1
0
Fork 0
forked from len0rd/rockbox

1) Always enable the DSP. 2) Change codec to output one 32-bit array per channel containing samples left-shifted to 28-bits (instead of 16-bit interleaved samples). 3) Remove the two 16KB internal predicterror_buffer arrays (we use the output arrays instead) 4) Small internal rearrangement of the code.

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@7667 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Dave Chapman 2005-10-28 00:11:28 +00:00
parent 7da9477bc3
commit f1844c4166
3 changed files with 420 additions and 411 deletions

View file

@ -31,6 +31,7 @@ extern char iramend[];
#define destBufferSize (1024*16)
char inputBuffer[1024*32]; /* Input buffer */
int32_t outputbuffer[ALAC_MAX_CHANNELS][ALAC_BLOCKSIZE] IBSS_ATTR;
size_t mdat_offset;
struct codec_api* rb;
struct codec_api* ci;
@ -241,11 +242,10 @@ enum codec_status codec_start(struct codec_api* api)
uint32_t elapsedtime;
uint32_t sample_duration;
uint32_t sample_byte_size;
int outputBytes;
int samplesdecoded;
unsigned int i;
unsigned char* buffer;
alac_file alac;
int16_t* pDestBuffer;
/* Generic codec initialisation */
TEST_CODEC_API(api);
@ -261,9 +261,10 @@ enum codec_status codec_start(struct codec_api* api)
ci->configure(CODEC_SET_FILEBUF_WATERMARK, (int *)(1024*512));
ci->configure(CODEC_SET_FILEBUF_CHUNKSIZE, (int *)(1024*128));
ci->configure(CODEC_DSP_ENABLE, (bool *)true);
ci->configure(DSP_DITHER, (bool *)false);
ci->configure(DSP_SET_STEREO_MODE, (int *)STEREO_INTERLEAVED);
ci->configure(DSP_SET_SAMPLE_DEPTH, (int *)(16));
ci->configure(DSP_SET_STEREO_MODE, (int *)STEREO_NONINTERLEAVED);
ci->configure(DSP_SET_SAMPLE_DEPTH, (int *)(28));
next_track:
@ -275,12 +276,7 @@ enum codec_status codec_start(struct codec_api* api)
while (!rb->taginfo_ready)
rb->yield();
if (rb->id3->frequency != NATIVE_FREQUENCY) {
rb->configure(DSP_SET_FREQUENCY, (long *)(rb->id3->frequency));
rb->configure(CODEC_DSP_ENABLE, (bool *)true);
} else {
rb->configure(CODEC_DSP_ENABLE, (bool *)false);
}
ci->configure(DSP_SET_FREQUENCY, (long *)(rb->id3->frequency));
stream_create(&input_stream);
@ -349,9 +345,8 @@ enum codec_status codec_start(struct codec_api* api)
}
/* Decode one block - returned samples will be host-endian */
outputBytes = destBufferSize;
rb->yield();
pDestBuffer=decode_frame(&alac, buffer, &outputBytes, rb->yield);
samplesdecoded=alac_decode_frame(&alac, buffer, outputbuffer, rb->yield);
/* Advance codec buffer - unless we did a read */
if ((char*)buffer!=(char*)inputBuffer) {
@ -360,7 +355,9 @@ enum codec_status codec_start(struct codec_api* api)
/* Output the audio */
rb->yield();
while(!ci->pcmbuf_insert((char*)pDestBuffer,outputBytes))
while(!ci->pcmbuf_insert_split(outputbuffer[0],
outputbuffer[1],
samplesdecoded*sizeof(int32_t)))
rb->yield();
/* Update the elapsed-time indicator */

View file

@ -51,10 +51,6 @@
int16_t predictor_coef_table[32] IBSS_ATTR;
int16_t predictor_coef_table_a[32] IBSS_ATTR;
int16_t predictor_coef_table_b[32] IBSS_ATTR;
int32_t predicterror_buffer_a[4096];
int32_t predicterror_buffer_b[4096];
int32_t outputsamples_buffer_a[4096] IBSS_ATTR;
int32_t outputsamples_buffer_b[4096] IBSS_ATTR;
void alac_set_info(alac_file *alac, char *inputbuffer)
{
@ -609,9 +605,9 @@ static void predictor_decompress_fir_adapt(int32_t *error_buffer,
}
}
void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b,
int16_t *buffer_out,
int numchannels, int numsamples,
