0a88c70003 */ 0.787981040257604625744, /* 0x0.c9b9201dc643bfffa */ 0.789521569657452682047, /* 0x0.ca1e15e92a5410007 */ 0.791065110849462849192, /* 0x0.ca833e3c1ae510005 */ 0.792611669712891875319, /* 0x0.cae8992fd84667ffd */ 0.794161252150049179450, /* 0x0.cb4e26ddbc207fff8 */ 0.795713864077794763584, /* 0x0.cbb3e75f301b60003 */ 0.797269511407239561694, /* 0x0.cc19dacd978cd8002 */ 0.798828200086368567220, /* 0x0.cc8001427e55d7ffb */ 0.800389937624300440456, /* 0x0.cce65ade24d360006 */ 0.801954725261124767840, /* 0x0.cd4ce7a5de839fffb */ 0.803522573691593189330, /* 0x0.cdb3a7c79a678fffd */ 0.805093487311204114563, /* 0x0.ce1a9b563965ffffc */ 0.806667472122675088819, /* 0x0.ce81c26b838db8000 */ 0.808244534127439906441, /* 0x0.cee91d213f8428002 */ 0.809824679342317166307, /* 0x0.cf50ab9144d92fff9 */ 0.811407913793616542005, /* 0x0.cfb86dd5758c2ffff */ 0.812994243520784198882, /* 0x0.d0206407c20e20005 */ 0.814583674571603966162, /* 0x0.d0888e4223facfff9 */ 0.816176213022088536960, /* 0x0.d0f0ec9eb3f7c8002 */ 0.817771864936188586101, /* 0x0.d1597f377d6768002 */ 0.819370636400374108252, /* 0x0.d1c24626a46eafff8 */ 0.820972533518165570298, /* 0x0.d22b41865ff1e7ff9 */ 0.822577562404315121269, /* 0x0.d2947170f32ec7ff9 */ 0.824185729164559344159, /* 0x0.d2fdd60097795fff8 */ 0.825797039949601741075, /* 0x0.d3676f4fb796d0001 */ 0.827411500902565544264, /* 0x0.d3d13d78b5f68fffb */ 0.829029118181348834154, /* 0x0.d43b40960546d8001 */ 0.830649897953322891022, /* 0x0.d4a578c222a058000 */ 0.832273846408250750368, /* 0x0.d50fe617a3ba78005 */ 0.833900969738858188772, /* 0x0.d57a88b1218e90002 */ 0.835531274148056613016, /* 0x0.d5e560a94048f8006 */ 0.837164765846411529371, /* 0x0.d6506e1aac8078003 */ 0.838801451086016225394, /* 0x0.d6bbb1204074e0001 */ 0.840441336100884561780, /* 0x0.d72729d4c28518004 */ 0.842084427144139224814, /* 0x0.d792d8530e12b0001 */ 0.843730730487052604790, /* 0x0.d7febcb61273e7fff */ 0.845380252404570153833, /* 0x0.d86ad718c308dfff9 */ 0.847032999194574087728, /* 0x0.d8d727962c69d7fff */ 0.848688977161248581090, /* 0x0.d943ae49621ce7ffb */ 0.850348192619261200615, /* 0x0.d9b06b4d832ef8005 */ 0.852010651900976245816, /* 0x0.da1d5ebdc22220005 */ 0.853676361342631029337, /* 0x0.da8a88b555baa0006 */ 0.855345327311054837175, /* 0x0.daf7e94f965f98004 */ 0.857017556155879489641, /* 0x0.db6580a7c98f7fff8 */ 0.858693054267390953857, /* 0x0.dbd34ed9617befff8 */ 0.860371828028939855647, /* 0x0.dc4153ffc8b65fff9 */ 0.862053883854957292436, /* 0x0.dcaf90368bfca8004 */ 0.863739228154875360306, /* 0x0.dd1e0399328d87ffe */ 0.865427867361348468455, /* 0x0.dd8cae435d303fff9 */ 0.867119807911702289458, /* 0x0.ddfb9050b1cee8006 */ 0.868815056264353846599, /* 0x0.de6aa9dced8448001 */ 0.870513618890481399881, /* 0x0.ded9fb03db7320006 */ 0.872215502247877139094, /* 0x0.df4983e1380657ff8 */ 0.873920712852848668986, /* 0x0.dfb94490ffff77ffd */ 0.875629257204025623884, /* 0x0.e0293d2f1cb01fff9 */ 0.877341141814212965880, /* 0x0.e0996dd786fff0007 */ 0.879056373217612985183, /* 0x0.e109d6a64f5d57ffc */ 0.880774957955916648615, /* 