void deinterlace_16(int32_t* buffer0,
int32_t* buffer1,
int numsamples,
uint8_t interlacing_shift,
uint8_t interlacing_leftweight)
{
@ -625,11 +621,13 @@ void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b,
{
int32_t difference, midright;
midright = buffer_a[i];
difference = buffer_b[i];
midright = buffer0[i];
difference = buffer1[i];
buffer_out[i*numchannels] = (midright - ((difference * interlacing_leftweight) >> interlacing_shift)) + difference;
buffer_out[i*numchannels + 1] = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
buffer0[i] = ((midright - ((difference * interlacing_leftweight)
>> interlacing_shift)) + difference) << SCALE16;
buffer1[i] = (midright - ((difference * interlacing_leftweight)
>> interlacing_shift)) << SCALE16;
}
return;
@ -638,406 +636,414 @@ void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b,
/* otherwise basic interlacing took place */
for (i = 0; i < numsamples; i++)
{
buffer_out[i*numchannels] = buffer_a[i];
buffer_out[i*numchannels + 1] = buffer_b[i];
buffer0[i] = buffer0[i] << SCALE16;
buffer1[i] = buffer1[i] << SCALE16;
}
}
int16_t* decode_frame(alac_file *alac,
unsigned char *inbuffer,
int *outputsize,
void (*yield)(void))
static inline int decode_frame_mono(
alac_file *alac,
int32_t outputbuffer[ALAC_MAX_CHANNELS][ALAC_BLOCKSIZE],
void (*yield)(void))
{
int hassize;
int isnotcompressed;
int readsamplesize;
int outputsamples = alac->setinfo_max_samples_per_frame;
int wasted_bytes;
int ricemodifier;
/* 2^result = something to do with output waiting.
* perhaps matters if we read > 1 frame in a pass?
*/
readbits(alac, 4);
readbits(alac, 12); /* unknown, skip 12 bits */
hassize = readbits(alac, 1); /* the output sample size is stored soon */
wasted_bytes = readbits(alac, 2); /* unknown ? */
isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
if (hassize)
{
/* now read the number of samples,
* as a 32bit integer */
outputsamples = readbits(alac, 32);
}
readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8);
if (!isnotcompressed)
{ /* so it is compressed */
int predictor_coef_num;
int prediction_type;
int prediction_quantitization;
int i;
/* skip 16 bits, not sure what they are. seem to be used in
* two channel case */
readbits(alac, 8);
readbits(alac, 8);
prediction_type = readbits(alac, 4);
prediction_quantitization = readbits(alac, 4);
ricemodifier = readbits(alac, 3);
predictor_coef_num = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num; i++)
{
predictor_coef_table[i] = (int16_t)readbits(alac, 16);
}
if (wasted_bytes)
{
/* these bytes seem to have something to do with
* > 2 channel files.
*/
//fprintf(stderr, "FIXME: unimplemented, unhandling of wasted_bytes\n");
}
yield();
basterdised_rice_decompress(alac,
outputbuffer[0],
outputsamples,
readsamplesize,
alac->setinfo_rice_initialhistory,
alac->setinfo_rice_kmodifier,
ricemodifier * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
yield();
if (prediction_type == 0)
{ /* adaptive fir */
predictor_decompress_fir_adapt(outputbuffer[0],
outputbuffer[0],
outputsamples,
readsamplesize,
predictor_coef_table,
predictor_coef_num,
prediction_quantitization);
}
else
{
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type);
/* i think the only other prediction type (or perhaps this is just a
* boolean?) runs adaptive fir twice.. like:
* predictor_decompress_fir_adapt(predictor_error, tempout, ...)
* predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
* little strange..