0x0.e17a77b78e72a7ffe */ 0.882496902590150900078, /* 0x0.e1eb5127722cc7ff8 */ 0.884222213673356738383, /* 0x0.e25c63121fb0c8006 */ 0.885950897802399772740, /* 0x0.e2cdad93ec5340003 */ 0.887682961567391237685, /* 0x0.e33f30c925fb97ffb */ 0.889418411575228162725, /* 0x0.e3b0ecce2d05ffff9 */ 0.891157254447957902797, /* 0x0.e422e1bf727718006 */ 0.892899496816652704641, /* 0x0.e4950fb9713fc7ffe */ 0.894645145323828439008, /* 0x0.e50776d8b0e60fff8 */ 0.896394206626591749641, /* 0x0.e57a1739c8fadfffc */ 0.898146687421414902124, /* 0x0.e5ecf0f97c5798007 */ 0.899902594367530173098, /* 0x0.e660043464e378005 */ 0.901661934163603406867, /* 0x0.e6d3510747e150006 */ 0.903424713533971135418, /* 0x0.e746d78f06cd97ffd */ 0.905190939194458810123, /* 0x0.e7ba97e879c91fffc */ 0.906960617885092856864, /* 0x0.e82e92309390b0007 */ 0.908733756358986566306, /* 0x0.e8a2c6845544afffa */ 0.910510361377119825629, /* 0x0.e9173500c8abc7ff8 */ 0.912290439722343249336, /* 0x0.e98bddc30f98b0002 */ 0.914073998177417412765, /* 0x0.ea00c0e84bc4c7fff */ 0.915861043547953501680, /* 0x0.ea75de8db8094fffe */ 0.917651582652244779397, /* 0x0.eaeb36d09d3137ffe */ 0.919445622318405764159, /* 0x0.eb60c9ce4ed3dffff */ 0.921243169397334638073, /* 0x0.ebd697a43995b0007 */ 0.923044230737526172328, /* 0x0.ec4ca06fc7768fffa */ 0.924848813220121135342, /* 0x0.ecc2e44e865b6fffb */ 0.926656923710931002014, /* 0x0.ed39635df34e70006 */ 0.928468569126343790092, /* 0x0.edb01dbbc2f5b7ffa */ 0.930283756368834757725, /* 0x0.ee2713859aab57ffa */ 0.932102492359406786818, /* 0x0.ee9e44d9342870004 */ 0.933924784042873379360, /* 0x0.ef15b1d4635438005 */ 0.935750638358567643520, /* 0x0.ef8d5a94f60f50007 */ 0.937580062297704630580, /* 0x0.f0053f38f345cffff */ 0.939413062815381727516, /* 0x0.f07d5fde3a2d98001 */ 0.941249646905368053689, /* 0x0.f0f5bca2d481a8004 */ 0.943089821583810716806, /* 0x0.f16e55a4e497d7ffe */ 0.944933593864477061592, /* 0x0.f1e72b028a2827ffb */ 0.946780970781518460559, /* 0x0.f2603cd9fb5430001 */ 0.948631959382661205081, /* 0x0.f2d98b497d2a87ff9 */ 0.950486566729423554277, /* 0x0.f353166f63e3dffff */ 0.952344799896018723290, /* 0x0.f3ccde6a11ae37ffe */ 0.954206665969085765512, /* 0x0.f446e357f66120000 */ 0.956072172053890279009, /* 0x0.f4c12557964f0fff9 */ 0.957941325265908139014, /* 0x0.f53ba48781046fffb */ 0.959814132734539637840, /* 0x0.f5b66106555d07ffa */ 0.961690601603558903308, /* 0x0.f6315af2c2027fffc */ 0.963570739036113010927, /* 0x0.f6ac926b8aeb80004 */ 0.965454552202857141381, /* 0x0.f728078f7c5008002 */ 0.967342048278315158608, /* 0x0.f7a3ba7d66a908001 */ 0.969233234469444204768, /* 0x0.f81fab543e1897ffb */ 0.971128118008140250896, /* 0x0.f89bda33122c78007 */ 0.973026706099345495256, /* 0x0.f9184738d4cf97ff8 */ 0.974929006031422851235, /* 0x0.f994f284d3a5c0008 */ 0.976835024947348973265, /* 0x0.fa11dc35bc7820002 */ 0.978744770239899142285, /* 0x0.fa8f046b4fb7f8007 */ 0.980658249138918636210, /* 0x0.fb0c6b449ab1cfff9 */ 0.982575468959622777535, /* 0x0.fb8a10e1088fb7ffa */ 0.984496437054508843888, /* 0x0.fc07f5602d79afffc */ 