*/
}
}
else
{ /* not compressed, easy case */
if (readsamplesize <= 16)
{
int i;
for (i = 0; i < outputsamples; i++)
{
int32_t audiobits = readbits(alac, readsamplesize);
audiobits = SIGN_EXTENDED32(audiobits, readsamplesize);
outputbuffer[0][i] = audiobits;
}
}
else
{
int i;
for (i = 0; i < outputsamples; i++)
{
int32_t audiobits;
audiobits = readbits(alac, 16);
/* special case of sign extension..
* as we'll be ORing the low 16bits into this */
audiobits = audiobits << 16;
audiobits = audiobits >> (32 - readsamplesize);
audiobits |= readbits(alac, readsamplesize - 16);
outputbuffer[0][i] = audiobits;
}
}
/* wasted_bytes = 0; // unused */
}
yield();
switch(alac->setinfo_sample_size)
{
case 16:
{
int i;
for (i = 0; i < outputsamples; i++)
{
/* Output mono data as stereo */
outputbuffer[0][i] = outputbuffer[0][i] << SCALE16;
outputbuffer[1][i] = outputbuffer[0][i];
}
break;
}
case 20:
case 24:
case 32:
//fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
break;
default:
break;
}
return outputsamples;
}
static inline int decode_frame_stereo(
alac_file *alac,
int32_t outputbuffer[ALAC_MAX_CHANNELS][ALAC_BLOCKSIZE],
void (*yield)(void))
{
int hassize;
int isnotcompressed;
int readsamplesize;
int outputsamples = alac->setinfo_max_samples_per_frame;
int wasted_bytes;
uint8_t interlacing_shift;
uint8_t interlacing_leftweight;
/* 2^result = something to do with output waiting.
* perhaps matters if we read > 1 frame in a pass?
*/
readbits(alac, 4);
readbits(alac, 12); /* unknown, skip 12 bits */
hassize = readbits(alac, 1); /* the output sample size is stored soon */
wasted_bytes = readbits(alac, 2); /* unknown ? */
isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
if (hassize)
{
/* now read the number of samples,
* as a 32bit integer */
outputsamples = readbits(alac, 32);
}
readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8) + 1;
yield();
if (!isnotcompressed)
{ /* compressed */
int predictor_coef_num_a;
int prediction_type_a;
int prediction_quantitization_a;
int ricemodifier_a;
int predictor_coef_num_b;
int prediction_type_b;
int prediction_quantitization_b;
int ricemodifier_b;
int i;
interlacing_shift = readbits(alac, 8);
interlacing_leftweight = readbits(alac, 8);
/******** channel 1 ***********/
prediction_type_a = readbits(alac, 4);
prediction_quantitization_a = readbits(alac, 4);
ricemodifier_a = readbits(alac, 3);
predictor_coef_num_a = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num_a; i++)
{
predictor_coef_table_a[i] = (int16_t)readbits(alac, 16);
}
/******** channel 2 *********/
prediction_type_b = readbits(alac, 4);
prediction_quantitization_b = readbits(alac, 4);
ricemodifier_b = readbits(alac, 3);
predictor_coef_num_b = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num_b; i++)
{
predictor_coef_table_b[i] = (int16_t)readbits(alac, 16);
}
/*********************/
if (wasted_bytes)
{ /* see mono case */
//fprintf(stderr, "FIXME: unimplemented, unhandling of wasted_bytes\n");
}
yield();
/* channel 1 */
basterdised_rice_decompress(alac,
outputbuffer[0],
outputsamples,
readsamplesize,
alac->setinfo_rice_initialhistory,
alac->setinfo_rice_kmodifier,
ricemodifier_a * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
yield();
if (prediction_type_a == 0)
{ /* adaptive fir */
predictor_decompress_fir_adapt(outputbuffer[0],
outputbuffer[0],
outputsamples,
readsamplesize,
predictor_coef_table_a,
predictor_coef_num_a,
prediction_quantitization_a);
}
else
{ /* see mono case */
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_a);
}
yield();
/* channel 2 */
basterdised_rice_decompress(alac,
outputbuffer[1],
outputsamples,
readsamplesize,
alac->setinfo_rice_initialhistory,
alac->setinfo_rice_kmodifier,
ricemodifier_b * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
yield();
if (prediction_type_b == 0)
{ /* adaptive fir */
predictor_decompress_fir_adapt(outputbuffer[1],
outputbuffer[1],
outputsamples,
readsamplesize,
predictor_coef_table_b,
predictor_coef_num_b,
prediction_quantitization_b);
}
else
{
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_b);
}
}
else
{ /* not compressed, easy case */
if (alac->setinfo_sample_size <= 16)
{
int i;
for (i = 0; i < outputsamples; i++)
{
int32_t audiobits_a, audiobits_b;
audiobits_a = readbits(alac, alac->setinfo_sample_size);
audiobits_b = readbits(alac, alac->setinfo_sample_size);
audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size);
audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size);
outputbuffer[0][i] = audiobits_a;
outputbuffer[1][i] = audiobits_b;
}
}
else
{
int i;
for (i = 0; i < outputsamples; i++)
{
int32_t audiobits_a, audiobits_b;
audiobits_a = readbits(alac, 16);
audiobits_a = audiobits_a << 16;
audiobits_a = audiobits_a >> (32 - alac->setinfo_sample_size);
audiobits_a |= readbits(alac, alac->setinfo_sample_size - 16);
audiobits_b = readbits(alac, 16);
audiobits_b = audiobits_b << 16;
audiobits_b = audiobits_b >> (32 - alac->setinfo_sample_size);
audiobits_b |= readbits(alac, alac->setinfo_sample_size - 16);
outputbuffer[0][i] = audiobits_a;
outputbuffer[1][i] = audiobits_b;
}
}
/* wasted_bytes = 0; */
interlacing_shift = 0;
interlacing_leftweight = 0;
}
yield();
switch(alac->setinfo_sample_size)
{
case 16:
{
deinterlace_16(outputbuffer[0],
outputbuffer[1],
outputsamples,
interlacing_shift,
interlacing_leftweight);
break;
}
case 20:
case 24:
case 32:
//fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
break;
default:
break;
}
return outputsamples;
}
int alac_decode_frame(alac_file *alac,
unsigned char *inbuffer,
int32_t outputbuffer[ALAC_MAX_CHANNELS][ALAC_BLOCKSIZE],
void (*yield)(void))
{
int channels;
int16_t* outbuffer;
int32_t outputsamples = alac->setinfo_max_samples_per_frame;
int outputsamples;
/* setup the stream */
alac->input_buffer = inbuffer;
alac->input_buffer_bitaccumulator = 0;
/* We can share the same buffer for outputbuffer
and outputsamples_buffer_b - and hence have them both in IRAM*/
outbuffer=(int16_t*)outputsamples_buffer_b;
channels = readbits(alac, 3);
*outputsize = outputsamples * alac->bytespersample;
/* TODO: The mono and stereo functions should be combined. */
switch(channels)
{
case 0: /* 1 channel */
{
int hassize;
int isnotcompressed;
int readsamplesize;
int wasted_bytes;
int ricemodifier;
/* 2^result = something to do with output waiting.
* perhaps matters if we read > 1 frame in a pass?
*/
readbits(alac, 4);
readbits(alac, 12); /* unknown, skip 12 bits */
hassize = readbits(alac, 1); /* the output sample size is stored soon */
wasted_bytes = readbits(alac, 2); /* unknown ? */
isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
if (hassize)
{
/* now read the number of samples,
* as a 32bit integer */
outputsamples = readbits(alac, 32);
*outputsize = outputsamples * alac->bytespersample;
}
readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8);
if (!isnotcompressed)
{ /* so it is compressed */
int predictor_coef_num;
int prediction_type;
int prediction_quantitization;
int i;
/* skip 16 bits, not sure what they are. seem to be used in
* two channel case */
readbits(alac, 8);
readbits(alac, 8);
prediction_type = readbits(alac, 4);
prediction_quantitization = readbits(alac, 4);
ricemodifier = readbits(alac, 3);
predictor_coef_num = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num; i++)
{
predictor_coef_table[i] = (int16_t)readbits(alac, 16);
}
if (wasted_bytes)
{
/* these bytes seem to have something to do with
* > 2 channel files.