0.986421160608523028820, /* 0x0.fc8618e0e55e47ffb */ 0.988349647107594098099, /* 0x0.fd047b83571b1fffa */ 0.990281903873210800357, /* 0x0.fd831d66f4c018002 */ 0.992217938695037382475, /* 0x0.fe01fead3320bfff8 */ 0.994157757657894713987, /* 0x0.fe811f703491e8006 */ 0.996101369488558541238, /* 0x0.ff007fd5744490005 */ 0.998048781093141101932, /* 0x0.ff801ffa9b9280007 */ 1.000000000000000000000, /* 0x1.00000000000000000 */ 1.001955033605393285965, /* 0x1.0080200565d29ffff */ 1.003913889319761887310, /* 0x1.0100802aa0e80fff0 */ 1.005876574715736104818, /* 0x1.01812090377240007 */ 1.007843096764807100351, /* 0x1.020201541aad7fff6 */ 1.009813464316352327214, /* 0x1.0283229c4c9820007 */ 1.011787683565730677817, /* 0x1.030484836910a000e */ 1.013765762469146736174, /* 0x1.0386272b9c077fffe */ 1.015747708536026694351, /* 0x1.04080ab526304fff0 */ 1.017733529475172815584, /* 0x1.048a2f412375ffff0 */ 1.019723232714418781378, /* 0x1.050c94ef7ad5e000a */ 1.021716825883923762690, /* 0x1.058f3be0f1c2d0004 */ 1.023714316605201180057, /* 0x1.06122436442e2000e */ 1.025715712440059545995, /* 0x1.06954e0fec63afff2 */ 1.027721021151397406936, /* 0x1.0718b98f41c92fff6 */ 1.029730250269221158939, /* 0x1.079c66d49bb2ffff1 */ 1.031743407506447551857, /* 0x1.082056011a9230009 */ 1.033760500517691527387, /* 0x1.08a487359ebd50002 */ 1.035781537016238873464, /* 0x1.0928fa93490d4fff3 */ 1.037806524719013578963, /* 0x1.09adb03b3e5b3000d */ 1.039835471338248051878, /* 0x1.0a32a84e9e5760004 */ 1.041868384612101516848, /* 0x1.0ab7e2eea5340ffff */ 1.043905272300907460835, /* 0x1.0b3d603ca784f0009 */ 1.045946142174331239262, /* 0x1.0bc3205a042060000 */ 1.047991002016745332165, /* 0x1.0c4923682a086fffe */ 1.050039859627715177527, /* 0x1.0ccf698898f3a000d */ 1.052092722826109660856, /* 0x1.0d55f2dce5d1dfffb */ 1.054149599440827866881, /* 0x1.0ddcbf86b09a5fff6 */ 1.056210497317612961855, /* 0x1.0e63cfa7abc97fffd */ 1.058275424318780855142, /* 0x1.0eeb23619c146fffb */ 1.060344388322010722446, /* 0x1.0f72bad65714bffff */ 1.062417397220589476718, /* 0x1.0ffa9627c38d30004 */ 1.064494458915699715017, /* 0x1.1082b577d0eef0003 */ 1.066575581342167566880, /* 0x1.110b18e893a90000a */ 1.068660772440545025953, /* 0x1.1193c09c267610006 */ 1.070750040138235936705, /* 0x1.121cacb4959befff6 */ 1.072843392435016474095, /* 0x1.12a5dd543cf36ffff */ 1.074940837302467588937, /* 0x1.132f529d59552000b */ 1.077042382749654914030, /* 0x1.13b90cb250d08fff5 */ 1.079148036789447484528, /* 0x1.14430bb58da3dfff9 */ 1.081257807444460983297, /* 0x1.14cd4fc984c4a000e */ 1.083371702785017154417, /* 0x1.1557d910df9c7000e */ 1.085489730853784307038, /* 0x1.15e2a7ae292d30002 */ 1.087611899742884524772, /* 0x1.166dbbc422d8c0004 */ 1.089738217537583819804, /* 0x1.16f9157586772ffff */ 1.091868692357631731528, /* 0x1.1784b4e533cacfff0 */ 1.094003332327482702577, /* 0x1.18109a360fc23fff2 */ 1.096142145591650907149, /* 0x1.189cc58b155a70008 */ 1.098285140311341168136, /* 0x1.1929370751ea50002 */ 1.100432324652149906842, /* 0x1.19b5eecdd79cefff0 */ 1.102583706811727015711, /* 0x1.1a42ed01dbdba000e */ 1.104739294993289488947, /* 0x1.1ad031c69a2eafff0 */ 1.106899097422573863281, /* 0x1.1b5dbd3f66e120003 */ 1.109063122341542140286, /* 0x1.1beb8f8fa8150000b */ 1.111231377994659874592, /* 0x1.1c79a8dac6ad0fff4 */ 1.113403872669181282605, /* 0x1.1d0809445a97ffffc */ 1.115580614653132185460, /* 0x1.1d96b0effc9db000e */ 1.117761612217810673898, /* 0x1.1e25a001332190000 */ 1.119946873713312474002, /* 0x1.1eb4d69bdb2a9fff1 */ 1.122136407473298902480, /* 0x1.1f4454e3bfae00006 */ 1.124330221845670330058, /* 0x1.1fd41afcbb48bfff8 */ 1.126528325196519908506, /* 0x1.2064290abc98c0001 */ 1.128730725913251964394, /* 0x1.20f47f31c9aa7000f */ 1.130937432396844410880, /* 0x1.21851d95f776dfff0 */ 1.133148453059692917203, /* 0x1.2216045b6784efffa */ 1.135363796355857157764, /* 0x1.22a733a6692ae0004 */ 1.137583470716100553249, /* 0x1.2338ab9b3221a0004 */ 1.139807484614418608939, /* 0x1.23ca6c5e27aadfff7 */ 1.142035846532929888057, /* 0x1.245c7613b7f6c0004 */ 1.144268564977221958089, /* 0x1.24eec8e06b035000c */ 1.146505648458203463465, /* 0x1.258164e8cea85fff8 */ 1.148747105501412235671, /* 0x1.26144a5180d380009 */ 1.150992944689175123667, /* 0x1.26a7793f5de2efffa */ 1.153243174560058870217, /* 0x1.273af1d712179000d */ 1.155497803703682491111, /* 0x1.27ceb43d81d42fff1 */ 1.157756840726344771440, /* 0x1.2862c097a3d29000c */ 1.160020294239811677834, /* 0x1.28f7170a74cf4fff1 */ 1.162288172883275239058, /* 0x1.298bb7bb0faed0004 */ 1.164560485298402170388, /* 0x1.2a20a2ce920dffff4 */ 1.166837240167474476460, /* 0x1.2ab5d86a4631ffff6 */ 1.169118446164539637555, /* 0x1.2b4b58b36d5220009 */ 1.171404112007080167155, /* 0x1.2be123cf786790002 */ 1.173694246390975415341, /* 0x1.2c7739e3c0aac000d */ 1.175988858069749065617, /* 0x1.2d0d9b15deb58fff6 */ 1.178287955789017793514, /* 0x1.2da4478b627040002 */ 1.180591548323240091978, /* 0x1.2e3b3f69fb794fffc */ 1.182899644456603782686, /* 0x1.2ed282d76421d0004 */ 1.185212252993012693694, /* 0x1.2f6a11f96c685fff3 */ 1.187529382762033236513, /* 0x1.3001ecf60082ffffa */ 1.189851042595508889847, /* 0x1.309a13f30f28a0004 */ 1.192177241354644978669, /* 0x1.31328716a758cfff7 */ 1.194507987909589896687, /* 0x1.31cb4686e1e85fffb */ 1.196843291137896336843, /* 0x1.32645269dfd04000a */ 1.199183159977805113226, /* 0x1.32fdaae604c39000f */ 1.201527603343041317132, /* 0x1.339750219980dfff3 */ 1.203876630171082595692, /* 0x1.3431424300e480007 */ 1.206230249419600664189, /* 0x1.34cb8170b3fee000e */ 1.208588470077065268869, /* 0x1.35660dd14dbd4fffc */ 1.210951301134513435915, /* 0x1.3600e78b6bdfc0005 */ 1.213318751604272271958, /* 0x1.369c0ec5c38ebfff2 */ 1.215690830512196507537, /* 0x1.373783a718d29000f */ 1.218067546930756250870, /* 0x1.37d3465662f480007 */ 1.220448909901335365929, /* 0x1.386f56fa770fe0008 */ 1.222834928513994334780, /* 0x1.390bb5ba5fc540004 */ 1.225225611877684750397, /* 0x1.39a862bd3c7a8fff3 */ 1.227620969111500981433, /* 0x1.3a455e2a37bcafffd */ 1.230021009336254911271, /* 0x1.3ae2a8287dfbefff6 */ 1.232425741726685064472, /* 0x1.3b8040df76f39fffa */ 1.234835175450728295084, /* 