*/
//fprintf(stderr, "FIXME: unimplemented, unhandling of wasted_bytes\n");
}
yield();
basterdised_rice_decompress(alac,
predicterror_buffer_a,
outputsamples,
readsamplesize,
alac->setinfo_rice_initialhistory,
alac->setinfo_rice_kmodifier,
ricemodifier * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
yield();
if (prediction_type == 0)
{ /* adaptive fir */
predictor_decompress_fir_adapt(predicterror_buffer_a,
outputsamples_buffer_a,
outputsamples,
readsamplesize,
predictor_coef_table,
predictor_coef_num,
prediction_quantitization);
}
else
{
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type);
/* i think the only other prediction type (or perhaps this is just a
* boolean?) runs adaptive fir twice.. like:
* predictor_decompress_fir_adapt(predictor_error, tempout, ...)
* predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
* little strange..
*/
}
}
else
{ /* not compressed, easy case */
if (readsamplesize <= 16)
{
int i;
for (i = 0; i < outputsamples; i++)
{
int32_t audiobits = readbits(alac, readsamplesize);
audiobits = SIGN_EXTENDED32(audiobits, readsamplesize);
outputsamples_buffer_a[i] = audiobits;
}
}
else
{
int i;
for (i = 0; i < outputsamples; i++)
{
int32_t audiobits;
audiobits = readbits(alac, 16);
/* special case of sign extension..
* as we'll be ORing the low 16bits into this */
audiobits = audiobits << 16;
audiobits = audiobits >> (32 - readsamplesize);
audiobits |= readbits(alac, readsamplesize - 16);
outputsamples_buffer_a[i] = audiobits;
}
}
/* wasted_bytes = 0; // unused */
}
yield();
switch(alac->setinfo_sample_size)
{
case 16:
{
int i;
for (i = 0; i < outputsamples; i++)
{
/* Output mono data as stereo */
outbuffer[i*2] = outputsamples_buffer_a[i];
outbuffer[i*2+1] = outputsamples_buffer_a[i];
}
case 0: /* 1 channel */
outputsamples=decode_frame_mono(alac,outputbuffer,yield);
break;
}
case 20:
case 24:
case 32:
//fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
case 1: /* 2 channels */
outputsamples=decode_frame_stereo(alac,outputbuffer,yield);
break;
default:
break;
}
break;
default: /* Unsupported */
return -1;
}
case 1: /* 2 channels */
{
int hassize;
int isnotcompressed;
int readsamplesize;
int wasted_bytes;
uint8_t interlacing_shift;
uint8_t interlacing_leftweight;
/* 2^result = something to do with output waiting.
* perhaps matters if we read > 1 frame in a pass?
*/
readbits(alac, 4);
readbits(alac, 12); /* unknown, skip 12 bits */
hassize = readbits(alac, 1); /* the output sample size is stored soon */
wasted_bytes = readbits(alac, 2); /* unknown ? */
isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
if (hassize)
{
/* now read the number of samples,
* as a 32bit integer */
outputsamples = readbits(alac, 32);
*outputsize = outputsamples * alac->bytespersample;
}
readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8) + 1;
yield();
if (!isnotcompressed)
{ /* compressed */
int predictor_coef_num_a;
int prediction_type_a;
int prediction_quantitization_a;
int ricemodifier_a;
int predictor_coef_num_b;
int prediction_type_b;
int prediction_quantitization_b;
int ricemodifier_b;
int i;
interlacing_shift = readbits(alac, 8);
interlacing_leftweight = readbits(alac, 8);
/******** channel 1 ***********/
prediction_type_a = readbits(alac, 4);
prediction_quantitization_a = readbits(alac, 4);
ricemodifier_a = readbits(alac, 3);
predictor_coef_num_a = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num_a; i++)
{
predictor_coef_table_a[i] = (int16_t)readbits(alac, 16);
}
/******** channel 2 *********/
prediction_type_b = readbits(alac, 4);
prediction_quantitization_b = readbits(alac, 4);
ricemodifier_b = readbits(alac, 3);
predictor_coef_num_b = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num_b; i++)