0x1.3c1e287682e48fff1 */ 1.237249319699482263931, /* 0x1.3cbc5f151b86bfff8 */ 1.239668183679933477545, /* 0x1.3d5ae4e2cc0a8000f */ 1.242091776620540377629, /* 0x1.3df9ba07373bf0006 */ 1.244520107762172811399, /* 0x1.3e98deaa0d8cafffe */ 1.246953186383919165383, /* 0x1.3f3852f32973efff0 */ 1.249391019292643401078, /* 0x1.3fd816ffc72b90001 */ 1.251833623164381181797, /* 0x1.40782b17863250005 */ 1.254280999953110153911, /* 0x1.41188f42caf400000 */ 1.256733161434815393410, /* 0x1.41b943b42945bfffd */ 1.259190116985283935980, /* 0x1.425a4893e5f10000a */ 1.261651875958665236542, /* 0x1.42fb9e0a2df4c0009 */ 1.264118447754797758244, /* 0x1.439d443f608c4fff9 */ 1.266589841787181258708, /* 0x1.443f3b5bebf850008 */ 1.269066067469190262045, /* 0x1.44e183883e561fff7 */ 1.271547134259576328224, /* 0x1.45841cecf7a7a0001 */ 1.274033051628237434048, /* 0x1.462707b2c43020009 */ 1.276523829025464573684, /* 0x1.46ca44023aa410007 */ 1.279019475999373156531, /* 0x1.476dd2045d46ffff0 */ 1.281520002043128991825, /* 0x1.4811b1e1f1f19000b */ 1.284025416692967214122, /* 0x1.48b5e3c3edd74fff4 */ 1.286535729509738823464, /* 0x1.495a67d3613c8fff7 */ 1.289050950070396384145, /* 0x1.49ff3e396e19d000b */ 1.291571087985403654081, /* 0x1.4aa4671f5b401fff1 */ 1.294096152842774794011, /* 0x1.4b49e2ae56d19000d */ 1.296626154297237043484, /* 0x1.4befb10fd84a3fff4 */ 1.299161101984141142272, /* 0x1.4c95d26d41d84fff8 */ 1.301701005575179204100, /* 0x1.4d3c46f01d9f0fff3 */ 1.304245874766450485904, /* 0x1.4de30ec21097d0003 */ 1.306795719266019562007, /* 0x1.4e8a2a0ccce3d0002 */ 1.309350548792467483458, /* 0x1.4f3198fa10346fff5 */ 1.311910373099227200545, /* 0x1.4fd95bb3be8cffffd */ 1.314475201942565174546, /* 0x1.50817263bf0e5fffb */ 1.317045045107389400535, /* 0x1.5129dd3418575000e */ 1.319619912422941299109, /* 0x1.51d29c4f01c54ffff */ 1.322199813675649204855, /* 0x1.527bafde83a310009 */ 1.324784758729532718739, /* 0x1.5325180cfb8b3fffd */ 1.327374757430096474625, /* 0x1.53ced504b2bd0fff4 */ 1.329969819671041886272, /* 0x1.5478e6f02775e0001 */ 1.332569955346704748651, /* 0x1.55234df9d8a59fff8 */ 1.335175174370685002822, /* 0x1.55ce0a4c5a6a9fff6 */ 1.337785486688218616860, /* 0x1.56791c1263abefff7 */ 1.340400902247843806217, /* 0x1.57248376aef21fffa */ 1.343021431036279800211, /* 0x1.57d040a420c0bfff3 */ 1.345647083048053138662, /* 0x1.587c53c5a630f0002 */ 1.348277868295411074918, /* 0x1.5928bd063fd7bfff9 */ 1.350913796821875845231, /* 0x1.59d57c9110ad60006 */ 1.353554878672557082439, /* 0x1.5a8292913d68cfffc */ 1.356201123929036356254, /* 0x1.5b2fff3212db00007 */ 1.358852542671913132777, /* 0x1.5bddc29edcc06fff3 */ 1.361509145047255398051, /* 0x1.5c8bdd032ed16000f */ 1.364170941142184734180, /* 0x1.5d3a4e8a5bf61fff4 */ 1.366837941171020309735, /* 0x1.5de9176042f1effff */ 1.369510155261156381121, /* 0x1.5e9837b062f4e0005 */ 1.372187593620959988833, /* 0x1.5f47afa69436cfff1 */ 1.374870266463378287715, /* 0x1.5ff77f6eb3f8cfffd */ 1.377558184010425845733, /* 0x1.60a7a734a9742fff9 */ 1.380251356531521533853, /* 0x1.6158272490016000c */ 