{
predictor_coef_table_b[i] = (int16_t)readbits(alac, 16);
}
/*********************/
if (wasted_bytes)
{ /* see mono case */
//fprintf(stderr, "FIXME: unimplemented, unhandling of wasted_bytes\n");
}
yield();
/* channel 1 */
basterdised_rice_decompress(alac,
predicterror_buffer_a,
outputsamples,
readsamplesize,
alac->setinfo_rice_initialhistory,
alac->setinfo_rice_kmodifier,
ricemodifier_a * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
yield();
if (prediction_type_a == 0)
{ /* adaptive fir */
predictor_decompress_fir_adapt(predicterror_buffer_a,
outputsamples_buffer_a,
outputsamples,
readsamplesize,
predictor_coef_table_a,
predictor_coef_num_a,
prediction_quantitization_a);
}
else
{ /* see mono case */
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_a);
}
yield();
/* channel 2 */
basterdised_rice_decompress(alac,
predicterror_buffer_b,
outputsamples,
readsamplesize,
alac->setinfo_rice_initialhistory,
alac->setinfo_rice_kmodifier,
ricemodifier_b * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
yield();
if (prediction_type_b == 0)
{ /* adaptive fir */
predictor_decompress_fir_adapt(predicterror_buffer_b,
outputsamples_buffer_b,
outputsamples,
readsamplesize,
predictor_coef_table_b,
predictor_coef_num_b,
prediction_quantitization_b);
}
else
{
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_b);
}
}
else
{ /* not compressed, easy case */
if (alac->setinfo_sample_size <= 16)
{
int i;
for (i = 0; i < outputsamples; i++)
{
int32_t audiobits_a, audiobits_b;
audiobits_a = readbits(alac, alac->setinfo_sample_size);
audiobits_b = readbits(alac, alac->setinfo_sample_size);
audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size);
audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size);
outputsamples_buffer_a[i] = audiobits_a;
outputsamples_buffer_b[i] = audiobits_b;
}
}
else
{
int i;
for (i = 0; i < outputsamples; i++)
{
int32_t audiobits_a, audiobits_b;
audiobits_a = readbits(alac, 16);
audiobits_a = audiobits_a << 16;
audiobits_a = audiobits_a >> (32 - alac->setinfo_sample_size);
audiobits_a |= readbits(alac, alac->setinfo_sample_size - 16);
audiobits_b = readbits(alac, 16);
audiobits_b = audiobits_b << 16;
audiobits_b = audiobits_b >> (32 - alac->setinfo_sample_size);
audiobits_b |= readbits(alac, alac->setinfo_sample_size - 16);
outputsamples_buffer_a[i] = audiobits_a;
outputsamples_buffer_b[i] = audiobits_b;
}
}
/* wasted_bytes = 0; */
interlacing_shift = 0;
interlacing_leftweight = 0;
}
yield();
switch(alac->setinfo_sample_size)
{
case 16:
{
deinterlace_16(outputsamples_buffer_a,
outputsamples_buffer_b,
(int16_t*)outbuffer,
alac->numchannels,
outputsamples,
interlacing_shift,
interlacing_leftweight);
break;
}
case 20:
case 24:
case 32:
//fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
break;
default:
break;
}
break;
}
}
return outbuffer;
return outputsamples;
}
void create_alac(int samplesize, int numchannels, alac_file* alac)

View file

@ -1,6 +1,12 @@
#ifndef __ALAC__DECOMP_H
#define __ALAC__DECOMP_H
/* Always output samples shifted to 28 bits */
#define ALAC_OUTPUT_DEPTH 28
#define SCALE16 (ALAC_OUTPUT_DEPTH - 16)
#define ALAC_MAX_CHANNELS 2
#define ALAC_BLOCKSIZE 4096 /* Number of samples per channel per block */
typedef struct
{
unsigned char *input_buffer;
@ -26,10 +32,10 @@ typedef struct
} alac_file;
void create_alac(int samplesize, int numchannels, alac_file* alac);
int16_t* decode_frame(alac_file *alac,
unsigned char *inbuffer,
int *outputsize,
void (*yield)(void));
int alac_decode_frame(alac_file *alac,
unsigned char *inbuffer,
int32_t outputbuffer[ALAC_MAX_CHANNELS][ALAC_BLOCKSIZE],
void (*yield)(void));
void alac_set_info(alac_file *alac, char *inputbuffer);
#endif /* __ALAC__DECOMP_H */