1.382949794301995272203, /* 0x1.6208ff6a8978a000f */ 1.385653507605306700170, /* 0x1.62ba3032c0a280004 */ 1.388362506772382154503, /* 0x1.636bb9a994784000f */ 1.391076802081129493127, /* 0x1.641d9bfb29a7bfff6 */ 1.393796403973427855412, /* 0x1.64cfd7545928b0002 */ 1.396521322756352656542, /* 0x1.65826be167badfff8 */ 1.399251568859207761660, /* 0x1.663559cf20826000c */ 1.401987152677323100733, /* 0x1.66e8a14a29486fffc */ 1.404728084651919228815, /* 0x1.679c427f5a4b6000b */ 1.407474375243217723560, /* 0x1.68503d9ba0add000f */ 1.410226034922914983815, /* 0x1.690492cbf6303fff9 */ 1.412983074197955213304, /* 0x1.69b9423d7b548fff6 */ }; /* All floating-point numbers can be put in one of these categories. */ enum { FP_NAN, # define FP_NAN FP_NAN FP_INFINITE, # define FP_INFINITE FP_INFINITE FP_ZERO, # define FP_ZERO FP_ZERO FP_SUBNORMAL, # define FP_SUBNORMAL FP_SUBNORMAL FP_NORMAL # define FP_NORMAL FP_NORMAL }; int __fpclassifyf (float x) { uint32_t wx; int retval = FP_NORMAL; GET_FLOAT_WORD (wx, x); wx &= 0x7fffffff; if (wx == 0) retval = FP_ZERO; else if (wx < 0x800000) retval = FP_SUBNORMAL; else if (wx >= 0x7f800000) retval = wx > 0x7f800000 ? FP_NAN : FP_INFINITE; return retval; } int __isinff (float x) { int32_t ix,t; GET_FLOAT_WORD(ix,x); t = ix & 0x7fffffff; t ^= 0x7f800000; t |= -t; return ~(t >> 31) & (ix >> 30); } /* Return nonzero value if arguments are unordered. */ # define fpclassify(x) \ (sizeof (x) == sizeof (float) ? __fpclassifyf (x) : __fpclassifyf (x)) # ifndef isunordered # define isunordered(u, v) \ (__extension__ \ ({ __typeof__(u) __u = (u); __typeof__(v) __v = (v); \ fpclassify (__u) == FP_NAN || fpclassify (__v) == FP_NAN; })) # endif /* Return nonzero value if X is less than Y. */ # ifndef isless # define isless(x, y) \ (__extension__ \ ({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \ !isunordered (__x, __y) && __x < __y; })) # endif /* Return nonzero value if X is greater than Y. */ # ifndef isgreater # define isgreater(x, y) \ (__extension__ \ ({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \ !isunordered (__x, __y) && __x > __y; })) # endif union ieee754_double { double d; /* This is the IEEE 754 double-precision format. */ struct { #if defined(ROCKBOX_BIG_ENDIAN) unsigned int negative:1; unsigned int exponent:11; /* Together these comprise the mantissa. */ unsigned int mantissa0:20; unsigned int mantissa1:32; #else # if __FLOAT_WORD_ORDER == __BIG_ENDIAN unsigned int mantissa0:20; unsigned int exponent:11; unsigned int negative:1; unsigned int mantissa1:32; # else /* Together these comprise the mantissa. */ unsigned int mantissa1:32; unsigned int mantissa0:20; unsigned int exponent:11; unsigned int negative:1; # endif #endif /* Little endian. */ } ieee; /* This format makes it easier to see if a NaN is a signalling NaN. */ struct { #if defined(ROCKBOX_BIG_ENDIAN) unsigned int negative:1; unsigned int exponent:11; unsigned int quiet_nan:1; /* Together these comprise the mantissa. */ unsigned int mantissa0:19; unsigned int mantissa1:32; #else # if __FLOAT_WORD_ORDER == __BIG_ENDIAN unsigned int mantissa0:19; unsigned int quiet_nan:1; unsigned int exponent:11; unsigned int negative:1; unsigned int mantissa1:32; # else /* Together these comprise the mantissa. */ unsigned int mantissa1:32; unsigned int mantissa0:19; unsigned int quiet_nan:1; unsigned int exponent:11; unsigned int negative:1; # endif #endif } ieee_nan; }; static const volatile float TWOM100 = 7.88860905e-31; static const volatile float TWO127 = 1.7014118346e+38; float rb_exp(float x) { static const float himark = 88.72283935546875; static const float lomark = -103.972084045410; /* Check for usual case. */ if (isless (x, himark) && isgreater (x, lomark)) { static const float THREEp42 = 13194139533312.0; static const float THREEp22 = 12582912.0; /* 1/ln(2). */ #undef M_1_LN2 static const float M_1_LN2 = 1.44269502163f; /* ln(2) */ #undef M_LN2 static const double M_LN2 = .6931471805599452862; int tval; double x22, t, result, dx; float n, delta; union ieee754_double ex2_u; #ifndef ROCKBOX fenv_t oldenv; feholdexcept (&oldenv); #endif #ifdef FE_TONEAREST fesetround (FE_TONEAREST); #endif /* Calculate n. */ n = x * M_1_LN2 + THREEp22; n -= THREEp22; dx = x - n*M_LN2; /* Calculate t/512. */ t = dx + THREEp42; t -= THREEp42; dx -= t; /* Compute tval = t. */ tval = (int) (t * 512.0); if (t >= 0) delta = - __exp_deltatable[tval]; else delta = __exp_deltatable[-tval]; /* Compute ex2 = 2^n e^(t/512+delta[t]). */ ex2_u.d = __exp_atable[tval+177]; ex2_u.ieee.exponent += (int) n; /* Approximate e^(dx+delta) - 1, using a second-degree polynomial, with maximum error in [-2^-10-2^-28,2^-10+2^-28] less than 5e-11. */ x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta; /* Return result. */ #ifndef ROCKBOX fesetenv (&oldenv); #endif result = x22 * ex2_u.d + ex2_u.d; return (float) result; } /* Exceptional cases: */ else if (isless (x, himark)) { if (__isinff (x)) /* e^-inf == 0, with no error. */ return 0; else /* Underflow */ return TWOM100 * TWOM100; } else /* Return x, if x is a NaN or Inf; or overflow, otherwise. */ return TWO127*x; } /* Division with rest, original. */ div_t div(int x, int y) { div_t result; result.quot = x / y; result.rem = x % y; /* Addition from glibc-2.8: */ if(x >= 0 && result.rem < 0) { result.quot += 1; result.rem -= y; } return result; } /* Placeholder function. */ /* Originally defined in s_midi.c */ void sys_listmididevs(void) { } /* Placeholder function, as we do sleep in the core thread and not in the scheduler function. */ /* Originally defined in s_inter.c */ void sys_microsleep(int microsec) { (void) microsec; } /* Get running time in milliseconds. */ /* Originally defined in s_inter.c */ extern uint64_t runningtime; t_time sys_getrealtime(void) { return runningtime; } /* Place holder, as we do no IPC. */ /* Originally defined in s_inter.c */ void glob_ping(void* dummy) { (void) dummy; } /* Call to quit. */ /* Originally defined in s_inter.c */ extern bool quit; void glob_quit(void* dummy) { (void) dummy; static bool reentered = false; if(!reentered) { reentered = true; /* Close audio subsystem. */ /* Will be done by the main program: sys_close_audio(); */ /* Stop main loop. */ quit = true; } } /* Open file. Originally in s_main.c */ void glob_evalfile(t_pd *ignore, t_symbol *name, t_symbol *dir); void openit(const char *dirname, const char *filename) { char* nameptr; char* dirbuf = getbytes(MAXPDSTRING); /* Workaround: If the file resides in the root directory, add a trailing slash to prevent directory part of the filename from being removed -- W.B. */ char* ffilename = getbytes(MAXPDSTRING); ffilename[0] = '/'; ffilename[1] = '\0'; strcat(ffilename, filename); int fd = open_via_path(dirname, ffilename, "", dirbuf, &nameptr, MAXPDSTRING, 0); if (fd) { close (fd); glob_evalfile(0, gensym(nameptr), gensym(dirbuf)); } else error("%s: can't open", filename); /* Clean up. */ freebytes(dirbuf, MAXPDSTRING); freebytes(ffilename, MAXPDSTRING); } /* Get current working directory. */ extern char* filename; char* rb_getcwd(char* buf, ssize_t size) { /* Initialize buffer. */ buf[0] = '\0'; /* Search for the last slash. */ char* end_of_dir = strrchr(filename, '/'); int dirlen = end_of_dir - filename; /* Check whether length of directory path is correct. If not, abort. */ if(size < dirlen || dirlen == 0) return NULL; /* Copy current working directory to buffer. */ strncat(buf, filename, dirlen); return buf; } /* Execute instructions supplied on command-line. Basically a placeholder, because the only command line argument we get is the name of the .pd file. */ /* Originally defined in s_main.c */ extern t_namelist* sys_openlist; void glob_initfromgui(void *dummy, t_symbol *s, int argc, t_atom *argv) { (void) dummy; (void) s; (void) argc; (void) argv; t_namelist *nl; char* cwd = getbytes(MAXPDSTRING); /* Get current working directory. */ rb_getcwd(cwd, MAXPDSTRING); /* open patches specifies with "-open" args */ for(nl = sys_openlist; nl; nl = nl->nl_next) openit(cwd, nl->nl_string); namelist_free(sys_openlist); sys_openlist = 0; /* Clean up. */ freebytes(cwd, MAXPDSTRING); } /* Fake GUI start. Originally in s_inter.c */ static int defaultfontshit[] = { 8, 5, 9, 10, 6, 10, 12, 7, 13, 14, 9, 17, 16, 10, 19, 24, 15, 28, 24, 15, 28}; extern t_binbuf* inbinbuf; int sys_startgui(const char *guidir) { unsigned int i; t_atom zz[23]; char* cmdbuf = getbytes(4*MAXPDSTRING); (void) guidir; inbinbuf = binbuf_new(); if(!rb_getcwd(cmdbuf, MAXPDSTRING)) strcpy(cmdbuf, "."); SETSYMBOL(zz, gensym(cmdbuf)); for (i = 1; i < 22; i++) SETFLOAT(zz + i, defaultfontshit[i-1]); SETFLOAT(zz+22,0); glob_initfromgui(0, 0, 23, zz); /* Clean up. */ freebytes(cmdbuf, 4*MAXPDSTRING); return 0; } /* Return default DAC block size. */ /* Originally defined in s_main.c */ int sys_getblksize(void) { return (DEFDACBLKSIZE); } /* Find library directory and set it. */ void sys_findlibdir(const char* filename) { (void) filename; char* sbuf = getbytes(MAXPDSTRING); /* Make current working directory the system library directory. */ rb_getcwd(sbuf, MAXPDSTRING); sys_libdir = gensym(sbuf); /* Clean up. */ freebytes(sbuf, MAXPDSTRING); }